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Abstract. We establish necessary and sufficient conditions for a parameter depending
sequence (Ln x)n>1 of positive linear operators such that (Ln )n>1 converges in the
strong operator topology to its limit operator. Some applications of our theorem are also
presented.

1. Introduction

The well-known Korovkin’s theorem is applied to prove the convergence
of sequences of positive linear operators to the identity in the strong operator
topology. Let us denote by C]0,1], the Banach space of all continuous
functions on [0, 1] equipped with the norm | f|| = sup{|f(x)| : = € [0, 1]} and
by es, the power function es(x) = z°, = € [0,1], s > 0. Then Korovkin’s
theorem is the following (see [1, p. 8|): let (L, )n>1 be a sequence of positive
linear operators such that Ly, : C[0,1] — C[0,1]. Then |L,(f) — f| — 0 as
n — oo for all f € C[0,1] if and only if |L,(e;) — ei]| — 0 as n — oo for
i € {0,1,2}. Specifically we recover the Weierstrass’ approximation theorem
if we choose, for the positive linear operators L,,, the Bernstein operators

B, : C[0,1] — C0, 1] defined by

00 B = X pus@ 1 (1) = 3 ()0 (7).

k=0
The development of the g-calculus has led to the discovery of new Bernstein
type operators involving g-integers. The so-called g-Bernstein operators were
introduced by Phillips [9] in 1997 and they are generalization of (1.1) based on
g-integers. To present these operators we recall some notions of the g-calculus
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(see e.g. [5]). Let ¢ > 0. For each non-negative integer n, the g-integers
[n] = [n], and the g-factorials [n]! are defined by

]_{1+q+...+q"—1, if > 1,

[n
0, if n =20,

and

[n]! = {[1][2]~--[n], itn>1,
L, if n=0.

For integers 0 < k < n, the ¢g-binomial coefficients are defined by

ni_ [n]!
k [k]![n — K]V

Then the g-Bernstein operators By, , : C[0,1] — C[0, 1] are introduced as
follows:

d (K]
(1.2) Bug)@) = poslgiz) [ 2
,;0 Pk (m)

[n]

For ¢ = 1, we recover the operators (1.1). If 0 < ¢ < 1, then B, are
positive linear operators. Taking into account [9, pp. 513-514], we have
(Bn,g(€0))(z) = eo(z) = 1, (Bng(e1))(z) = e1(x) = = and

(Bng(e2))(x) = ea(z) + [nl](el —e)(z) = 2% + [nl]a:(l —x).
Hence ||By, 4(e0) — €0l — 0, | Bpg4(e1) —e1| — 0 as n — o, but | B, 4(e2) —
el = ﬁ — 14;[1 # 0 as n — o for ¢ € (0,1) fixed. Thus Korovkin’s
theorem cannot be applied for (By, q)n>1-

Now we consider a sequence of operators (L, x)n>1 such that L, ) :
C[0,1] — C[0,1] and A is a parameter belonging to a set A. The goal of
the paper is to establish necessary and sufficient conditions which insure the
convergence of (L, x)n>1 in the strong operator topology to a limit operator
Ly : C[0,1] — C[0,1], ice. |Lpa(f) — Laoa(f)| — 0 as n — oo for all
f € C[0,1]. In this way, we obtain a new Korovkin type theorem. This will
be the subject of Section 2. Finally, in Section 3 we will apply our result for
some parameter depending sequences of operators.

= é [’Ij 2Pl —2)1 - qz)...(1— "1z f ([’“]> .

2. Main results
Our Korovkin type theorem is the following:
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THEOREM 2.1. Let A be a set of parameters. For A € A let (L \)n>1 be
a sequence of positive linear operators on C[0,1] satisfying the following
conditions:

(i) the sequence (| Ly x(€0)|)n>1 is bounded,
(13) (Lnx(9))n>1 s a Cauchy sequence for all g € X, where X is a dense set
in C[0,1].

