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Abstract. We take a unified approach to study the open set lattices of various
subspaces of the spectrum of a multiplicative lattice L. The main aim is to establish the
order isomorphism between the open set lattice of the respective subspace and a sub-poset
of L. The motivating result is the well known fact that the topology of the spectrum of
a commutative ring R with identity is isomorphic to the lattice of all radical ideals of
R. The main results are as follows: (i) for a given nonempty set S of prime elements of
a multiplicative lattice L, we define the S-semiprime elements and prove that the open set
lattice of the subspace S of Spec(L) is isomorphic to the lattice of all S-semiprime elements
of L; (ii) if L is a continuous lattice, then the open set lattice of the prime spectrum of L is
isomorphic to the lattice of all m-semiprime elements of L; (iii) we define the pure elements,
a generalization of the notion of pure ideals in a multiplicative lattice and prove that for
certain types of multiplicative lattices, the sub-poset of pure elements of L is isomorphic
to the open set lattice of the subspace Max (L) consisting of all maximal elements of L.

1. Introduction

One classical result in commutative ring theory is that the open set lattice
of the spectrum of a commutative ring R, endowed with the hull kernel
topology, is isomorphic to the lattice of all radical ideals of R. It is then
natural to consider the following general problem: given a multiplicative
lattice L and a subspace S of the spectrum of L, can we find a subset of L
which is order isomorphic to the open set lattice of S7 In this paper, we first
prove that for any nonempty subset S of the spectrum of L, the open set
lattice of the subspace S is isomorphic to the sub-poset of all S-semiprime
elements of L. Then we focus on two special subspaces of spectrum of L
to give a more specific characterization of the corresponding S-semiprime
elements.
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The outline of this paper is as follows: In Section 2, we state some basic
definitions and results in lattice theory and multiplicative lattice theory. In
Section 3, we introduce the notion of S-semiprime elements of a multiplicative
lattice and prove some basic properties of such elements. One fundamental
result proved here is that for any nonempty set S of prime elements of
a multiplicative lattice L, the open set lattice of the hull kernel topology of
S is isomorphic to the poset of all S-semiprime elements of L. In Section 4,
we consider the largest subset .S of prime elements of a multiplicative lattice
L and characterize the S-semiprime elements for some special types of L.
We show that if L is a continuous multiplicative lattice, then the open
set lattice of the prime spectrum of L is isomorphic to the lattice of all
m~semiprime elements of L. In Section 5, we generalize the notion of pure
ideals in commutative ring theory by defining the pure elements in any
multiplicative lattice. We also consider a special type of multiplicative lattice,
called mp-multiplicative lattice that is principally generated with the top
element compact and satisfying two additional conditions. We prove that
if L is a reduced mp-multiplicative lattice and an r-lattice in which every
prime element is beneath a unique maximal element, then the poset of pure
elements of L is isomorphic to the open set lattice of the space of all maximal
elements of L endowed with the hull kernel topology.

2. Preliminaries

By Dilworth [8], a multiplicative lattice is a complete lattice L together
with a multiplication (the multiplication of x and y is simply denoted by zy)
that is associative, commutative, distributive over arbitrary joins and has
the greatest element 17, as the multiplication identity. The complete lattices
of ideals of commutative rings are the most important motivating examples
of multiplicative lattices.

The following are some of the basic definitions we will frequently use in
this paper:

(1) In a multiplicative lattice L, xy < x and zy < y hold for all x,y € L.

(2) Let L be a multiplicative lattice. An element p of L is called a prime
element if p + 17 and for any a,b € L, ab < p implies a < p or b < p. The
set of all prime elements of L will be denoted by Spec(L).

(3) An element p of a complete lattice L is a maximal (minimal) element
ifp+1r (p+0r) and p<m <1y (0 < m < p) implies m = p (m = p).
Every maximal element of a multiplicative lattice is a prime element. In fact,
suppose ab < z where z is maximal, a € « and b € y. Since x is maximal,
rva=xvb=1,. But 1y = (zva)(zvb) =2%varvabvab <z which
is a contradiction.
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(4) An element ¢ of a complete lattice L is said to be compact if for any
set 1 < L with ¢ <\/ I, then ¢ </ J for some finite subset J < I. The set
of all compact elements of L will be denoted by K(L).

A complete lattice L is algebraic, if each x € L is a supremum of compact
elements of L. This is equivalent to that for each x € L, z = \/{y € K(L) :
y < x}.

