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Abstract. We take a unified approach to study the open set lattices of various
subspaces of the spectrum of a multiplicative lattice L. The main aim is to establish the
order isomorphism between the open set lattice of the respective subspace and a sub-poset
of L. The motivating result is the well known fact that the topology of the spectrum of
a commutative ring R with identity is isomorphic to the lattice of all radical ideals of
R. The main results are as follows: (i) for a given nonempty set S of prime elements of
a multiplicative lattice L, we define the S-semiprime elements and prove that the open set
lattice of the subspace S of SpecpLq is isomorphic to the lattice of all S-semiprime elements
of L; (ii) if L is a continuous lattice, then the open set lattice of the prime spectrum of L is
isomorphic to the lattice of all m-semiprime elements of L; (iii) we define the pure elements,
a generalization of the notion of pure ideals in a multiplicative lattice and prove that for
certain types of multiplicative lattices, the sub-poset of pure elements of L is isomorphic
to the open set lattice of the subspace MaxpLq consisting of all maximal elements of L.

1. Introduction
One classical result in commutative ring theory is that the open set lattice

of the spectrum of a commutative ring R, endowed with the hull kernel
topology, is isomorphic to the lattice of all radical ideals of R. It is then
natural to consider the following general problem: given a multiplicative
lattice L and a subspace S of the spectrum of L, can we find a subset of L
which is order isomorphic to the open set lattice of S? In this paper, we first
prove that for any nonempty subset S of the spectrum of L, the open set
lattice of the subspace S is isomorphic to the sub-poset of all S-semiprime
elements of L. Then we focus on two special subspaces of spectrum of L
to give a more specific characterization of the corresponding S-semiprime
elements.
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The outline of this paper is as follows: In Section 2, we state some basic
definitions and results in lattice theory and multiplicative lattice theory. In
Section 3, we introduce the notion of S-semiprime elements of a multiplicative
lattice and prove some basic properties of such elements. One fundamental
result proved here is that for any nonempty set S of prime elements of
a multiplicative lattice L, the open set lattice of the hull kernel topology of
S is isomorphic to the poset of all S-semiprime elements of L. In Section 4,
we consider the largest subset S of prime elements of a multiplicative lattice
L and characterize the S-semiprime elements for some special types of L.
We show that if L is a continuous multiplicative lattice, then the open
set lattice of the prime spectrum of L is isomorphic to the lattice of all
m-semiprime elements of L. In Section 5, we generalize the notion of pure
ideals in commutative ring theory by defining the pure elements in any
multiplicative lattice. We also consider a special type of multiplicative lattice,
called mp-multiplicative lattice that is principally generated with the top
element compact and satisfying two additional conditions. We prove that
if L is a reduced mp-multiplicative lattice and an r-lattice in which every
prime element is beneath a unique maximal element, then the poset of pure
elements of L is isomorphic to the open set lattice of the space of all maximal
elements of L endowed with the hull kernel topology.

2. Preliminaries
By Dilworth [8], a multiplicative lattice is a complete lattice L together

with a multiplication (the multiplication of x and y is simply denoted by xy)
that is associative, commutative, distributive over arbitrary joins and has
the greatest element 1L as the multiplication identity. The complete lattices
of ideals of commutative rings are the most important motivating examples
of multiplicative lattices.

The following are some of the basic definitions we will frequently use in
this paper:

(1) In a multiplicative lattice L, xy ≤ x and xy ≤ y hold for all x, y P L.

(2) Let L be a multiplicative lattice. An element p of L is called a prime
element if p ­“ 1L and for any a, b P L, ab ≤ p implies a ≤ p or b ≤ p. The
set of all prime elements of L will be denoted by SpecpLq.