Then there exists a positive linear operator Lo, » : C[0,1] — C[0, 1] such that
|Lp \(f) = Lo (f)| — 0 as n — oo for all f € C[0,1]. Moreover, if there
exists Ao € A such that | Ly, x,(e;) —ei| = 0 as n — oo forie {0,1,2}, then
Loz (f) = f for all f e C[0,1].

Conversely: if Ly x, Lo are positive linear operators on C[0,1] for
n > 1 and X € A such that |[Ly x(f) — Lo a(f)] — 0 as n — o for all
f € C[0,1], then we obtain the statements (i) and (ii). Moreover, if the
condition Lo \,(f) = f for all f € C[0,1] and for some \g € A is also
satisfied, then | Ly x,(e;) — ei| = 0 as n — o forie {0,1,2}.

Proof. By (i), there exists M > 0 such that ||L, x(eo)| < M for all n > 1.
The positivity of L, » implies that

(2.1) (L a(F)(@)] < (Lo a([FD) (@) < (Lna(f]le0)) ()
= [ F(Lnx(e0)) () < | FI Lna(e0)],

for f € C[0,1]. Hence |L,(f)|| < M]|f|, where f € C[0,1] and n > 1.
Thus |Lpall = sup{|Lox(f)] : [f] < 1} < M for every n > 1. Fur-
ther, in view of (ii), (Lya(g9))n>1 is a Cauchy sequence in C[0,1], there-
fore (LyA(9))n>1 converges in C[0, 1] for all g € X. Then the well-known
Banach—Steinhaus theorem [1, p. 29| implies that there exists a positive
linear operator Ly, ) : C[0,1] — C0, 1] such that |L, A(f) — Lo x(f)| — 0
as n — 0.

If there exists A9 € A such that |L, ,(e;) —ei|] — 0 as n — oo for
i € {0,1,2}, then, by Korovkin’s theorem, | Ly x,(f) — f| = 0 as n — 0.
But | Ly, (f) — Lo (f)] — 0 as n — oo (see the proof above), therefore
Lo (f) = f for all feC[0,1].

Conversely: if |Ly x(f) — Lo (f)| — 0 as n — oo for all f € C[0,1],
then [[Lnx(eo)| — [Looa(eo)l| < [|Lna(eo) = Looa(eo)| — 0 as n — o,
which means that (L, x(eo)|)n>1 is a convergent sequence. Therefore
(ILnx(€0)|)n>1 is a bounded sequence, thus we obtain the statement (i).
Further, because ||L, x(g9) — Lo 2 (g)| — 0 as n — oo for all g € X, and
1L0r(9) = Lnspa ()] < [Zar(9) = Lorr(@)l+ [Zoor(9) — Inspa(g)] for ev-
ery n,p > 1, we obtain that (||L, x(g)|)n>1 is a Cauchy sequence, thus we
find the statement (7).
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If LOO,)\O(f) = f7 f € C[O7 1]7 thena by HLTL,)\O(f) - LOO,)\O(f)H — 0 as
n — o0, we get ||Ly,(f) — f|| = 0 as n — oo for all f e C[0,1]. Using
Korovkin’s theorem, we obtain that |L, ,(e;) — €| = 0 asn — o0, i €
{0,1,2}. This completes the proof of the theorem. =

The next result is formulated with the aid of the first order modulus
of smoothness and the second order modulus of smoothness of f € C[0,1],
defined as follows:

w(fv 5) = wl(f75) = sup{]f(:c) - f(y)’ T,y E [07 1]7 ’1’ - y’ < 5}7
wa(f,0) = sup  sup |f(x+2t)—2f(x+1t)+ f(x)], d>0.
0<t<6 z€[0,1—2¢]

COROLLARY 2.1. For Ae A let (L \)n>1 be a sequence of positive linear
operators on C[0, 1]. If there exist the positive sequences (o )n>1 and (Bp)n>1
such that

(@) anp — 0 asn — o0,

(b) there exists Cy > 0 with Bp+ Bry1+. ..+ Brip—1 < Cray, for alln,p > 1,

(c) there exists Oy > 0 with | Ly () — Lns1.1(9)| < C2BnllgD| for alln > 1
and g € C7[0,1], where j € {1,2} is given,

then there exists C3 = C3(|Lix(e0)|]) > 0 and a positive linear operator
Ly :C[0,1] — C[0,1] such that

(2.2) | L (F) = Lo AU < Cowj(f, e0/),

for all f e C[0,1] and n > 1.

