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Abstract. We give a complete list of the Lebesgue–Jordan decomposition of Boolean
and monotone stable distributions and a complete list of the mode of them. They are not
always unimodal.

1. Introduction
Boolean and monotone stable distributions were defined in [SW97, H10a]

in the context of non-commutative probability theory with Boolean and
monotone independence, respectively [SW97, M01]. The aspect of domains
of attraction for these distributions are studied in [W12, AW13] and [BP99],
respectively.

They also play important roles in free probability theory: Positive mono-
tone stable laws are the marginal laws of a free Lévy process of second kind
[B98, Theorem 4.5, Corollary 4.5]; A compound free Poisson distribution
having a monotone stable law as its free Lévy measure has explicit Cauchy
and Voiculescu transforms [AH13]; A positive Boolean stable distribution is
the law of the quotient X{Y of two i.i.d. classical stable random variables
X,Y , and at the same time, it is the law of the “noncommutative quotient”
X´1{2Y X´1{2 of free random variables X,Y having the same free stable law
[BP99, AH14].

In this paper, we first determine the absolutely continuous part and also
the singular part of the monotone and Boolean stable laws. While part of
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this computation is known in the literature [AH13, AH14, H10a], there is no
complete list of the formulas.

Second, we investigate the modality of them. A probability measure µ is
unimodal with mode a P R if µ is decomposed as µpdxq “ cδapdxq ` fpxqdx
where c P r0, 1s and fpxq is non-decreasing on p´8, aq and is non-increasing
on pa,8q. In other words, µ is said to be unimodal with mode a P R if
µpp´8, xsq is convex on p´8, aq and concave on pa,8q. We say that µ
is unimodal if µ is unimodal with mode a for some a P R. A probability
distribution µ is said to be bimodal with modes a1, a2 P R if µpp´8, xsq is
convex on p´8, a1q and pb, a2q and concave on pa1, bq and pa2,8q for some
a1 ă b ă a2.

It is known that classical and free stable distributions are unimodal [Y78,
BP99]. More generally, selfdecomposable and free selfdecomposable distribu-
tions, which respectively include all stable and free stable distributions, are
unimodal [Y78, HT]. However, monotone stable laws and Boolean stable laws
include the arcsine law and the Bernoulli law, respectively, and we cannot
expect unimodality for all. We obtain the modes of all monotone and Boolean
stable distributions. In some case, these distributions become bimodal.

Remark 1. The modes of a unimodal or bimodal distribution µ may not
be unique. See page 394 in the book by Sato [Sa99] for details.

2. Unimodality of Boolean and monotone stable distributions
First, we gather analytic tools and their properties to compute Boolean

and monotone stable distributions.

2.1. Analytic tools. Let P denote the set of all Borel probability measures
on R. In the following, we explain the main tool of free probability. Let
C` :“ tz P C : Impzq ą 0u and C´ :“ tz P C : Impzq ă 0u. For µ P P, the
Cauchy transform Gµ : C` Ñ C´ is defined by

Gµpzq “

ż

R

1

z ´ x
µpdxq, z P C`,

and the reciprocal Cauchy transform Fµ : C` Ñ C`of µ P P is defined by

Fµpzq “
1

Gµpzq
, z P C`.

In this paper, we apply the Stieltjes inversion formula [A65, T00] for Boolean
and monotone stable distributions. For any Borel probability measure µ, we
can recover the distribution from its Cauchy transform: if µ does not have
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atoms at a, b, we have

µpra, bsq “ ´
1

π
lim
yŒ0

Im

ż

ra,bs
Gµpx` iyqdx.

Especially, if Gµpzq extends to a continuous function on C` Y I for an open
interval I Ă R, then the distribution µ has continuous derivative fµ “ dµ{dx
with respect to the Lebesgue measure dx on I, and we obtain fµpxq by

fµpxq “ ´
1

π
lim
yŒ0

ImGµpx` iyq, x P I.

Atoms of µ may be computed by the formula

µptauq “ lim
zÑa, zPC`

pz ´ aqGµpzq “ lim
yŒ0

y Gµpa` iyq, a P R.

