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Abstract. We give a complete list of the Lebesgue-Jordan decomposition of Boolean
and monotone stable distributions and a complete list of the mode of them. They are not
always unimodal.

1. Introduction

Boolean and monotone stable distributions were defined in [SW97, H10a)
in the context of non-commutative probability theory with Boolean and
monotone independence, respectively [SW97, M01|. The aspect of domains
of attraction for these distributions are studied in [W12, AW13| and [BP99],
respectively.

They also play important roles in free probability theory: Positive mono-
tone stable laws are the marginal laws of a free Lévy process of second kind
[B98, Theorem 4.5, Corollary 4.5]; A compound free Poisson distribution
having a monotone stable law as its free Lévy measure has explicit Cauchy
and Voiculescu transforms [AH13|; A positive Boolean stable distribution is
the law of the quotient X /Y of two i.i.d. classical stable random variables
X,Y, and at the same time, it is the law of the “noncommutative quotient”
X Y2y X2 of free random variables X,Y having the same free stable law
[BP99, AH14].

In this paper, we first determine the absolutely continuous part and also
the singular part of the monotone and Boolean stable laws. While part of
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this computation is known in the literature [AH13, AH14, H10a], there is no
complete list of the formulas.

Second, we investigate the modality of them. A probability measure pu is
unimodal with mode a € R if p is decomposed as p(dx) = c¢d,(dx) + f(x)dx
where ¢ € [0,1] and f(x) is non-decreasing on (—o0,a) and is non-increasing
on (a,). In other words, u is said to be unimodal with mode a € R if
p((—o0,x]) is convex on (—o0,a) and concave on (a,00). We say that p
is unimodal if p is unimodal with mode a for some a € R. A probability
distribution p is said to be bimodal with modes a1, a2 € R if pu((—0, z]) is
convex on (—o0,aq) and (b, as) and concave on (a1, b) and (agz,o0) for some
a; < b < as.

It is known that classical and free stable distributions are unimodal [Y78,
BP99]. More generally, selfdecomposable and free selfdecomposable distribu-
tions, which respectively include all stable and free stable distributions, are
unimodal [Y78, HT|. However, monotone stable laws and Boolean stable laws
include the arcsine law and the Bernoulli law, respectively, and we cannot
expect unimodality for all. We obtain the modes of all monotone and Boolean
stable distributions. In some case, these distributions become bimodal.

REMARK 1. The modes of a unimodal or bimodal distribution g may not
be unique. See page 394 in the book by Sato [Sa99| for details.

2. Unimodality of Boolean and monotone stable distributions

First, we gather analytic tools and their properties to compute Boolean
and monotone stable distributions.

2.1. Analytic tools. Let P denote the set of all Borel probability measures
on R. In the following, we explain the main tool of free probability. Let
Ct:={2eC:Im(z) >0} and C~ := {2 € C: Im(z) < 0}. For u € P, the
Cauchy transform G, : CT — C~ is defined by

1
Gule) = | —utda), zecr,

and the reciprocal Cauchy transform F), : C* — C"of € P is defined by

1
F,(2) = =——, zeC™.
g Gu(z)’
In this paper, we apply the Stieltjes inversion formula [A65, T00]| for Boolean
and monotone stable distributions. For any Borel probability measure u, we
can recover the distribution from its Cauchy transform: if ;1 does not have
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atoms at a, b, we have

1
a,b]) = —— lim Im G, (x +iy)dzx.
plla,b]) = = lim il u(z + iy)
Especially, if G,,(z) extends to a continuous function on C* U I for an open
interval I R, then the distribution p has continuous derivative f, = du/dx
with respect to the Lebesgue measure dz on I, and we obtain f,(z) by

1
fulz) = —;ii{‘r(l)lmGu(:z: +iy), xel.

Atoms of u may be computed by the formula

p({a})

li —a)G = lim y G, (a + iy), R.
1m(c+(z a)Gp(z) yl{%y upla+iy), ae

z—a, z€

2.2. Boolean case. In this paper, the maps z — 2P and z — log 2z always
denote the principal values for z € C\(—o0,0]. Correspondingly arg(z) is
defined in C\(—o0, 0] so that it takes values in (—m, 7).