(3) An element p of a complete lattice L is a maximal (minimal) element
if p ­“ 1L (p ­“ 0L) and p ≤ m ă 1L (0L ă m ≤ p) implies m “ p (m “ p).
Every maximal element of a multiplicative lattice is a prime element. In fact,
suppose ab ≤ x where x is maximal, a ę x and b ę y. Since x is maximal,
x_ a “ x_ b “ 1L. But 1L “ px_ aqpx_ bq “ x2 _ ax_ xb_ ab ≤ x which
is a contradiction.
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(4) An element c of a complete lattice L is said to be compact if for any
set I Ď L with c ≤

Ž

I, then c ≤
Ž

J for some finite subset J Ď I. The set
of all compact elements of L will be denoted by KpLq.

A complete lattice L is algebraic, if each x P L is a supremum of compact
elements of L. This is equivalent to that for each x P L, x “

Ž

ty P KpLq :
y ≤ xu.

If L is algebraic and 1L is compact, then L is said to be compact.

(5) An element x of a multiplicative lattice L is called a principal element
if px^ry : asqa “ xa^ y and rpy_xaq : as “ ry : as_x hold for any x, y P L,
where ry : as “

Ž

tu P L : ua ≤ yu.

(6) A multiplicative lattice L is called principally generated if every
element of L is a join of some principal elements.

A multiplicative lattice L is called an r-lattice if

(i) L is a modular lattice (that is, for any a, b, c P L with c ≤ a, a^pb_cq “
pa^ bq _ cq);

(ii) L is principally generated, and
(iii) L is compact.

(7) A frame L is a complete lattice such that for any S Ď L and a P L,

a^ p
ł

Sq “
ł

ta^ s : s P Su.

Each frame can be regarded as a special multiplicative lattice in which
the meet is the multiplication. A frame L is spatial if every element x P L is
an infimum of prime elements of L.

A frame L is called coherent if L is algebraic, 1L P KpLq and a, b P KpLq
implies a^ b P KpLq [6].

Lemma 2.1. [8] If x and y are principal elements of a multiplicative lattice
L, then xy is also a principal element of L.

Lemma 2.2. [1] If L is an r-lattice, then every principal element of L is
compact.

Lemma 2.3. If L is an r-lattice, then the product of two compact elements
of L is compact.

Proof. Let a, b be compact elements of L. Then there exist sets P and Q of
principal elements such that a “

Ž

P, b “
Ž

Q. Since a, b are compact, we
can take P,Q to be finite sets. Now ab “

Ž

txy : x P P, y P Qu is a join of
finite number of elements xy. As a product of principal elements, each xy is
principal, hence compact. Since a finite join of compact elements is compact,
ab is compact.
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For more details on lattices, multiplicative lattices and frames, see [5], [9],
[8], [1] and [6].

3. S-semiprime elements
Let L be a multiplicative lattice and S be a nonempty set of prime

elements of L.
For any element a P L, define

pSpaq “
ľ

tr P S : a ≤ ru.

If tr P S : a ≤ ru “ ∅, then pSpaq “ 1L. Note that since L is a complete
lattice, pSpaq exists for all a P L. Thus pS : LÑ L is a mapping.

Remark 3.1. It is clear that pS has the following properties:

(i) a ≤ pSpaq for all a P L.
(ii) For a, b P L, a ≤ b implies pSpaq ≤ pSpbq.
(iii) For any a P L, pSppSpaqq “ pSpaq.

Thus pS is a closure operator on L.

Lemma 3.2. Let S be a nonempty set of prime elements of a multiplicative
lattice L. Then for any a, b P L,

pSpabq “ pSpa^ bq “ pSpaq ^ pSpbq.

Proof. Note that ab ≤ a holds for any a, b P L. Since a ^ b ≤ a and
a^b ≤ b, we have pSpa^bq ≤ pSpaq and pSpa^bq ≤ pSpbq, which implies that
pSpa^bq ≤ pSpaq^pSpbq. Since ab ≤ a^b, it follows that pSpabq ≤ pSpa^bq.

Let w P S such that w ≥ ab. Since w is prime, a ≤ w or b ≤ w. So
w ≥ pSpaq or w ≥ pSpbq. In either case, w ≥ pSpaq ^ pSpbq. It follows that
pSpabq ≥ pSpaq ^ pSpbq. Hence the equality follows.