2.2. Boolean case. In this paper, the maps z ÞÑ zp and z ÞÑ log z always
denote the principal values for z P Czp´8, 0s. Correspondingly argpzq is
defined in Czp´8, 0s so that it takes values in p´π, πq.

Definition 2. Let bα,ρ be a boolean stable law [SW97] characterized by
the following.

(1) If α P p0, 1q Y p1, 2s, then

Fbα,ρpzq “ z ` eiραπz1´α, z P C`, ρ P r0, 1s X r1´ 1{α, 1{αs.

(2) If α “ 1, then

Fbα,ρpzq “ z ` 2ρi´
2p2ρ´ 1q

π
log z, z P C`, ρ P r0, 1s.

Remark 3. The case α “ 1 includes non strictly stable distributions which
were considered in [AH14]. The parametrization for α ą 1 follows that in
[HK], not the one in [BP99], in order to respect the correspondence to the
parametrization of classical stable laws in the Zolotarev book [Z86].

In the case α P p0, 1q Y p1, 2s, for simplicity we also use a parameter θ,
instead of ρ, defined by

(2.1) θ “ ραπ.

The range of θ is r0, απs for α P p0, 1q and rpα ´ 1qπ, πs for α P p1, 2s. We
will often use the following functions:

Bα,ρpxq “
sin θ

π

xα´1

x2α ` 2xα cos θ ` 1
, x ą 0, α P p0, 1q Y p1, 2q,(2.2)

B1,ρpxq “
2ρ

π

1

px´ 2p2ρ´1q
π log xq2 ` 4ρ2

, x ą 0.(2.3)
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The probability measure bα,ρ is described as follows.

Proposition 4. The Boolean stable distributions are as follows.

(1) If α P p0, 1q and ρ P p0, 1q, then

bα,ρpdxq “ Bα,ρpxq1p0,8qpxq dx`Bα,1´ρp´xq1p´8,0qpxq dx.

(2) If α P p0, 1q and ρ P t0, 1u, then

bα,0pdxq “ Bα,1p´xq1p´8,0qpxq dx,

bα,1pdxq “ Bα,1pxq1p0,8qpxq dx.

(3) If α “ 1 and ρ P p0, 1q, then

b1,ρpdxq “ B1,ρpxq1p0,8qpxq dx`B1,1´ρp´xq1p´8,0qpxq dx.

The case ρ “ 1
2 is the Cauchy distribution

b1,1{2pdxq “
1

πpx2 ` 1q
1Rpxq dx.

(4) If α “ 1 and ρ P t0, 1u, then

b1,0pdxq “ B1,1p´xq1p´8,0qpxq dx`
u`p0q

u`p0q ` 2{π
δu`p0q,

b1,1pdxq “ B1,1pxq1p0,8qpxq dx`
u`p0q

u`p0q ` 2{π
δ´u`p0q,

where u`p0q “ 0.4745 . . . is the unique solution u of the equation πu`
2 log u “ 0, u P p0,8q.

(5) If α P p1, 2q and ρ P p1´ 1{α, 1{αq, then

bα,ρpdxq “ Bα,ρpxq1p0,8qpxq dx`Bα,1´ρp´xq1p´8,0qpxq dx.

(6) If α P p1, 2q and ρ P t1´ 1{α, 1{αu, then

bα,1{αpdxq “ Bα,1´1{αp´xq1p´8,0qpxq dx`
1

α
δ1,

bα,1´1{αpdxq “ Bα,1´1{αpxq1p0,8qpxq dx`
1

α
δ´1.

(7) If α “ 2 and ρ “ 1{2, then

b2,1{2 “
1

2
pδ´1 ` δ1q.