DEFINITION 2. Let b, , be a boolean stable law [SW97| characterized by
the following.

(1) If « € (0,1) U (1,2], then
Py, (2) =2+ 7 zeCh,  pel0,1]n[l-1/a,1/a].
(2) If =1, then

22p — 1
P (2p—1)
v

(2) =z + 2pi — log z, zeCT, p € [0,1].

a,p

REMARK 3. The case o = 1 includes non strictly stable distributions which
were considered in [AH14|. The parametrization for o« > 1 follows that in
[HK], not the one in [BP99], in order to respect the correspondence to the
parametrization of classical stable laws in the Zolotarev book [Z86].

In the case a € (0,1) U (1, 2], for simplicity we also use a parameter 0,
instead of p, defined by
(2.1) 0 = par.
The range of 6 is [0, ar] for a € (0,1) and [(ov — 1)7, 7] for a € (1,2]. We
will often use the following functions:

sin 6 rot

(2.2)  Bap(z) = e roeeostil Y7 0, ae(0,1)u(1,2),
2p 1
T (x— 72(2‘7’:1) log )2 + 4p2’

(2.3) BLP(.’/U) =
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The probability measure b, , is described as follows.
PROPOSITION 4. The Boolean stable distributions are as follows.
(1) If « € (0,1) and p € (0,1), then

ba,p(dz) = Ba,p(x)l(opo) (x)dx + Bavl_p(—x)l(,@,o) (x) dx.
(2) If « € (0,1) and p € {0,1}, then
ba,o(dz) = Ba,l(—$)1(_oo,o) (x) dx,
ba,1(dz) = Ba,1(2)1(0,0) () dz.
(3) Ifa =1 and pe (0,1), then
b1 p(dx) = By p(2)1(0,00)(7) dx + B11—p(—2)1(_ o 0) () dov.

The case p = % s the Cauchy distribution

1
b171/2(d{1§') = mlﬂg(%) dx.
(4) If « =1 and p € {0,1}, then
u4(0)

bio(dr) = B1i(—z)1_ de + ——————

10(dr) = By 1(=2)1(_ep0) () dz + 0 (0) + 2w

u4(0)

by 1(dx) = B 1 doe + ——————

1,1(dz) = B1,1(2) 10,0 () dz + 2o (0) £ 20 O

where uy (0) = 0.4745 ... is the unique solution u of the equation mu +

2logu =0, ue (0,00).
(5) Ifae(1,2) and pe (1 —1/a,1/a), then

ba p(dx) = Ba,p(2)1(0,00) (%) dx + Bo1—p(—7)1(—e 0y () dv.
(6) If e (1,2) and pe {1 —1/a,1/a}, then
1
ba,l/a(d'x) = Ba,lfl/a(_x)l(foo,o) (x) dx + 5517

1
ba,l—l/oc(dl‘) = Ba,l—l/a(x)1(07w) (z) dz + aéfl'
(7) If « =2 and p = 1/2, then

1
b2,1/2 = 5(5—1 + 01).

For each a € (0,2), the replacement p — 1 — p gives the reflection of the
measure with respect to 0. Here the reflection i of a measure p with respect
to 0 means fi(B) = u(—B) for any Borel set B on R, where —B is the set
{reR:—x e B}.
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Proof. We can find the case a = 2 on page 273 in [SW97].

(i) The case a # 1. We write G(z), F' ( ) instead of Gy, ,(2), Fb, ,(2),
respectively. If 2 > 0, then lim,~ o(x + iy)'=® is simply z!~¢ Whlle 1f z < 0,
then the argument of x + iy approaches to 7, and so hmy\o(a: +iy)t— =
(—z)lm@em1=0) = (—g)l=2eim(1=9) " So we have for z > 0 that

lim G(z + iy) = ! _ 2%t (2 + cosf —isind)

y\0 x+elpl-a — papel — (ga 4 cosh)? 4 sin 0

and for z < 0

. X 1 (_x)a—l
1 _ __ |
yI{%G(x * Zy) T — 61(0_0‘”)(—1‘)1_(1 (_J;)OL + ei(0—am)