If L is algebraic and 1, is compact, then L is said to be compact.

(5) An element x of a multiplicative lattice L is called a principal element
if (zAly:al)a=xanyand [(yvza):a]=][y:a]vazhold for any z,y € L,
where [y :a] = \/{ue L :ua < y}.

(6) A multiplicative lattice L is called principally generated if every
element of L is a join of some principal elements.
A multiplicative lattice L is called an r-lattice if

(i) L is amodular lattice (that is, for any a,b,c € L withc < a,an (bvc) =
(anb)v o))
(ii) L is principally generated, and
(iii) L is compact.

(7) A frame L is a complete lattice such that for any S € L and a € L,

a/\(\/S):\/{a/\s:seS}.

Each frame can be regarded as a special multiplicative lattice in which
the meet is the multiplication. A frame L is spatial if every element x € L is
an infimum of prime elements of L.

A frame L is called coherent if L is algebraic, 11, € K(L) and a,be K(L)
implies a A be K (L) [6].

LEMMA 2.1. [8] If z and y are principal elements of a multiplicative lattice
L, then xy is also a principal element of L.

LEMMA 2.2. [1] If L is an r-lattice, then every principal element of L is
compact.

LEMMA 2.3. If L is an r-lattice, then the product of two compact elements
of L is compact.

Proof. Let a,b be compact elements of L. Then there exist sets P and Q of
principal elements such that a = \/P,b = \/Q. Since a, b are compact, we
can take P, to be finite sets. Now ab = \/{zy : z € P,y € Q} is a join of
finite number of elements xy. As a product of principal elements, each xy is
principal, hence compact. Since a finite join of compact elements is compact,
ab is compact. =
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For more details on lattices, multiplicative lattices and frames, see [5], [9],
[8], [1] and [6].

3. S-semiprime elements

Let L be a multiplicative lattice and S be a nonempty set of prime
elements of L.
For any element a € L, define

ps(a) = /\{reS:aSr}.

If {reS:a<r}=0,then ps(a) = 1. Note that since L is a complete
lattice, pg(a) exists for all a € L. Thus pg : L — L is a mapping.

REMARK 3.1. It is clear that pg has the following properties:
(i) a < pg(a) for all a € L.
(ii) For a,be L, a < b implies pg(a) < pg(b).
(iii) For any a € L, ps(ps(a)) = ps(a).
Thus pg is a closure operator on L.

LEMMA 3.2. Let S be a nonempty set of prime elements of a multiplicative
lattice L. Then for any a,b€e L,

ps(ab) = ps(a A b) = ps(a) A ps(b).
Proof. Note that ab < a holds for any a,b € L. Since a A b < a and
anb <b, wehave ps(anb) < pg(a) and ps(and) < pg(b), which implies that
ps(anb) < pg(a) Apg(b). Since ab < a A b, it follows that pg(ab) < ps(a A b).
Let w € S such that w > ab. Since w is prime, a < w or b < w. So

w > pg(a) or w > pg(b). In either case, w > pg(a) A pg(b). It follows that
ps(ab) > ps(a) A ps(b). Hence the equality follows. =

DEFINITION 3.3. For a given nonempty set S of prime elements of a
multiplicative lattice L, an element a of L is called S-semiprime if pg(a) = a.
The set of all S-semiprime elements of L will be denoted by Qg(L).

REMARK 3.4. (1) Clearly, for any nonempty set S of prime elements of
a multiplicative lattice L, S € Qg(L).
(2) For any a € L, ps(a) € Qg(L) since ps(ps(a)) = ps(a). Hence

Qs(L) = {ps(a) :a e L}.

It thus follows that an element a € L is S-semiprime if and only if a is
the meet of some elements in S.

LEMMA 3.5. Let S be a nonempty set of prime elements of a multiplicative
lattice L. Then (g(L), <) is a complete lattice, where the partial order < is
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inherited from L. Furthermore, for any A < Qg (L),

M V A=ps(\/ 4)
Qs(L) L
(2) N A=/A\4

Qs(L)
Proof. Let A < Qg(L). Forany x € A, z < \/; A < ps(\V/A). So
ps(\V/ [ A) is an upper bound for A in Qg(L).

If ¢ € Qg(L) is an upper bound of A in Qg(L), then ¢ > x for each x € A
and so ¢ > \/; A. Hence ¢ = pg(c) > ps(\/; A). Thus (1) holds.