For each α P p0, 2q, the replacement ρ ÞÑ 1 ´ ρ gives the reflection of the
measure with respect to 0. Here the reflection µ̃ of a measure µ with respect
to 0 means µ̃pBq “ µp´Bq for any Borel set B on R, where ´B is the set
tx P R : ´x P Bu.
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Proof. We can find the case α “ 2 on page 273 in [SW97].
(i) The case α ‰ 1. We write Gpzq, F pzq instead of Gbα,ρpzq, Fbα,ρpzq,

respectively. If x ą 0, then limyŒ0px` iyq
1´α is simply x1´α, while if x ă 0,

then the argument of x` iy approaches to π, and so limyŒ0px` iyq1´α “

p´xq1´αeiπp1´αq “ p´xq1´αeiπp1´αq. So we have for x ą 0 that

lim
yŒ0

Gpx` iyq “
1

x` eiθx1´α
“

xα´1

xα ` eiθ
“
xα´1pxα ` cos θ ´ i sin θq

pxα ` cos θq2 ` sin2 θ

and for x ă 0

lim
yŒ0

Gpx` iyq “
1

x´ eipθ´απqp´xq1´α
“ ´

p´xqα´1

p´xqα ` eipθ´απq

“ ´
p´xqα´1px` cospθ ´ απq ´ i sinpθ ´ απqq

pp´xqα ` cospθ ´ απqq2 ` sin2pθ ´ απq
.

Taking the imaginary part of these expressions, we obtain

(2.4) ´
1

π
lim
yŒ0

ImGpx` iyq

“

$

’

’

’

&

’

’

’

%

sin θ

π

xα´1

x2α ` 2xα cos θ ` 1
, x ą 0,

sinpαπ ´ θq

π

p´xqα´1

p´xq2α ` 2p´xqα cospαπ ´ θq ` 1
, x ă 0.

(i-1) The case α P p0, 1q. If α P p0, 1q and ρ P r0, 1s, the function F
extends continuously to C` Y R and does not have a zero except at z “ 0
in C` Y R, but since limyŒ0 yGpiyq “ 0, there is no atom at 0. The above
argument shows (1) and (2).

(i-2) The case α P p1, 2q. First note that the measure does not have
an atom at 0 since limyŒ0Gpiyq “ 0. If θ P ppα ´ 1qπ, πq, then the same
computation (2.4) is valid and so we obtain (5). If θ “ pα´1qπ (or equivalently
ρ “ 1 ´ 1{α), then (2.4) is valid for x ą 0. Now note that z ÞÑ F pz ` i0q
“ z ` eipα´1qπz1´α “ z ` p´zq1´α has a zero z “ ´1 in p´8, 0q. Hence G
extends to a continuous function on C`YRzt´1u, and we have ImGpx`i0q “
0 for x ă 0, x ‰ ´1. There is an atom at ´1 with weight 1{α since

lim
zÑ´1,zPC`

pz ` 1qGpzq “ lim
zÑ´1,zPC`

1

z
¨

1´ p´zq

1´ p´zq´α
“

1

α
.

This implies the second part of (6). The first part is similar.
(ii) The case α “ 1. We can easily see that limyŒ0 yGpiyq “ 0 and so

there is no atom at 0. Assume first that ρ P p0, 1q. For x ą 0, we have that
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lim
yŒ0

ImGpx` iyq “ lim
yŒ0

Im
1

px` iyq ` 2ρi´ 2p2ρ´1q
π logpx` iyq

(2.5)

“ Im
1

x´ 2p2ρ´1q
π log x` 2ρi

“ Im
x´ 2p2ρ´1q

π log x´ 2ρi

px´ 2p2ρ´1q
π log xq2 ` 4ρ2

“
´2ρ

px´ 2p2ρ´1q
π log xq2 ` 4ρ2

and so we get ´ 1
π limyŒ0 ImGpx`iyq “ B1,ρpxq. For x ă 0, note that logpx`

i0q “ logp´xq ` iπ and then, similarly to (2.5), we get ´ 1
π limyŒ0 ImGpx`

iyq “ B1,1´ρp´xq. Since G extends to a continuous function on C` Y Rzt0u,
we get the formula (3) by the Stieltjes inversion.

If ρ “ 1, then the computation for x ą 0 is the same as (2.5). For x ă 0,
note that

F px` i0q “ x` 2i´
2

π
plogp´xq ` iπq “ ´pp´xq `

2

π
logp´xqq,

which has the unique zero at x “ ´u`p0q. So G extends to a continuous
function on C`YRzt0,´u`p0qu and ImGpx` i0q “ 0 for x ă 0, x ‰ ´u`p0q.
We have the series expansion

x´
2

π
logp´xq “ apx` u`p0qq ` bpx` u`p0qq

2 ` ¨ ¨ ¨ .