(—2)* Yz + cos(d — ar) —isin(d — ar))

((—z)* + cos( — am))? + sin?(§ — a)

Taking the imaginary part of these expressions, we obtain

2.4 ——hmIme—i—z
24 -2l ImGG+ i)
sin 6 ot >0
T 22+ 22%cosf + 1’ ’
- : _ _ \a—1
sin(am — 0) (—x) s <o.
T (—z)2 + 2(—x)* cos(am — 0) + 1

(i-1) The case o € (0,1). If a € (0,1) and p € [0, 1], the function F'
extends continuously to C* U R and does not have a zero except at z = 0
in C* U R, but since lim,\ o yG(iy) = 0, there is no atom at 0. The above
argument shows (1) and (2).

(i-2) The case a € (1,2). First note that the measure does not have
an atom at 0 since limy o G(iy) = 0. If § € ((o« — 1)m, 7), then the same
computation (2.4) is valid and so we obtain (5). If § = (a—1)7 (or equivalently
p=1—1/a), then (2.4) is valid for z > 0. Now note that z — F(z + i0)
=z el Dmyl=a — 5 L (—2)1"® has a zero z = —1 in (—0,0). Hence G
extends to a continuous function on C* UR\{—1}, and we have Im G (z+10) =
0 for x < 0, x # —1. There is an atom at —1 with weight 1/« since

lim (z+1)G(z)= lim ! 1_7(_22 = l
z——1,2eC+ z——1,2éC*+ 2 1-— (—Z) @ o
This implies the second part of (6). The first part is similar.

(i) The case o = 1. We can easily see that lim,\ o yG(iy) = 0 and so

there is no atom at 0. Assume first that p € (0,1). For > 0, we have that
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1
(2.5) lim Im G(x + dy) = lim Im
N N0 (2 +ay) + 2pi — @ log(z + iy)

1
z— 221 16500 4 2pi

s
T — Mlogm—%)i

(x — 72(2’2:1) log x)2 + 4p?
—2p
(x — 2(2p=1) logz)? + 4p?

™

=Im

=Im

and so we get —2 limy\ o Im G(z+iy) = By,,(z). For x < 0, note that log(z +
i0) = log(—x) + im and then, similarly to (2.5), we get — I limy\ o Im G(z +
iy) = Bi,1—p(—x). Since G extends to a continuous function on C* u R\{0},
we get the formula (3) by the Stieltjes inversion.

If p =1, then the computation for x > 0 is the same as (2.5). For z < 0,
note that

F(x+i0) =x + 2i — %(log(—m) +im) = —((—x) + %log(—x)),

which has the unique zero at + = —u(0). So G extends to a continuous
function on C* UR\{0, —u(0)} and Im G(x +i0) = 0 for z < 0,2 # —u(0).
We have the series expansion

2
T - log(—z) = a(z 4+ u4(0)) + b(z + uy (0)% + - -
Then a = % (z — 2log(—x)) = Wu((jr)i(g)%' The weight of the atom

z=—u(0
at —u(0) is equal to 1/a, and so we have the second part of (4). The first
part is similar.

The reflection property is clear from the formulas. =

THEOREM 5. Let ag = 0.7364 ... be the unique solution of the equation
sin(ma) = o, a€ (0,1). Let

(2.6) (= cos par + /a2 —sin® par He
. T 1+a ’
. 1/a
(2.7) R cos((1 — p)am) + 1/a2 —sin?((1 — p)ar)
. o l1+a :

Let uy = uy(p) be the unique solution = of the equation wx + 2(1 — 2p) log x
0, 2 €(0,0), pe [0,1), andletu_ = u_(p) = —us(1-p), pe (3,1].