For (2), first note that A; A < ps(/\; A). Secondly, for any z € A,
ps(ALA) < ps(x) =z, s0 ps(ApA) < Ap A Hence ps(A\A) = N\ A
which means /\; A € Qg(L). Clearly, /\; A is a lower bound for A in Qg(L).

If d e Qg(L) is a lower bound of A in Qg(L), then d < x for each z € A
and so d < A A. Thus (2) holds. =

REMARK 3.6. It follows from Lemma 3.5 that the infimum of a subset A
of Qg(L) in Qg(L) is the same as the infimum of A in L.

THEOREM 3.7. Let S be a nonempty set of prime elements of a multiplicative
lattice. Then Qg(L) is a spatial frame.

Proof. For any a,b; € Qg(L)(i € I),

anVaogpibi i€l =ps(a) Aps(\ {bi i€}

=ps(a(Vp{bisie I}))

=ps(\V {ab; i€ I})

=ps(\V {anbi:iel})

= \/Qs(L){a VAN bl (1€ I})
The second last equation holds because for every i € I, ps(\/ {ab; : i € I})
> pg(ab;) = ps(a) A ps(b;) (by Lemma 3.2) = a A b;, and for each i € I,
ps(Viia A b; i e I}) > ps(a A b)) > ab;. The last equation holds by
Lemma 3.5. It follows that Qg(L) is distributive over arbitrary joins and so
Qg(L) is a frame.

To show that Qg(L) is a spatial frame, we need to show that the set
of prime elements of Qg(L) is meet dense in Qg(L). As mentioned in
Remark 3.4(1), S < Qg(L). Also, for any p€ S, a,b € Qg(L),if a n b < p,
then ab<aAb<p,thusa<porb<np.

Hence any element in S is a prime element of the lattice Qg(L). Also,
the infimum of a subset A of Qg(L) in Qg(L) is equal to its infimum in L,
thus S is meet dense in Qg(L), which further implies that the set of prime
elements of Qg(L) is meet dense in Qg(L). Hence Qg(L) is a spatial frame. m
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PROPOSITION 3.8. Let L be a multiplicative lattice. For any nonempty set
S of prime elements of L and any b € L, define

Dg(b) ={pe S:b<p}

Then
(i) S(OL) =0;
(ii) Ds(bc) = Dg(b A ) = Dg(b) n Dg(c);

(i) Ds(\V bi) = Ds(b;),i€ L.
Proof. (i) is trivial.

(ii) For any w € Dg(b) n Dg(c), b €< w and ¢ € w. So bec € w since w is
prime and so w € Dg(bc). Hence Dg(b) n Dg(c) < Dg(be).

For any x ¢ Dg(b A ¢), © > b A ¢ which implies that x > bc. Hence
x ¢ Dg(bc) and so Dg(bec) < Dg(b A c).

To prove Dg(b A ¢) < Dg(b) n Dgs(c), we suppose y ¢ Dg(b) n Dg(c).
Then y ¢ Dg(b) or y ¢ Dg(c). Soy > b or y > ¢ which implies that in either
case, y > b A c. It follows that y ¢ Dg(b A c). So Dg(b A ¢) € Dg(b) n Dg(c).

Combining the three inclusions, we have Dg(b) n Dg(c) € Dg(bc) <
Dgs(b A ¢) € Dg(b) n Dg(c) and so the equality follows.

To prove (iii), it is enough to note that for any y € S, \/ b; < y if and
only if b;, € y for some ip € I. m

It follows from above that sets of the form Dg(b) (b € L) are the open
sets of a topology on S. This topology 7 on S will be called the hull-kernel
topology and so (S, 7) is a topological space.

THEOREM 3.9. For any nonempty set S of prime elements of a multiplicative
lattice L, the open set lattice of the hull kernel topology on S is isomorphic
to Qg(L).

Proof. Let O(S) = {Dg(b) : be L}. Define ¢ : O(S) — Qs(L) by ¢(Ds(b)
= ps(b), b € L. We first show that ¢ is well-defined. Suppose Dg(b;) =
Ds(bg) for bl, bg € L. Then

{peS:bi<pt={peS:b<p}
which implies that

{peS: by <p}l={peS:b<p}
It follows that
ps(b1) /\{pES by <p} = /\{p652b2 < p} = ps(ba).
If Dg(by) < Dg(bs) for by, by € L, then
psb) = AfpeS:p>bi} < AlpeS:p> b} =ps(ba).
Hence ¢(Dg(b1)) < ¢(Dsg(b2)) and so ¢ is monotone.
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We now show that if ¢(Dg(b1)) < ¢(Dg(b2)) for by, be € L, then Dg(by)
Dg(bg). Let w € Dg(by). Then by € w. Since ps(b1) = ¢(Dg(b1))
?(Dg(b2)) = ps(be), it follows that by £ w. Hence w € Dg(be) and so
Ds(bl) - DS(bg).