Then a “ d
dx

ˇ

ˇ

ˇ

x“´u`p0q
px´ 2

π logp´xqq “
u`p0q`2{π
u`p0q

. The weight of the atom

at ´u`p0q is equal to 1{a, and so we have the second part of (4). The first
part is similar.

The reflection property is clear from the formulas.

Theorem 5. Let α0 “ 0.7364 . . . be the unique solution of the equation
sinpπαq “ α, α P p0, 1q. Let

x` :“

˜

´ cos ραπ `
a

α2 ´ sin2 ραπ

1` α

¸1{α

,(2.6)

x´ :“ ´

˜

´ cospp1´ ρqαπq `
a

α2 ´ sin2pp1´ ρqαπq

1` α

¸1{α

.(2.7)

Let u` “ u`pρq be the unique solution x of the equation πx` 2p1´ 2ρq log x
“ 0, x P p0,8q, ρ P r0, 12q, and let u´ “ u´pρq :“ ´u`p1´ ρq, ρ P p12 , 1s.



430 T. Hasebe, N. Sakuma

(1) If α P p0, α0s, then bα,ρ is unimodal with mode 0.
(2) If α P pα0, 1q, then there are sub cases.

(a) If ρ P r0, arcsinpαq{pαπq ` 1´ 1{αq, then bα,ρ is bimodal with modes
0 and x`.

(b) If ρ P rarcsinpαq{pαπq ` 1´ 1{α, 1{α´ arcsinpαq{pαπqs, then bα,ρ is
unimodal with mode 0.

(c) If ρ P p1{α´ arcsinpαq{pαπq, 1s, then bα,ρ is bimodal with modes x´
and 0.

(3) If α “ 1, then there are sub cases.
(a) If ρ P r0, 12q, then bα,ρ is bimodal with modes ´2p1´2ρq

π and u`. If
ρ “ 0, then the mode at u` is an atom.

(b) If ρ “ 1
2 , then bα,ρ is unimodal with mode 0.

(c) If ρ P p12 , 1s, then bα,ρ is bimodal with modes u´ and 2p2ρ´1q
π . If

ρ “ 1, then the mode at u´ is an atom.
(4) If α P p1, 2s, then bα,ρ is bimodal with modes x´ and x`. If ρ “ 1´ 1{α,

then bα,ρ has an atom at x´ “ ´1. If ρ “ 1{α, then bα,ρ has an atom at
x` “ 1.

Proof. (i) The case α P p0, α0s. Note that 0 is a mode since the density
diverges to 8 at x “ 0. We can easily compute

(2.8)
B

Bx
Bα,ρpxq

“ ´
xα´2 sin θ

π
¨
p1` αqpxα ` 1

1`α cos θq2 ` 1
1`αpsin

2 θ ´ α2q

px2α ` 2xα cos θ ` 1q2
, x ą 0.

Let

fpxq :“ p1` αq

ˆ

xα `
1

1` α
cos θ

˙2

`
1

1` α
psin2 θ ´ α2q.

Note that fp0q “ 1 ´ α ą 0. Since fpxq is a polynomial on xα of degree
2, it is easy to see that if θ P r0, π2 s, then cos θ ≥ 0 and fpxq does not have
a zero in p0,8q. If θ P pπ2 , απq, then fpxq attains a local minimal value at
x “ ´ 1

1`α cos θ, but now sin2 θ ´ α2 ≥ sin2pαπq ´ α2 ≥ 0 for α ≤ α0. Hence
fpxq ≥ 0 for x ą 0 and the map x ÞÑ Bα,ρpxq is strictly decreasing on p0,8q
for any θ P p0, απs. By the reflection property (see the last statement of
Proposition 4) the density is strictly increasing on p´8, 0q for any θ P r0, απq
and hence bα,ρ is unimodal, the conclusion (1).