430 T. Hasebe, N. Sakuma

(1) If a € (0, ], then by, is unimodal with mode 0.
(2) If a € (e, 1), then there are sub cases.
(a) If p € [0,arcsin(ar)/(am) + 1 —1/a), then by, is bimodal with modes
0 and x4.
(b) If p € [arcsin(a)/(am) + 1 — 1/a, 1/ — arcsin(a) /(am)], then b, is
unimodal with mode 0.
(c) If pe (1/o — arcsin(a)/(amr), 1], then by, is bimodal with modes x_
and 0.
(3) If a = 1, then there are sub cases.
(a) If p€[0,3), then by, is bimodal with modes —M and uy. If
p =0, then the mode at uy is an atom.
(b) If p = %, then by, is unimodal with mode 0.
(c) If p € (3,1], then by, is bimodal with modes u_ and W. If
p =1, then the mode at u_ is an atom.
(4) If € (1,2], then by, is bimodal with modes x— and x. If p=1—1/a,
then by, has an atom at x— = —1. If p =1/, then by, has an atom at
Ty = 1.

Proof. (i) The case a € (0,ap]. Note that 0 is a mode since the density
diverges to o0 at z = 0. We can easily compute

0
(28) %Ba’p(fﬂ)
2 2sinf (1 +a)(z® + IJ%Q cos 0)? + 1J%a(sinQ 0 — a?) 0
- _ ) , x>0.
T (22 4 22 cos O + 1)
Let
2
— o 20 2
flx):=01+a) (ZL’ + 1_i_Oécos€> + 1+a(sm 0 —a”).

Note that f(0) = 1 — «a > 0. Since f(x) is a polynomial on xz® of degree
2, it is easy to see that if 6 € [0, 5], then cosf > 0 and f(z) does not have
a zero in (0,00). If 6 € (5, am), then f(x) attains a local minimal value at
T = —IJ%OC cos 0, but now sin®6 — a? > sin2(a7r) —a? >0 for o < a. Hence
f(z) >0 for x > 0 and the map x — B, ,(x) is strictly decreasing on (0, c0)
for any 0 € (0,ar]. By the reflection property (see the last statement of
Proposition 4) the density is strictly increasing on (—o0,0) for any 6 € [0, an)
and hence b, , is unimodal, the conclusion (1).

(ii) The case a € (ap,1). In this case 0 is still a mode of b, ,. From
(2.8), we have that
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(2.9) x— By(x) takes a local maximum in (0, 00)
=f0e (g,aw] and sinf < «
< 0 e (m — arcsin(«), ar],

and if this condition is satisfied, then the local maximum is attained at
x = x4. By reflection, it holds that

(2.10) @ Bga1—p(—x) takes a local maximum in (—o0,0)
< 6 € [0,arcsin(a) — (1 — a)n),

and if this condition is satisfied, the local maximum is attained at z = x_.
The two conditions (2.9) and (2.10) cannot be satisfied for the same 6. Hence
we have the conclusion (2).

(iii) The case a € (1,2). Note that 0 is not a mode of b, , since the
density function takes 0 at x = 0. Since now f(0) = 1 — «a < 0, we conclude
that the map « — B, ,() in (0, 0) takes a unique local maximum at x = x4
for any 0 € [(aw — 1)m, ). By reflection and by Proposition 4(5)—(7), the
conclusion follows.

(iv) The case a =1, p # 3. Note that the density takes 0 at z = 0. We

have

0 4p<x—@) (x—@logx)
(2.11)  —Bj,(x) = — 5 x>0,
X ((:L’ — 222D 150 4)2 4 4,02)

™

and then we obtain zeros of a%BLp(x)~ The conclusion follows from increase
and decrease of By ,(x). =

REMARK 6. If a € (0,1), the density b, , diverges at 0. So z = 0 always
becomes a mode. In addition, at x = 0 the density cannot be differentiable.
On the other hand, if a € (v, 1) and 6 € [0, arcsin(a) — (1 — a)7], at x4 the
density is differentiable.

2.3. Monotone case. As before, the map z +— 2P denotes the principal
value (defined in C\(—o0,0]). We also use a different branch

R = ePlog |l +ipargo,om) 2. z € C\[0, ),

p
(0,27)

where argg 2. 2 is defined continuously so that arggo. 2 € (0,27).
Let m, , be a monotone strictly stable law [H10a| characterized by

DEFINITION 7. (1) If a € (0,1) U (1,2], then

(2) = (2° + eirom) i@ zeCh, pel0,1]n[1—1/a,1/al.