We proceed to show that ¢ is injective. Suppose ¢(Dg(b1)) = ¢(Dg(b2)),
for bl,bg € L. Then qb(Ds(bl)) S gf)(Ds(bg)) and qb(Ds(bQ)) S ¢(Ds(b1) .
It follows that Dg(b1) < Dg(b2) and Dg(by) < Dg(b1). Hence Dg(by) =
Dg(bs).

For any b e Qg(L), ¢(Dgs(b)) = ps(b) = b. It follows that ¢ is surjective.

All these show that ¢ is an isomorphism and so the open set lattice of
the hull kernel topology on S is isomorphic to Qg(L). =

IA 1IN

4. Prime spectrum of a multiplicative lattice

In this section, we consider the largest subset .S of prime elements of a
multiplicative lattice L and characterize the S-semiprime elements for some
special types of L.

An element a of a multiplicative lattice L is called m-semiprime [10] if
a # 1y, and for any x € L,

2 <a implies z < a.

Let mSprime(L) denote the set of all m-semiprime elements of L. Clearly,
Spec(L) < mSprime(L).

LEMMA 4.1. If A is a nonempty subset of mSprime(L), then )\ A €
mSprime(L).

Proof. If 22 < A A, then 2% < a for each a € A. Since A € mSprime(L),
sox<aforeachace Aandsox < AA. =

The next question we want to address is for what L, every m-semiprime
element of L is a meet of some prime elements of L7

An element x of a complete lattice L is way-below an element y in L,
written z « y, if for any directed set D < L, y < \/ D implies < d for
some d € D [4].

A complete lattice L is continuous if for any a € L,

a:\/{xEL:x«a}.

Every algebraic lattice is continuous.

A subset U of a complete lattice A is Scott open iff U =1U and for any
directed subset D < A, \/ D € U implies D n U # (). The complements of
Scott open sets are called Scott closed sets [4].

A Scott open set U of a multiplicative lattice L is called m-filtered if
zeU and ye U imply xzy e U.
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LEMMA 4.2. If U is an m-filtered Scott open set of L, then

(1) for any a € U¢ = L — U, there is a mazximal element b of U® such that
a <b;
(2) each mazimal element of U® is a prime element.

Proof. (1) Let a € U¢. Take any maximal chain C in U¢ such that a € C.
Since U¢, as a Scott closed set, is closed under supremum of directed sets,
\/ C e U¢. Clearly \/ C is a maximal element of U¢ lying above a.

(2) Let p be any maximal element of U¢. Let dy,dy € L such that dids < p.
If di €« pand dy € p, then di v pe U and do v p € U since p is maximal
in U¢. It follows that (dy v p)(da v p) = dida v dip v pda v p? < p which
implies that (di v p)(da v p) € U¢, contradicting the fact that U is m-filtered.
Thus p is a prime element of L. u

THEOREM 4.3. Let a be any element of a multiplicative lattice L. Consider
the following statements:

(1) For any b e L with b € a, there is an m-filtered Scott open set U such
thatbe U and a ¢ U.

(2) a= A{pe Spec(L) : a < p}.

(3) a is m-semiprime.

Then (1) is equivalent to (2), and (2) implies (3).
If L is a continuous lattice, then (3) implies (2). Thus all the statements
are equivalent.

Proof. (1) implies (2): Let w = A{p € Spec(L) : a < p}. Clearly, a < w.
Suppose w € a. Then since (1) holds, there is an m-filtered Scott open set U
such that w e U and a ¢ U. So a € U°. By the previous lemma, there is a
maximal element b € U¢ such that ¢ < b and that b is prime. So b > w by
definition of w, which implies b € U since U is Scott open. This contradicts
be U°. Hence w < a and so w = a.