Proof. Applying (c¢) for g = eq, we find

(2.3) Ly x(eo) = Lyt1,a(eo),

for all n > 1. Hence | L, x(eo)| = | L1,x(e0)| < +o0 for all n > 1. Therefore,
the sequence (|| Ly, x(eo)|)n>1 is bounded, thus we obtain the condition (i) of
Theorem 2.1

On the other hand, by (b) and (c), we have for all n,p > 1 and g € C7[0, 1]
that

(24)  [1Laa(9) = Lontp-12(9)]
< Lna(9) = L1 a (9] + - + [Lotp—2(9) — Lintp-1,2(9)]|
< CoBn + Brs1 + - + Brap—1) |97
< C1Coai) g
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Taking into account (a), we find that (|L, x(9)||)n>1 is a Cauchy sequence
for all g € C7[0,1], where C7[0,1] is dense in C[0,1]. Thus we obtain the
condition (i7) of Theorem 2.1.

In conclusion, by Theorem 2.1, we have the existence of a positive linear
operator Lo \ : C[0,1] — C10,1] such that |L, x(f) — Lo (f)]| — 0 as
n — oo for all f € C[0,1].

Now using (2.1) and (2.3), we have | L, x(f)| < | L1 x(eo)||f], f € C[O0,1].
Hence

(2.5) [Zoo XA < [Laaleo)I ], f e CT0,1].
Let p — o0 in (2.4), then we obtain
(2.6) |Lna(9) = Laoa(9)]| < C1Co0 g

Taking into account (2.5)—(2.6), and using the equivalence between the
K-functionals and the modulus of smoothness (see [1, p. 217, Theorem 5.2]),
we get (2.2). This completes the proof of the corollary. m

REMARK 2.1. In [11, p. 259, Theorem 2| is established a Korovkin type
theorem with the following conditions:

1) the sequence (|
2) the sequence ((Ly,
and any z € [0, 1].

|Ly(e2)])n>1 converges to a function Lo (e2) in C[0, 1],
(f))(2))n>1 is non-increasing for any convex function f

We prove that 1) and 2) are only sufficient conditions for || L, (f)— Lo (f)| — 0
asn — oo, f e C[0,1].
Indeed, let us consider the operators L, 4 : C[0,1] — C]0, 1],

(L)) = kZ]D pusta o) £(r(11)),

where 0 < ¢ < 1, p,x(q; x) is defined by (1.2) and 7 : C[0,1] — C[0,1] is
a given continuously differentiable function such that ey o 7 is concave on
[0,1] (for example 7(z) = 4/In(x + e — 1), x € [0, 1] satisfies the enumerated
conditions). Using the procedure of [8, p. 412, (3.2)—(3.3)], we find

27 (Loglh)@) = Losia(H))
Z Pri1k(q; {[”[Z}FI ( <[7]z )+qn+1k

" [n[i]l]fG([k[;]”)) ‘f<7<[n[i]1]>>}‘
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Hence, by [n + 1 — k] + ¢"*'=*[k] = [n + 1] and Taylor’s formula, we have
for g € C'[0,1] that

|(Lnq(9))(2) = (Lnt1,4(9)) ()]

= [n+1—k
San-i-lk(q T Il

[

()
[

7([k=1)/[n])

g’ (t)| dt

n+1 k k] ‘

< Z pn+1k(Q7 ){ n+1_ ]

k]/[n+1])