Definition 3.3. For a given nonempty set S of prime elements of a
multiplicative lattice L, an element a of L is called S-semiprime if pSpaq “ a.

The set of all S-semiprime elements of L will be denoted by ΩSpLq.

Remark 3.4. (1) Clearly, for any nonempty set S of prime elements of
a multiplicative lattice L, S Ď ΩSpLq.

(2) For any a P L, pSpaq P ΩSpLq since pSppSpaqq “ pSpaq. Hence

ΩSpLq “ tpSpaq : a P Lu.

It thus follows that an element a P L is S-semiprime if and only if a is
the meet of some elements in S.

Lemma 3.5. Let S be a nonempty set of prime elements of a multiplicative
lattice L. Then pΩSpLq,≤q is a complete lattice, where the partial order ≤ is
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inherited from L. Furthermore, for any A Ď ΩSpLq,
ł

ΩSpLq

A “ pS

´

ł

L

A
¯

(1)

ľ

ΩSpLq

A “
ľ

L

A(2)

Proof. Let A Ď ΩSpLq. For any x P A, x ≤
Ž

LA ≤ pSp
Ž

LAq. So
pSp

Ž

LAq is an upper bound for A in ΩSpLq.
If c P ΩSpLq is an upper bound of A in ΩSpLq, then c ≥ x for each x P A

and so c ≥
Ž

LA. Hence c “ pSpcq ≥ pSp
Ž

LAq. Thus (1) holds.
For (2), first note that

Ź

LA ≤ pSp
Ź

LAq. Secondly, for any x P A,
pSp

Ź

LAq ≤ pSpxq “ x, so pSp
Ź

LAq ≤
Ź

LA. Hence pSp
Ź

LAq “
Ź

LA
which means

Ź

LA P ΩSpLq. Clearly,
Ź

LA is a lower bound for A in ΩSpLq.
If d P ΩSpLq is a lower bound of A in ΩSpLq, then d ≤ x for each x P A

and so d ≤
Ź

LA. Thus (2) holds.

Remark 3.6. It follows from Lemma 3.5 that the infimum of a subset A
of ΩSpLq in ΩSpLq is the same as the infimum of A in L.

Theorem 3.7. Let S be a nonempty set of prime elements of a multiplicative
lattice. Then ΩSpLq is a spatial frame.

Proof. For any a, bi P ΩSpLqpi P Iq,

a^
Ž

ΩSpLqtbi : i P Iu “ pSpaq ^ pSp
Ž

Ltbi : i P Iuq

“ pSpap
Ž

Ltbi : i P Iuqq

“ pSp
Ž

Ltabi : i P Iuq

“ pSp
Ž

Lta^ bi : i P Iuq

“
Ž

ΩSpLqta^ bi : i P Iuq.

The second last equation holds because for every i P I, pSp
Ž

Ltabi : i P Iuq
≥ pSpabiq “ pSpaq ^ pSpbiq (by Lemma 3.2) = a ^ bi, and for each i P I,
pSp

Ž

Lta ^ bi : i P Iuq ≥ pSpa ^ biq ≥ abi. The last equation holds by
Lemma 3.5. It follows that ΩSpLq is distributive over arbitrary joins and so
ΩSpLq is a frame.

To show that ΩSpLq is a spatial frame, we need to show that the set
of prime elements of ΩSpLq is meet dense in ΩSpLq. As mentioned in
Remark 3.4(1), S Ď ΩSpLq. Also, for any p P S, a, b P ΩSpLq, if a ^ b ≤ p,
then ab ≤ a^ b ≤ p, thus a ≤ p or b ≤ p.