(2) implies (1): Assume that a = A{p € Spec(L) : a < p}. If b € a, then
there is p € Spec(L) such that a < p and b € p. Let U = L— |p. Clearly,
U is a Scott open set and b e U,a ¢ U. We prove that U is m-filtered. Let
di €U and dy € U. Then d; € p and do € p. So d1ds £ p which implies that
d1d2 eU.

(2) implies (3): Let x € L such that 2> < a. Hence 22 < p for all
p € Spec(L). Since p is prime, z < p for all p € Spec(L) which implies that
z < a and so a is m-semiprime.

For the proof of (3) implies (2) when L is a continuous lattice, we refer
the reader to [13]. =
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If L is a continuous distributive lattice, then L is a multiplicative lattice
where the multiplication is the meet. Then every element is m—semiprime,
so by the above theorem we deduce the following result which appeared in [4].

COROLLARY 4.4. If L is a continuous distributive lattice, then every element
of L is a meet of meet prime elements.

COROLLARY 4.5. Let L be a continuous multiplicative lattice. Then the open
set lattice of the prime spectrum of L is isomorphic to the lattice mSprime(L).

For any commutative ring R, an ideal [ is a radical ideal if for any x € R,
™ € I for some positive integer n implies x € I. The set of all radical ideals
of R is denoted by RIdI(R).

One can easily verify that I € RIdI(R) if and only if I is an m—semiprime
element of the multiplicative lattice Idi(R) of all ideals of R.

Thus Corollary 4.5 deduces the following well known nice fact.

COROLLARY 4.6. For any commutative ring R, the open set lattice of
Spec(R) is isomorphic to the lattice RIdL(R) of all radical ideals of R.

EXAMPLE 4.7. Let L = [0,1] be the set of all real numbers between 0
and 1. Then (L, <, x) is a multiplicative lattice, which is continuous but
not algebraic. Hence, there is no commutative ring R such that Idl(R) is
isomorphic to L = [0, 1].

In general, the Cartesian product of any collection of [0, 1] is a continuous
multiplicative lattice which is not algebraic.

5. Pure elements and the space of maximal elements

An ideal I in a commutative ring R is called a pure ideal [7] if for each
a € I, there exists b € I such that ab = a. There are a number of papers
that characterize pure ideals in certain special types of rings, such as reduced
Gelfand rings.

By a theorem of G. De Marco [7], for any commutative ring R with
identity in which every prime ideal is contained in a unique maximal ideal,
the lattice of all pure ideals of R is isomorphic to the open set lattice of the
space Max(R) of all maximal ideals of R. In this section, we first define
and study pure elements of multiplicative lattices; we then generalize G. De
Marco’s result to some types of multiplicative lattices.

DEFINITION 5.1. Let L be a multiplicative lattice. An element a € L is
called a pure element if for any x < a, there exists y < a such that z = xy.

PROPOSITION 5.2. Let a be any element of a multiplicative lattice L. Then
the following statements are equivalent:
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(i) a is a pure element.

(ii) For any x € L, x < a implies v = za.

(iii) For anybe L, ab=a A b.
Proof. (i) implies (ii): Since a is a pure element and z < a for any z € L,
so there exists y < a such that z = xy < xa. Clearly, xa < x for any z € L.
Hence z = za.

(ii) implies (iii): We only need to show that a A b < ab. Let w = a A b.
Since w < a, by (ii), w = wa. Also w < b which implies that wa < ba = ab.
Thus w = wa < ab.

(iii) implies (i): Let 2 < a. Then = z A a and by (iii), = xa. Choose
y to be a. Hence there exists y = a < a such that xy = xa = z. It follows
that a is a pure element. m

Clearly, 0y, and 1, are pure elements of L. We shall denote the set of all
pure elements of L by Pur(L).

COROLLARY 5.3. Ifa,be Pur(L), then abe Pur(L).

Proof. Let a,b € L. For any x € L such that x < ab, we have x < a and
since a is pure, xa = x. Similarly, since z < b and b is pure, b = x. It then
follows that zab = (za)b = xb = =, thus ab is pure. m

LEMMA 5.4. If L is a principally generated multiplicative lattice, then a € L
15 a pure element of L if and only if for any principal element y < a,

Y = ya.