7([k)/[n+1]) }

< Iyl kZ penste ) { "o () - (e

o () = () |

n+1l— [k]
T

J [n+1-k]|[k]  [k]
<|r n+1,k(45 ]
< IIQIg_:lp 1k(d ){ [n+1] |[n] [n+1]’
n+1l— [k]
+q k[n+1‘ _n+1’}
| q"[¥]

=111 ) Pl x){ bt A

k=1
4tk (k] ¢ 'n+1- k‘]}
[n+1] [n][n+1]
qa .
< 2|7 == 14l
[n]
Ifﬁn = ,m > 1, then Bn+ﬁn+1+ +ﬁn+p 1< n ](1+Q+ 4GP 1) <

Wherenp21 For o, = n > 1, we have o, — 0 as n — o0.

1—q™ q" ’ 1_qn 5
Thus, by Corollary 2.1, there exists a positive linear operator Lo, 4 : C[0, 1] —

C[0, 1] such that | Ly o) — Lor.g(f)| < max{2, 27" o, /a7 (1 — 4, e
|Ln,g(f) — Lo g(f)] = 0 as n — o0 for f e C[0,1].
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On the other hand, by (2.7),
(Ln,q(ez))( ) = (Lnt1,4(e2))(2)

& o 5o () gl

X@ﬂﬂ(f([ﬁ;]”)) o (r(om))} =

[t 1] K] | ne1k (6] [k-1) _ 1K)

m+1] [n] n+1] [»] ~ [n¥i]"

because epoT is a concave function and
Thus 2) is not satisfied for f = es.

REMARK 2.2. In [2, p. 752, Theorem 2.1|, we established a new Korovkin
type theorem using the first order Ditzian—Totik modulus of smoothness,

while in [2, p. 753, Theorem 2.2|, we obtained its converse theorem. Our
main result (Theorem 2.1) is different from the above mentioned theorems of

2].

3. Applications

In this section, we apply our results for some parameter depending
sequences of positive linear operators.

1° The following g-Kantorovich type operators were introduced in [7]:
B, C[0,1] — C[0, 1],

PPNV - o [ (EL
B = Y mate) [ 7 () e

where 0 < ¢ <1, f e C[0,1], z € [0, 1], ppx(q; ) is defined by (1.2) and the
integral with the aid of Jackson integral (see |5, p. 69, Definition|). Taking

into account |7, p. 722, Lemma 2.1], we have for all m = 0,1,2,... and
€ [0,1] that

T AW .

B0 Bl = X B
<3 (") - 0 Bagter@)
=0

We set

* o - m (1_q>m7j
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where By 4 : C[0,1] — C[0,1] is the limit g-Bernstein operator for ¢ € (0, 1)
fixed. It is known that | By, ¢(f)—Bw q(f)|| = 0 asn — oo for each f € C[0, 1]
(for details see [4]). Then, by (3.1) and (3.2), we have

(3.3)  [(Bhglem)(@) — (B 4(em))(@)]
S [n]’ (1—q)™
<2 j)

[n+1]m[m—7+1] [m—j+1]

m mj =]
" (7) Sn_qj)'u] 4 (m ‘7> (q" 1) = (= 1) (B (ej4) @)
m i m—j .
2 @ Eiz_—q;+13 & (mi_ j>'<B"q<ej+z>><:c> (Buoglesss)) (@)
But
= - = [ B -y - -y
<= 7|(1=q") = (A —g""Y + (1= g" ) = (1= g™
U REARE (0 WLl s RS ¢ B
+"T - — " {1+ (1= ")+
+ (1= g™t}
Hence
(3.4) [np (1= )| < j(1— gy 71" + ¢ (1 — @) (m — )
[n+ 1]™
<q"(1- Q)fjm.
Further

n 7 7 ni i n(i— i— { n
35 "= = (0 = [ (a0 e ()
and, by [12, p. 153, Theorem 1] and w(f,d) < 4| f'||, we have