3 (0,2m)°

Ma,p
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. 1.
(2) If a = 1, then we only consider p = 3:
EF

my 1/2

REMARK 8. (a) If a € (0,1), then z* + %27 stays in C* for z € CT, and
hence we may define my,, by F, ,(2) = (2% + etremyl/e  However for
a € (1,2], 2% + "™ may be in C~, and so we need to use the branch
()t

(b) The above definition does not respect the monotone-classical Bercovici—
Pata bijection. If we hope to let m, , correspond to b, , regarding the
monotone-classical Bercovici—Pata bijection, then we have to consider
D_1/a (Mg, ), which is the induced measure of m,, , by the map z — al/og,
About the Bercovici—Pata bijection between monotone and classical
infinitely divisible distributions, see [H10b].

(c) All the above distributions are strictly stable. Non strictly stable distri-
butions are not defined in the literature, and so we do not consider the
non-symmetric case in o = 1.

(2) = z + 4, zeCT.

) to define Fy,, , analytically (or continuously) in C*.

We will describe the probability measure m, ,. Let § = 6(c, p) be (2.1)
as before. For a € (0,2],0 € (0,7), let
sin3(2*, 0)]

M, = ; > 0,
#(@) (22 4 22% cos § + 1)1/(2) v

where
arctan(xfgoig), x > —cosb,
o(r,0) =173, T = —cos0,
arctan(zilgoase) +7m, 0<x< —cosb.

The second and the third cases do not appear if cosf > 0. We can also write
o(x,0) = arg(x + €*).

PROPOSITION 9. The strictly monotone stable distributions are as follows.
(1) If € (0,1) and p€ (0,1), then
Mg p(dr) = Mo,y (7)1(0,00) (%) d + Mo 1-p(—7)1(—o0)(7) d.

(2) If «€(0,1) and p € {0,1}, then

my o(dz) = Ma,1(—x)1(7oo,0) (x) dz,

My, 1(dz) = Ma1(7)1 (0,00 (7) d.
(3) Ifa=1 and p =3, then

1

mlR(w) dx.

m1,1/2(d55) =



Unimodality of Boolean and monotone stable distributions 433

(4) If e (1,2) and pe (1 — 1/, 1/a), then
M, (dz) = Ma, p(7)1(0,0)(7) dx + Mo —p(—7)1(—e0 0y (7) dv.
(5) If e (1,2) and pe {1 —1/a,1/a}, then

sin(7/a
1 (0) = Moa () e) e+~ ) o,

sin(m/o
ma,l—l/a(dw) = Moe,l—l/oc(x)l(o,oo) (l‘) dx + ’R’(l — ((_;)c)v>l/a 1(—1,0] (.CU) de.

(6) If « =2 and p = 1/2, then
1

m2,1/2(dx) ﬂ_m
They are all absolutely continuous with respect to the Lebesgue measure. In
the case a € (1,2],p € {1 — 1/, 1/a}, the density function diverges to infinity
at the edge of the support, but in the other cases the density function is either
continuous on R, or extends to a continuous function on R (if the support is
not R). The density function is real analytic except at the edge of the support
and at 0. The replacement p — 1 — p gives the reflection of the measure with
respect to x = 0.

Proof. Let G(z), F'(z) denote G, ,(2), Fin, ,(2), respectively. First, note
that m, , does not have an atom at x = 0 since lim,\ o F'(iy) # 0.
In the cases a = 1 and a = 2, see [M00, Example 4.8|.

Proof of the case (1). The case a € (0,1), pe (0,1). For z > 0, we have
that

(2.12)

1(,171) (.’L‘) dx.

lim (z + iy)® + € = 2% + cosf + isinf e CT,
y\0
which equals r(z?, O)ew(‘”a’e), where

r(z,0) = Va2 + 2z cosf + 1.