(ii) The case α P pα0, 1q. In this case 0 is still a mode of bα,ρ. From
(2.8), we have that
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(2.9) x ÞÑ Bα,ρpxq takes a local maximum in p0,8q

ô θ P
´π

2
, απ

ı

and sin θ ă α

ô θ P pπ ´ arcsinpαq, απs,

and if this condition is satisfied, then the local maximum is attained at
x “ x`. By reflection, it holds that

(2.10) x ÞÑ Bα,1´ρp´xq takes a local maximum in p´8, 0q
ô θ P r0, arcsinpαq ´ p1´ αqπq,

and if this condition is satisfied, the local maximum is attained at x “ x´.
The two conditions (2.9) and (2.10) cannot be satisfied for the same θ. Hence
we have the conclusion (2).

(iii) The case α P p1, 2q. Note that 0 is not a mode of bα,ρ since the
density function takes 0 at x “ 0. Since now fp0q “ 1´ α ă 0, we conclude
that the map x ÞÑ Bα,ρpxq in p0,8q takes a unique local maximum at x “ x`
for any θ P rpα ´ 1qπ, πq. By reflection and by Proposition 4(5)–(7), the
conclusion follows.

(iv) The case α “ 1, ρ ‰ 1
2 . Note that the density takes 0 at x “ 0. We

have

(2.11)
B

Bx
B1,ρpxq “ ´

4ρ
´

x´ 2p2ρ´1q
π

¯´

x´ 2p2ρ´1q
π log x

¯

πx
´

px´ 2p2ρ´1q
π log xq2 ` 4ρ2

¯2 , x ą 0,

and then we obtain zeros of B
BxB1,ρpxq. The conclusion follows from increase

and decrease of B1,ρpxq.

Remark 6. If α P p0, 1q, the density bα,ρ diverges at 0. So x “ 0 always
becomes a mode. In addition, at x “ 0 the density cannot be differentiable.
On the other hand, if α P pα0, 1q and θ P r0, arcsinpαq ´ p1´ αqπs, at x` the
density is differentiable.

2.3. Monotone case. As before, the map z ÞÑ zp denotes the principal
value (defined in Czp´8, 0s). We also use a different branch

z ÞÑ zp
p0,2πq “ ep log |z|`ip argp0,2πq z, z P Czr0,8q,

where argp0,2πq z is defined continuously so that argp0,2πq z P p0, 2πq.
Let mα,ρ be a monotone strictly stable law [H10a] characterized by

Definition 7. (1) If α P p0, 1q Y p1, 2s, then

Fmα,ρpzq “ pz
α` eiραπq

1{α
p0,2πq, z P C`, ρ P r0, 1s X r1´ 1{α, 1{αs.
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(2) If α “ 1, then we only consider ρ “ 1
2 :

Fm1,1{2
pzq “ z ` i, z P C`.

Remark 8. (a) If α P p0, 1q, then zα ` eiραπ stays in C` for z P C`, and
hence we may define mα,ρ by Fmα,ρpzq “ pz

α ` eiραπq1{α. However for
α P p1, 2s, zα ` eiραπ may be in C´, and so we need to use the branch
p¨q

1{α
p0,2πq to define Fmα,ρ analytically (or continuously) in C`.

(b) The above definition does not respect the monotone-classical Bercovici–
Pata bijection. If we hope to let mα,ρ correspond to bα,ρ regarding the
monotone-classical Bercovici–Pata bijection, then we have to consider
Dα1{αpmα,ρq, which is the induced measure ofmα,ρ by the map x ÞÑ α1{αx.
About the Bercovici–Pata bijection between monotone and classical
infinitely divisible distributions, see [H10b].

(c) All the above distributions are strictly stable. Non strictly stable distri-
butions are not defined in the literature, and so we do not consider the
non-symmetric case in α “ 1.

We will describe the probability measure mα,ρ. Let θ “ θpα, ρq be (2.1)
as before. For α P p0, 2s, θ P p0, πq, let

Mα,ρpxq “
sinr 1αϕpx

α, θqs

πpx2α ` 2xα cos θ ` 1q1{p2αq
, x ą 0,

where

ϕpx, θq “

$

’

&

’

%

arctanp sin θ
x`cos θ q, x ą ´ cos θ,

π
2 , x “ ´ cos θ,

arctanp sin θ
x`cos θ q ` π, 0 ă x ă ´ cos θ.

The second and the third cases do not appear if cos θ ≥ 0. We can also write
ϕpx, θq “ argpx` eiθq.