Proof. The necessity is trivial. Now let a satisfy the given condition. For any
element = € L with = < a, since L is principally generated, x = \/{ye L :y
is principal, y < z}. So

Ta = (\/{y eL:y<azxyis principal})a
= \/{ay :y < x,y is principal}
= \/{y :y < x,y is principal} (if y < z then y < a)
=2 m

DEFINITION 5.5. Let L be a principally generated multiplicative lattice,
with the top element 17 compact. For any a € L, define:

D(a) = {p € Spec(L) : a £ p};
V( ) ={p € Spec(L) : a < p};
Supp(a U{V ([0 : z]) :  is principal, z < a},

where [0, : x] \/{yeL yr = 0r}.
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Let L = Idl(R) be the multiplicative lattice of all ideals of a commutative
ring R with identity. If I = (x) is a principal ideal such that I.J = I for
an ideal J, then there is a principal ideal K < J such that IK = I. In
addition, if I = (x),J = (y) are two principal ideals such that I.J = I, then
there is j € J such that zj = . Take K = (1g — j). Then IK = {Or} and
J + K = R. Noting that principal elements are the abstraction of principal
ideals in multiplicative lattices; these facts motivate us to define the following.

DEFINITION 5.6. A principally generated multiplicative lattice L with the
top element 1; compact is called an mp-multiplicative lattice if L satisfies
the following two conditions:

(1) If z € L is a principal element of L and x = xa, then there exists
a principal element c € L, ¢ < a such that x = zec.

(2) If z,y € L are principal elements in L such that = = xy, there exists
a principal element c € L such that ¢ vy =17 and cx = 0.

LEMMA 5.7. Let L be an mp-multiplicative lattice and a be any element
of L. Then the following statements are equivalent:

(1) a is pure.

(2) Supp(a) = D(a).

Proof. (1) implies (2): For any a € L, if p € D(a), then a € p. So
there exists a principal element x € L such that x < a but £ £ p. Now,
p > [0f : ]z = 01, and since p is prime, p > [0f : ] which implies that
pe V([0r : z]) € Supp(a). So D(a) < Supp(a).

Since a is pure, for any principal z < a, za = x. As L is a mp-
multiplicative lattice, there exists a principal element y € L such that y < a
and xy = x. Also there exists a principal element ¢ € L such that c vy = 1,
and cx = 0.

Now, 1 = ec¢vy <[0r : z] va < 1p. Thus [Of : 2] va = 1g. Hence
V([0r : z]) nV(a) = 0. Then V([0 : z]) € (V(a))® = D(a). Thus
Supp(a) < D(a). Therefore Supp(a) = D(a).

(2) implies (1): Let < a be any principal element. Since Supp(a) =
D(a), then V([0 : z]) € D(a) = (V(a))®. So V([0r : z]) n V(a) = 0.
There is no prime element p € L satisfying p > a and p > [0, : z]. Then
[0f : 2] va=1p. In fact, if [0f : 2] v a < 1z, then using the assumption
that 17, is compact, we can deduce that there exists a maximal element p
such that [0z : ] v a < p (for instance take p to be the supremum of a
maximal chain C with [0 : ] va e C and 11, ¢ C). Since p is maximal, p is
prime and so p € V([0r, : z]) n V(a) which is a contradiction.

It follows that z = z-1, = z([0f, : ] va) = z[0f, : ] vea = 0 vza = za.
Hence a is pure. =
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PROPOSITION 5.8. Let L be an mp-multiplicative lattice satisfying the
following condition:

For any principal element x € L such that x < a v b, there exist principal
elements ey, eq € L such that

e1 < a and ea < b such that [0f : e1] A [0 : ea] < [0p : x].
Then for any a,b € Pur(L), a v be Pur(L).

Proof. Let a,b € Pur(L). By Lemma 5.7, we just need to verify that
V([0r : 2]) € D(a v b) holds for any principal element x with z < a v b.
By the condition given, there exist principal elements e; < a and es < b
such that [07 : e1] A [0p : ea] < [0p : z]. For any p € V([0 : x]),
p > [0 : x]. Sop > [0r : e1] or p > [0 : e2] which implies that p €
V([0r : e1]) < Supp(a) or p € V([0r : e2]) < Supp(b). Since a and b are
pure, Supp(a) = D(a) < D(a v b) and Supp(b) = D(b) < D(a v b). Thus
p€ D(avb). It follows that V([0r : z]) € D(a v b) and so av be Pur(L). u

REMARK 5.9. Let L = IdI(R) be the multiplicative lattice of all ideals
of a commutative ring R with identity. If I = (x) € J v K (which equals
J + K) for some z € R and J, K € L, then there are j € J k € K such
that z = j + k. Then J' = (j) € J,K' = (k) € K and if A € L such that
AJ =05, AK' = 0f, then AI =0p,so [0 : J'] A [0f: K'] < [0f : I]. Thus,
if every principal element of L = IdI(R) is a principal ideal, then L satisfies
the condition in Proposition 5.8.