So we get
1., .
(2.13) - - il\r‘% Im G(z + iy)
= —iIm;1 = —llmr(:na,9)_1/“e_i‘p(xa’9)/a
™ (xa + ei@)((/)’aéﬂ) m
= l7“($C“,9)71/°‘ sin (190(:50‘,0)) , x>0,
T a

which is strictly positive since now ¢ € (0,m). This implies that m, , is
absolutely continuous on (0, 00) with respect to the Lebesgue measure, and
the density function is given by M, ,(x).
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Note that, for x < 0, it holds that
(2.14)  lim(z +iy)” + e = (—z)2e®™ 4 ¥ = o7 ((—x)™ + €00,
Now §—am € (—,0). Since § —am < arg((—z)*+¢e?=2™)) < 0, the following
can be justified:

21 ()
= () () 4 0-0m)
= - ((—:U)O‘ + ei(a_o‘ﬂ)))l/a7 z <0.

We can show that
(2.16) (—z)® + 0= — p((—z)*, ar — §)e~P((=2)%am=6)
and so we get (1) from a computation similar to (2.13).

Proof of the case (2). The case a € (0,1), p = 1. The formula (2.13) still
holds for x > 0. For x < 0, we have

F(m + iO) _ ((m + iO)a + emﬂ)%;n) _ ((*x)aeimr + eicwr)l/a

= (=) + )" <0,

and hence m, ; does not have support on (—00,0). We can prove the case
p = 0 similarly. So we get (2).
Proof of the case (4). Thecase a € (1,2), pe (1—1/a,1/a). The formula
(2.13) still holds for > 0. The computation of the density function for x < 0
is now delicate. For z < 0, the formula (2.14) still holds true. Note that now
again 6 — am € (—m,0). By —7m <0 — ar < arg((—z)* + e'0=2m)y < 0 and
arg o o€ " € (m,2m), the formula

. . 1/
am(( @ i(0—am)
(2.17) (e (—2)* + e ))(07%)
iam /e a i(0—am 1/a
= () oy (=) + 070)
) 1/a
_ ((*I‘)a + ez(@—onr))) , z <0,
is valid. A delicate point is that we should use the principal value in the last

expression, not the branch (~)%O;7r). Then the formula (2.16) still holds and

then the Stieltjes inversion formula implies (4).

Proof of the case (5). The case a € (1,2), p =1— 1/a. For z > 0, the
computation (2.13) holds without any change. For x < —1, we have
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. . 1 1 ; ; 1
(2.18) F(w +1i0) = ((x +i0)* + ¢/@=Dm) 1% = (=)™ — elom) 9 |
— ~((=a)" = ¥ <,
and so my,; does not have support on (—oo,—1). We can also show that

lim, , j.ec+(2 +1)G(2z + 1) = 0, which implies that there is no atom at —1.
For x € (—1,0), by using part of (2.18), we have
. 1/ o
F(:L’ +i0) = <6’L(Ot—1)ﬂ'(1 _ (—l’)a)> @ _ eZTlﬂ-(l _ (_x)a)l/a,

and then by the Stieltjes inversion formula, we get its probability density
function. We can prove the case p = 1/« similarly. So we obtain (5).
The remaining statements can be proved as follows.

The reflection property of p — 1 — p. This is clear.

The continuity of the density function at x = 0. For ac € (0,1) u (1,2) and
6 € (0,m), we can show that lim,~ o ¢(x,6) = 6 and hence

) _sin(pr)  sin((1—p)7)
lim Mo, ) = - = lim Moy (),

T T
This shows the continuity.
The remaining statements are easy consequences of (1)—(6). =

THEOREM 10. Let

(2.19) v, im (sin(om(p— @)))”‘*7 s _<sm<om<1+a - >>)1/°{

sin( sin(

1+a) 1+a)

(1) If € (0,1), then mqy , is unimodal. The mode is described as follows.
(a) If pe [0, 1551, then the mode is v_.
(b) If pe [1+a, =1, then the mode is 0.
(c) If pe [1+a’ 1], then the mode is v .
(2) Ifa=1 and p =%, then m; 1/2 1s unimodal with mode 0.
(3) If a € (1, 1+‘[] then there are sub cases.
(a) If pe[1—1, H—a] then my, , is unimodal with mode v_.