Proposition 9. The strictly monotone stable distributions are as follows.

(1) If α P p0, 1q and ρ P p0, 1q, then

mα,ρpdxq “Mα,ρpxq1p0,8qpxq dx`Mα,1´ρp´xq1p´8,0qpxq dx.

(2) If α P p0, 1q and ρ P t0, 1u, then

mα,0pdxq “Mα,1p´xq1p´8,0qpxq dx,

mα,1pdxq “Mα,1pxq1p0,8qpxq dx.

(3) If α “ 1 and ρ “ 1
2 , then

m1,1{2pdxq “
1

πpx2 ` 1q
1Rpxq dx.
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(4) If α P p1, 2q and ρ P p1´ 1{α, 1{αq, then
mα,ρpdxq “Mα,ρpxq1p0,8qpxq dx`Mα,1´ρp´xq1p´8,0qpxq dx.

(5) If α P p1, 2q and ρ P t1´ 1{α, 1{αu, then

mα,1{αpdxq “Mα,1´1{αp´xq1p´8,0qpxq dx`
sinpπ{αq

πp1´ xαq1{α
1r0,1qpxq dx,

mα,1´1{αpdxq “Mα,1´1{αpxq1p0,8qpxq dx`
sinpπ{αq

πp1´ p´xqαq1{α
1p´1,0spxq dx.

(6) If α “ 2 and ρ “ 1{2, then

m2,1{2pdxq “
1

π
?
1´ x2

1p´1,1qpxq dx.

They are all absolutely continuous with respect to the Lebesgue measure. In
the case α P p1, 2s, ρ P t1´ 1{α, 1{αu, the density function diverges to infinity
at the edge of the support, but in the other cases the density function is either
continuous on R, or extends to a continuous function on R (if the support is
not R). The density function is real analytic except at the edge of the support
and at 0. The replacement ρ ÞÑ 1´ ρ gives the reflection of the measure with
respect to x “ 0.
Proof. Let Gpzq, F pzq denote Gmα,ρpzq, Fmα,ρpzq, respectively. First, note
that mα,ρ does not have an atom at x “ 0 since limyŒ0 F piyq ‰ 0.

In the cases α “ 1 and α “ 2, see [M00, Example 4.8].
Proof of the case (1). The case α P p0, 1q, ρ P p0, 1q. For x ą 0, we have
that
(2.12) lim

yŒ0
px` iyqα ` eiθ “ xα ` cos θ ` i sin θ P C`,

which equals rpxα, θqeiϕpxα,θq, where

rpx, θq “
a

x2 ` 2x cos θ ` 1.

So we get

(2.13) ´
1

π
lim
yŒ0

ImGpx` iyq

“ ´
1

π
Im

1

pxα ` eiθq
1{α
p0,2πq

“ ´
1

π
Im rpxα, θq´1{αe´iϕpx

α,θq{α

“
1

π
rpxα, θq´1{α sin

ˆ

1

α
ϕpxα, θq

˙

, x ą 0,

which is strictly positive since now θ P p0, πq. This implies that mα,ρ is
absolutely continuous on p0,8q with respect to the Lebesgue measure, and
the density function is given by Mα,ρpxq.
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Note that, for x ă 0, it holds that

(2.14) lim
yŒ0

px` iyqα ` eiθ “ p´xqαeiαπ ` eiθ “ eiαπpp´xqα ` eipθ´απqq.

Now θ´απ P p´π, 0q. Since θ´απ ă argpp´xqα`eipθ´απqq ă 0, the following
can be justified:

(2.15)
´

eiαπpp´xqα ` eipθ´απqq
¯1{α

p0,2πq

“
`

eiαπ
˘1{α

´

p´xqα ` eipθ´απq
¯1{α

“ ´

´

p´xqα ` eipθ´απqq
¯1{α

, x ă 0.

We can show that

(2.16) p´xqα ` eipθ´απq “ rpp´xqα, απ ´ θqe´iϕpp´xq
α,απ´θq,

and so we get (1) from a computation similar to (2.13).