(3.6) HBn,q(ejH’) - Boo,q(ejﬂ')” < qu(ejH,qn) < Cylj +14)q",

where Cy = 2 + %. Using (1.2), we find that

q
(3.7) |(Bng(es))(@)] <1,
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for all z € [0,1] and s > 0.
Now (3.3)—(3.7) imply that

|(Brq(em)) (@) = (B 4(em)) (2)]

=0
J

% (’? (1—(1)7”2 <m;j)0q(j+i)q"

<@ {3™m(1 — q) "™ + 4™ + 3"mC,} — 0,

_|_
NgE

as n — oo, for every x € [0,1] and m = 0,1,2,... This means that the
conditions (i) and (i7) of Theorem 2.1 are satisfied, the second one for X =
{em|m =0,1,2,...} dense in C[0, 1]. In conclusion: there exists the positive
linear operator B, , : C[0,1] — C[0,1] such that | By, ,(f) — B, ,(f)| — 0
as n — oo, where f € C[0,1] is arbitrary and q € (0,1) is fized.

2° The following g-Durrmeyer operators Dy, , : C[0,1] — C[0, 1] were intro-
duced in [3| and are defined with the aid of Jackson integral:

(Dng(f))(2) = [n+1] Z q " pur(g;e J S ()pn (g5 qt) dat,
k=

where 0 < ¢ < 1, f € C[0,1], z € [0,1] and p, x(q;z) is given by (1.2).
Because of [8, p. 412 (3.2)-(3.3)], we may write

(3-8)  (Dng(f))(@) = (Dny1,4(f))(2)

n+1 _ 1
= > Por1k(@ w){W[nJrl]q_’“L J(®)Pni(g; qt) dgt
k=0

1
+ gtk [n[i] 1] [n+ 1]g " L F()Pnk—1(q; qt) dyt

1
o+ 20t [ I Opestaan) dqt} |

In view of [n+ 1 — k] + ¢" "' 7*[k] = [n + 1], [n qg* Sé Prge( q, qt)dgt =1
(see [3, p. 173, (3)]) and Taylor’s formula: g(t) = —i—S ¢'(u) du, where
g € C10,1] and z¢ € [0,1], we have
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(3.9)

Lkt bl AR . w1k L]
W[HH]Q ’“L 9()pnx(a; at) dgt + " k[n+1] [n+1]

1 1
x gkt L 9()Pnk—1(q; qt) dgt — [n + 2](1'“J0 9(O)Pnr1,k(q; qt) dyt

< M‘[n +1]g " fl Pnk(q; qt) Ut g'(u) dU} dgt

[n + 1] 0 x0

—[n+2]g* f

0

1 t
Prt1,5(q; qt) U g'(u) dU} dqt‘ + gtk

o

[n+1]g ** Ll Pns—1(q; qt) Ut g (u) dU} dyt

o

[n+1]

—[n+2]gF f

0

1

Prt1k(; qt) Ut g'(u) du} dqt

o

[+ 1]pn,k(g; gt)
[+ 2]pn+1.%(q; qt)

_ 1
< WIQ’IJO [n+2)g " pni1x(q; qt)
[]

[n+1]

-1

1
1t — | dgt + "+ mﬁ[m+ﬂq%wm@w>
0

[n + 1]gpnk—1(g; gt) — 1|t —xo| dgt
[+ 2]pn+1.4(4; at) o
Further
5.10) [n+ 1pnk(gsqt) 1‘
[+ 2]pni1.k(g; qt)
_ [TL +1— k] anrlikt _ n+l-k [k + 1]
n+2] 1-gk T 2

e (1=K 1 [b+1]
=4 1k< [n+ 2] 1—q+[n+2]>

< qn+1fk2 —(q

— 1 _ q7
for k=0,1,...,n and
[7 + 2]pni1k(g; qt) [n+1]¢t Tt

fork=1,2,...,n+ 1.