A multiplicative lattice L is said to be reduced if for any = € L,
A{r : r € Spec(L)} = {0}. Clearly, if L is reduced, then for any x € L,
z" = 0f, for some positive integer n implies x = 0.

PROPOSITION 5.10. Let L be a reduced mp-multiplicative lattice. Then
Pur(L) < mSprime(L).

Proof. Let a € Pur(L). Suppose = € L such that 22 < a. For any principal
element y € L such that y < x, we have y?> < a. Then since a is pure,
ay® = y?. As y? is a principal element and L is an mp-multiplicative lattice,
there exists a principal element b € L such that b < a and by? = y2. Also,
there exists a principal element ¢ € L such that ¢ v b = 17 and cy? = 0. It
then follows that (cy)? = 01, (noting that 0, < (cy)? < cy?), which implies
cy = 0, as L is reduced. Hence y = (cvb)y =cyvby =byandsoy <b < a.
It follows that = < a, hence a € mSprime(L). u

Recall that an element a in a frame H, is regular [11] if
az\/{azeH:xlvale},

where - is the largest y € H such that A y = Op.
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The set of all regular elements of H will be denoted by Reg(H).
Recall that if L is a continuous multiplicative lattice, then mSprime(L)
is a frame by Corollary 4.5.

PROPOSITION 5.11. Let L be a reduced, continuous mp-multiplicative lattice
such that for any principal element x, p(x) = A\{r € Spec(L) : x <r} is a
compact element of M = mSprime(L). Then a € M is a reqular element of
M if and only if a is a pure element of L.

Proof. First, 0, € M because L is reduced.

Let a be a pure element of L. For any principal element z < a, ax = x
as a is pure. Since L is an mp-multiplicative lattice, there exists a principal
element b € L, b < a such that bx = x. Also there exists a principal element
c€ L such that b vy c= 17 and cx = 0y,.

Then p(z) = A {u € Spec(L) : x < u} € mSprime(L) by Theorem 4.3.
From cx = 0z, we have p(c) Ar p(z) = p(cx) = p(0r) by Lemma 3.2 (here S
= Spec(L)). Also L is reduced, p(0z) = 0. Note that, by Lemma 3.2 again,
M = mSprime(L) is a meet sub-semilattice of L. Thus p(c) Ay p(z) = 0,
so p(c) < (p(x))*. It follows that a v (p(x))t > a v p(c) >bvpe=1p.

Note that a vy~ = 11, implies y < a for any y € M. Hence

az \/{yEM ravyyt =1} > \/{p(:c) ca v (p(x)t =15}
M M
2 \/{p(x) :x < a and z is principal}
M
> \/{az :x < a and z is principal} = a.
L

Thus a = \/,,{y € M : a vy y*- = 1.}, implying that a is a regular element
of M.

Conversely, assume that a is a regular element of M. Let x < a be any
principal element of L. Then p(z) < p(a) =a =\ {ye M :avyyt =1L}
Note that y1,y2 € {y € M :a vyt =17} imply y1 varyo € {ye M :a vy
Yyt = 11}. Since p(z) is a compact element of M, there exist y1,y2, -+ ,Yn €
{ye M :avy yt = 11} such that p(z) < y1 Varya Var - - Var Yn. Let
Y=y1VMY2VM- - VMYn. Thenye M, p(x) <y and ytvara=1g. Then
as 17, is a compact element of L, we must have yl v a = 1 (otherwise
there is a maximal element ¢ such that y* v a < g <17, s0 y* vara < q).
As p(z) Ayt = 0r, so p(z)yt = 0p because p(z)yt < p(z) A y~. Now
x =2l = z(y" vpa) = xzyt v za = 0f, v za = za. The last equation
holds because zy* < p(z)y*. Thus by Lemma 5.4, a is pure. =

Let Max(L) be the set of all maximal elements of the multiplicative
lattice L. We have indicated earlier that Max(L) < Spec(L).
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In the next part we show that, for certain types of multiplicative lattices L,
the lattice Pur(L) is isomorphic to the open set lattice of Maz(L) with the
hull kernel topology.