Proof of the case (2). The case α P p0, 1q, ρ “ 1. The formula (2.13) still
holds for x ą 0. For x ă 0, we have

F px` i0q “ ppx` i0qα ` eiαπq
1{α
p0,2πq “ pp´xq

αeiαπ ` eiαπq1{α

“ ´pp´xqα ` 1q1{α ă 0,

and hence mα,1 does not have support on p´8, 0q. We can prove the case
ρ “ 0 similarly. So we get (2).

Proof of the case (4). The case α P p1, 2q, ρ P p1´1{α, 1{αq. The formula
(2.13) still holds for x ą 0. The computation of the density function for x ă 0
is now delicate. For x ă 0, the formula (2.14) still holds true. Note that now
again θ ´ απ P p´π, 0q. By ´π ă θ ´ απ ă argpp´xqα ` eipθ´απqq ă 0 and
argp0,2πqe

iαπ P pπ, 2πq, the formula

(2.17)
´

eiαπpp´xqα ` eipθ´απqq
¯1{α

p0,2πq

“
`

eiαπ
˘1{α

p0,2πq

´

p´xqα ` eipθ´απq
¯1{α

“ ´

´

p´xqα ` eipθ´απqq
¯1{α

, x ă 0,

is valid. A delicate point is that we should use the principal value in the last
expression, not the branch p¨q1{α

p0,2πq. Then the formula (2.16) still holds and
then the Stieltjes inversion formula implies (4).

Proof of the case (5). The case α P p1, 2q, ρ “ 1 ´ 1{α. For x ą 0, the
computation (2.13) holds without any change. For x ă ´1, we have
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F px` i0q “ ppx` i0qα ` eipα´1qπq
1{α
p0,2πq “ pp´xq

αeiαπ ´ eiαπq
1{α
p0,2πq(2.18)

“ ´pp´xqα ´ 1q1{α ă 0,

and so mα,1 does not have support on p´8,´1q. We can also show that
limzÑ´1,zPC`pz ` 1qGpz ` 1q “ 0, which implies that there is no atom at ´1.
For x P p´1, 0q, by using part of (2.18), we have

F px` i0q “
´

eipα´1qπp1´ p´xqαq
¯1{α

“ ei
α´1
α
πp1´ p´xqαq1{α,

and then by the Stieltjes inversion formula, we get its probability density
function. We can prove the case ρ “ 1{α similarly. So we obtain (5).

The remaining statements can be proved as follows.

The reflection property of ρ ÞÑ 1´ ρ. This is clear.

The continuity of the density function at x “ 0. For α P p0, 1q Y p1, 2q and
θ P p0, πq, we can show that limxŒ0 ϕpx, θq “ θ and hence

lim
xŒ0

Mα,ρpxq “
sinpρπq

π
“

sinpp1´ ρqπq

π
“ lim

xŒ0
Mα,1´ρpxq.

This shows the continuity.
The remaining statements are easy consequences of (1)–(6).

Theorem 10. Let

v` :“

ˆ

sinpαπpρ´ 1
1`αqq

sinp απ1`αq

˙1{α

, v´ :“ ´

ˆ

sinpαπp α
1`α ´ ρqq

sinp απ1`αq

˙1{α

.(2.19)

(1) If α P p0, 1q, then mα,ρ is unimodal. The mode is described as follows.
(a) If ρ P r0, α

1`α s, then the mode is v´.
(b) If ρ P r α

1`α ,
1

1`α s, then the mode is 0.
(c) If ρ P r 1

1`α , 1s, then the mode is v`.
(2) If α “ 1 and ρ “ 1

2 , then m1,1{2 is unimodal with mode 0.
(3) If α P p1, 1`

?
5

2 s, then there are sub cases.
(a) If ρ P r1´ 1

α ,
1

1`α s, then mα,ρ is unimodal with mode v´.
(b) If ρ P p 1

1`α ,
α

1`αq, then mα,ρ is bimodal with modes v´ and v`.
(c) If ρ P r α

1`α ,
1
α s, then mα,ρ is unimodal with mode v`.

(4) If α P p1`
?
5

2 , 2s, then mα,ρ is bimodal with modes v´ and v`.

Note that 1`
?
5

2 “ 1.6180 . . . .