(b) If pe (lia, Tia)s then mq , is bimodal with modes v— and v

(c) If pelits 11, then m,,, is unimodal with mode v .

(4) Ifa e (1+7\f 2], then m, , is bimodal with modes v_ and v.

Note that 25 = 1.6180.

Proof. We assume that o # 1, 2.
(0) (Arguments valid for a € (0,1) U (1,2),p € (0,1 (1 —1/a,1/a))
Let p(x) be the density function of m, , and let q(x, 0) := 2% + 2(cos )z + 1.
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The assumption p € (0,1) n (1 — 1/a, 1/a) implies 6 € (0, ar). Then m, ,
has the support R and p(z) > 0 in R. We can prove that

a—1
d ° si <a+1<p(x“,9)>, x> 0.

2.20) p'(z) = — M S
220) @) = ZMagle) = —— T in(( %
Since z — ¢(z,0) is strictly decreasing, mapping (0,00) onto (0,6), the

following equivalence holds true:

am
1+a
Moreover, 2§ < (a+1)7 < 27 for v € (0,1), and also 20 < (1/a+1)7 <
27 for av € (1,2), and so the sign of p’(x) changes at most once in (0, 0). If
the sign changes, the critical point is given by z = v,.

For the density function on the negative line, it suffices to study
%Mml,p(:n), x > 0, and it follows from (2.21) that

(2.21) p'(z) changes the sign at a point z € (0,00) < 6 >

04271'

(2.22) p'(z) changes the sign at a point x € (—0,0) < 0 < T o
«

The sign changes at most once, and if it changes, the critical point is x = —v_.

(i) The case a € (0,1). The conditions (2.21) and (2.22) cannot be
satisfied at the same time. Note that p may have a mode at 0. On the other
hands, the sign of p’ cannot be changed even number of times because p is
a probability density function. Combining these arguments, the claim (1)
follows for p € (0,1). The formula (2.20) holds also for # = am and so the
case p = 1 is covered. The case p = 0 is the reflection of p = 1.

(ii) The case a € (1,2). If p € (1 — 1/, 1/a), then by looking at the
formula (2.20) and the fact limz\ o ¢(x, ) = 0, we have that p'(+0) = 0, and
from the replacement 6 — am — 6 we have p/(—0) = 0, and hence p'(0) = 0.
It is also true that p’(0) = 0 for p e {1 — 1/, 1/a}.

(ii-1) The case a € (1, 12—‘/5] Note that (%75, %) c [(a—=1D)m,x]. If

e (e %), then p has two modes at © = v_,v; from (2.21), (2.22). The
density function p takes a local minimum at z = 0, and hence we get (3b).
If 0 e ((a —1)7, 155 ], then p/(x) = 0 only for z = 0,v_. If we assume that
the sign of p’ changes at x = 0, p cannot be a probability density function.
Thus p is unimodal with mode x = v_. For § = (a — 1)7 (or equivalently
p=1—1/a), by using the formula (2.20) for > 0 and Proposition 9(5) for
x € (—1,0), we can show that p is strictly decreasing in (—1,00). Hence mq 1
is unimodal with mode —1 = v_. Thus we have (3a). (3c) is obtained by
reflection.

(ii-2) The case a € (1+2‘/5, 2). Note that [(o — D)m, 7] = (195, %) So,
if pe (1 —1/a,1/a), p' changes its sign at © = vy, v_, and also at = = 0. If
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p =1—1/a, then p’ changes its sign at x = v, and p is strictly decreasing
in (—1,0). If we assume that the sign of p’ does not change at = = 0, p
cannot be a probability density function. Therefore, we find that p takes
a local minimum at 0. The case p = 1/a follows by refection. Hence we
proved (4). m

i A P .

>
a

0.7364 1

D :bimodal area : unimodal area

Fig. 1. Unimodality of boolean stable distributions
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Fig. 2. Unimodality of monotone stable distributions
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Fig. 4. Unimodality of monotone stable distributions
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