The following result can be proved in a similar way as for the lattice
Idi(R) of ideals of commutative rings R with identity (see [2]).

PROPOSITION 5.12. Let L be an r-lattice. Then

(1) for any x € L,
p(z) = /\{y € Spec(L) : x < y}
= \/{z € L: 2" < x for some positive integer n};
(2) an element a is a compact element of mSprime(L) if and only if
a=plciveav-ve)

for some compact elements ¢; of L;
(3) mSprime(L) is a coherent frame.

To prove the main result of this section we need the following definitions
and results from [12].

(1) Let L be a compact frame (that is, 17, is compact). For each a € L, let
s(a)={ze€L:zvy=1g impliesa vy = 11}. Then s(a) v y = 11, implies
avy = 11, by the compactness of 17,. We shall denote SL = {a € L : s(a)=a}.

(2) A frame L is normal [6] if whenever x v y = 1y, there exist u,v e L
such that u Av=0p andxvv=uvy=1.

PROPOSITION 5.13. [12| For any compact normal frame L, a € SL if and
only if a is an infimum of maximal elements of L.

THEOREM 5.14. [12] Let L be a compact normal frame. Then lattices
Reg(L) and SL are isomorphic.

LEMMA 5.15. The prime elements of a multiplicative lattice L are the same
as the prime elements of the lattice mSprime(L).

Proof. Let r be a prime element of L. Then clearly, r € mSprime(L).
Suppose a ApSprime(r) b < 7 for a,b € mSprime(L). Since mSprime is
closed under meets, a Ay 5prime(z) b = a ALb. Thus ab < aApb < r, implying
a<rorb<r. Sorisa prime element of the lattice mSprime(L).

Conversely, suppose 7 is a prime element of mSprime(L), and ab < r,
where a,b € L. Then p(ab) < p(r) = r, so p(a) A p(b) < r. But p(a) A
p(b) = p(a) Amsprime(r) P(b), thus p(a) < r or p(b) < r because p(a), p(b) €
mSprime(L). As a < p(a) and b < p(b), so a < r or b < r. Hence r is a
prime element of L. m
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Since every maximal element of L is in mSprime(L), so the following is
true.

LEMMA 5.16. The mazimal elements of a multiplicative lattice L are exactly
the mazimal elements of mSprime(L).

PROPOSITION 5.17. Let L be a multiplicative lattice. Then the hull
kernel topology of Max(L) is the same as the hull kernel topology of
Maxz(mSprime(L)).

Proof. We need to show that any open set of the space Max(L) under the
hull kernel topology is also an open set of the space Max(mSprime(L)) and
vice versa. Let x € W, = {m € Maz(L) : p(a) £ m}. Then v € Max(L)
and p(a) € x. Then as x € Spec(L), a € z. Thus z € W,.

Now let v € W,,. Then v € Maz(L) and a € v. Suppose v ¢ W,,). Then
p(a) < v which implies that a < v, a contradiction. Hence v € Wp,). =

REMARK 5.18. By [12], in a coherent normal frame, every prime element
is below a unique maximal element. Conversely, if every prime element in a
coherent frame is below a unique maximal element, then the frame is normal.

THEOREM 5.19. Let L be a reduced mp-multiplicative lattice and an r-lattice
i which every prime element is beneath a unique mazimal element. Then
Pur(L) is isomorphic to the open set lattice, Maz(L), of all mazimal elements
of L endowed with the hull kernel topology.

Proof. By Proposition 5.12, mSprime(L) is a coherent frame. Since ev-
ery prime element of mSprime(L) is beneath a unique maximal element,
mSprime(L) is a normal coherent frame. Since L is a reduced mp-multi-
plicative lattice and an r-lattice, by Proposition 5.11, Reg(mSprime(L))
= Pur(L). By Theorem 5.14, Reg(mSprime(L)) is isomorphic to
S(mSprime(L)) = {a € mSprime(L) : s(a) = a}. By Proposition 5.13,
a € S(mSprime(L)) if and only if a is the meet of all maximal elements
above a, if and only if a € Qg(L) where S = Max(L) (see Theorem 3.9).
Hence by Theorem 3.9, Pur(L) is isomorphic to the open set lattice of
Max(L). m

One remaining problem that interests us is the following: Let L be

a multiplicative lattice and Spec(2g(L)) be the set of prime elements of Qg (L).
For what subset S of Spec(L), Spec(Qs(L)) = S?
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