Proof. We assume that α ‰ 1, 2.
(0) (Arguments valid for α P p0, 1q Y p1, 2q, ρ P p0, 1q X p1 ´ 1{α, 1{αq)

Let ppxq be the density function of mα,ρ and let qpx, θq :“ x2 ` 2pcos θqx` 1.
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The assumption ρ P p0, 1q X p1 ´ 1{α, 1{αq implies θ P p0, απq. Then mα,ρ

has the support R and ppxq ą 0 in R. We can prove that

(2.20) p1pxq “
B

Bx
Mα,ρpxq “ ´

xα´1

πqpxα, θq
α`1
2α

sin

ˆ

α` 1

α
ϕpxα, θq

˙

, x ą 0.

Since x ÞÑ ϕpx, θq is strictly decreasing, mapping p0,8q onto p0, θq, the
following equivalence holds true:

(2.21) p1pxq changes the sign at a point x P p0,8q ô θ ą
απ

1` α
.

Moreover, α`1α θ ≤ pα`1qπ ă 2π for α P p0, 1q, and also α`1
α θ ≤ p1{α`1qπ ă

2π for α P p1, 2q, and so the sign of p1pxq changes at most once in p0,8q. If
the sign changes, the critical point is given by x “ v`.

For the density function on the negative line, it suffices to study
B
BxMα,1´ρpxq, x ą 0, and it follows from (2.21) that

(2.22) p1pxq changes the sign at a point x P p´8, 0q ô θ ă
α2π

1` α
.

The sign changes at most once, and if it changes, the critical point is x “ ´v´.
(i) The case α P p0, 1q. The conditions (2.21) and (2.22) cannot be

satisfied at the same time. Note that p may have a mode at 0. On the other
hands, the sign of p1 cannot be changed even number of times because p is
a probability density function. Combining these arguments, the claim (1)
follows for ρ P p0, 1q. The formula (2.20) holds also for θ “ απ and so the
case ρ “ 1 is covered. The case ρ “ 0 is the reflection of ρ “ 1.

(ii) The case α P p1, 2q. If ρ P p1 ´ 1{α, 1{αq, then by looking at the
formula (2.20) and the fact limxŒ0 ϕpx, θq “ θ, we have that p1p`0q “ 0, and
from the replacement θ ÞÑ απ ´ θ we have p1p´0q “ 0, and hence p1p0q “ 0.
It is also true that p1p0q “ 0 for ρ P t1´ 1{α, 1{αu.

(ii-1) The case α P p1, 1`
?
5

2 s. Note that p απ1`α ,
α2π
1`αq Ă rpα ´ 1qπ, πs. If

θ P p απ1`α ,
α2π
1`αq, then p has two modes at x “ v´, v` from (2.21), (2.22). The

density function p takes a local minimum at x “ 0, and hence we get (3b).
If θ P ppα´ 1qπ, απ

1`α s, then p
1pxq “ 0 only for x “ 0, v´. If we assume that

the sign of p1 changes at x “ 0, p cannot be a probability density function.
Thus p is unimodal with mode x “ v´. For θ “ pα ´ 1qπ (or equivalently
ρ “ 1´ 1{α), by using the formula (2.20) for x ą 0 and Proposition 9(5) for
x P p´1, 0q, we can show that p is strictly decreasing in p´1,8q. Hence mα,1

is unimodal with mode ´1 “ v´. Thus we have (3a). (3c) is obtained by
reflection.

(ii-2) The case α P p1`
?
5

2 , 2q. Note that rpα´ 1qπ, πs Ă p απ1`α ,
α2π
1`αq. So,

if ρ P p1´ 1{α, 1{αq, p1 changes its sign at x “ v`, v´, and also at x “ 0. If
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ρ “ 1´ 1{α, then p1 changes its sign at x “ v` and p is strictly decreasing
in p´1, 0q. If we assume that the sign of p1 does not change at x “ 0, p
cannot be a probability density function. Therefore, we find that p takes
a local minimum at 0. The case ρ “ 1{α follows by refection. Hence we
proved (4).

Fig. 1. Unimodality of boolean stable distributions

Fig. 2. Unimodality of monotone stable distributions
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Fig. 3. Unimodality of boolean stable distributions

Fig. 4. Unimodality of monotone stable distributions
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