Now combining (3.8)—(3.11), and applying the identity p,41x(g;z) =
z[n + 1|pn k—1(¢; ) and Holder’s inequality, respectively, we find
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n.q(9))(#) = (Dn+1,4(9))(2)]

Tqug HZ praaaio) o

/-\

1
XJ [n+2]q *pns1k(q; qt)g" T F[t—z0|dyt
0

ok ]
+|g cx)g T

1
_ 2
J [n+2]q *pny1x(g; qt);lt—ﬂfoldqt
0

»Q

n+l-k] .1

< Zlyg) 2 pronalaio) T

LK)
+2|lg’ : ntl=
l9'1 Y} Prsrr(@iz)g 1

k=1

1
xJ [n+1]g™" o1 (g; qt) [t—0]dyt
0

1
kf [n+2]q Pt k(g; gt)[t—z0|dyt
0

|_|

[n+2]

—
[—

[TL-‘rl—k‘] n+1—k

2—q, , S
< — E 3T

1 1/2
X U [n+21g " pns1k(g; qt)(t—fco)qut}

0
W 1—k [k]
+2||g’ E o)t n+2
”g H Pt pn-i—l,k(q )q [n+1] [ ]

) 1/2
X{f [n+1]qkﬂpn,k—l(Q;qt)(t—$0)2dqt} .

0

' Bln][k + s]!
Hence, in view ofJ pnk(q; gt) dgt = M

0
[3, p. 173, (3)]), we obtain

|(Dnq(9)) (@) — (Dn+1,q(9))(9€)\

< TS pessatarn) U e (PR
1/2 n+1
—2x0 F\C i 3% + 96(2)) +2]g'1 D, Pty w)q”“_’“[n[i]l]

k=1

1/2
x[n—|—2]<[[k][k+1]—233 L] +$3) .

n+3ln+2] “Cn+2]
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Choosing xg = Hﬁi? ,k=0,1,...,n+1, and taking into account (B,+1,4(e0))(x)

= 1, we have, for all n > 1, that
(3.12)  [(Dnq(9)(x) = (Dn1,4(9)) ()]

2—q -
<7l > Psin(g )
—4 k=0

—

[n+1—k] i1k
[n+ 1]

([k +1] ¢ n+2 - k]>1/2 n+1

i3 mramra ) T2 ;;1 Pri14(; )

o1k K] [+ 1] ¢*[n+2 -k \"
1k[n+1][n+2]([n+3][n+2][n+3]>

xq

| /\

Hg |¢ 372 12| g/ |lg™ V2 [0 + 2]Y/2

| /\

||g 1¢"2 + 2| g |¢*(3[n])"/?

2 —
1-—
2 —
1-—
(f +23) Igla"[n]) .

IN

We set 8, = (¢"[n])"/?, n > 1. Then, for all n,p > 1, we get

/Bn+/6n+~-'+ﬁn+p—1
= (") + (" + 1D+ (P [+ p — 1))

1/2 +1\ 1/2 +p—1\ 1/2
<qn1 _qn> + <qn+11 _qn > + ..+ <qn+p—11 _qn p >
l—g¢q 1-¢ 1—-g¢q

q" 1/21 pl n/2
(55) tevase <

qn/2

For o, = Veai-va " > 1, we obtain a,, — 0 as n — oo. Thus, by

IN

Corollary 2.1, there exists a positive linear operator Dy, 4 : C[0,1] — C[0,1]
such that

IDnal) - Daall < (3204 28) (1. =),

n/2

for every f e C[0,1] and q € (0,1) fized.

REMARK 3.1. Similar results can be obtained for further g-parametric
operators as Lupag g-analogue of the Bernstein operator [6], g-Bernstein
operators [9], ¢-Meyer-Konig and Zeller operators [10]. We mention only the
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following result: there exists a positive linear operator By, 4 = C[0,1] — C[0, 1]
such that

qn/2
IBua() = Bl < 260 (1,57

for allm > 1, f e C[0,1] and q € (0,1) fized.
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