Hence any element in S is a prime element of the lattice ΩSpLq. Also,
the infimum of a subset A of ΩSpLq in ΩSpLq is equal to its infimum in L,
thus S is meet dense in ΩSpLq, which further implies that the set of prime
elements of ΩSpLq is meet dense in ΩSpLq. Hence ΩSpLq is a spatial frame.
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Proposition 3.8. Let L be a multiplicative lattice. For any nonempty set
S of prime elements of L and any b P L, define

DSpbq “ tp P S : b ę pu.

Then

(i) DSp0Lq “ ∅;
(ii) DSpbcq “ DSpb^ cq “ DSpbq XDSpcq;
(iii) DSp

Ž

biq “
Ť

DSpbiq, i P I.

Proof. (i) is trivial.
(ii) For any w P DSpbq XDSpcq, b ę w and c ę w. So bc ę w since w is

prime and so w P DSpbcq. Hence DSpbq XDSpcq Ď DSpbcq.
For any x R DSpb ^ cq, x ≥ b ^ c which implies that x ≥ bc. Hence

x R DSpbcq and so DSpbcq Ď DSpb^ cq.
To prove DSpb ^ cq Ď DSpbq X DSpcq, we suppose y R DSpbq X DSpcq.

Then y R DSpbq or y R DSpcq. So y ≥ b or y ≥ c which implies that in either
case, y ≥ b^ c. It follows that y R DSpb^ cq. So DSpb^ cq Ď DSpbqXDSpcq.

Combining the three inclusions, we have DSpbq X DSpcq Ď DSpbcq Ď
DSpb^ cq Ď DSpbq XDSpcq and so the equality follows.

To prove (iii), it is enough to note that for any y P S,
Ž

bi ę y if and
only if bi0 ę y for some i0 P I.

It follows from above that sets of the form DSpbq pb P Lq are the open
sets of a topology on S. This topology τ on S will be called the hull-kernel
topology and so pS, τq is a topological space.

Theorem 3.9. For any nonempty set S of prime elements of a multiplicative
lattice L, the open set lattice of the hull kernel topology on S is isomorphic
to ΩSpLq.

Proof. Let OpSq “ tDSpbq : b P Lu. Define φ : OpSq Ñ ΩSpLq by φpDSpbqq
“ pSpbq, b P L. We first show that φ is well-defined. Suppose DSpb1q “
DSpb2q for b1, b2 P L. Then

tp P S : b1 ę pu “ tp P S : b2 ę pu

which implies that

tp P S : b1 ≤ pu “ tp P S : b2 ≤ pu.
It follows that

pSpb1q “
ľ

tp P S : b1 ≤ pu “
ľ

tp P S : b2 ≤ pu “ pSpb2q.

If DSpb1q Ď DSpb2q for b1, b2 P L, then

pSpb1q “
ľ

tp P S : p ≥ b1u ≤
ľ

tp P S : p ≥ b2u “ pSpb2q.

Hence φpDSpb1qq ≤ φpDSpb2qq and so φ is monotone.
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We now show that if φpDSpb1qq ≤ φpDSpb2qq for b1, b2 P L, then DSpb1q Ď
DSpb2q. Let w P DSpb1q. Then b1 ę w. Since pSpb1q “ φpDSpb1qq ≤
φpDSpb2qq “ pSpb2q, it follows that b2 ę w. Hence w P DSpb2q and so
DSpb1q Ď DSpb2q.

We proceed to show that φ is injective. Suppose φpDSpb1qq “ φpDSpb2qq,
for b1, b2 P L. Then φpDSpb1qq ≤ φpDSpb2qq and φpDSpb2qq ≤ φpDSpb1qq.
It follows that DSpb1q Ď DSpb2q and DSpb2q Ď DSpb1q. Hence DSpb1q “
DSpb2q.

For any b P ΩSpLq, φpDSpbqq “ pSpbq “ b. It follows that φ is surjective.
All these show that φ is an isomorphism and so the open set lattice of

the hull kernel topology on S is isomorphic to ΩSpLq.

4. Prime spectrum of a multiplicative lattice
In this section, we consider the largest subset S of prime elements of a

multiplicative lattice L and characterize the S-semiprime elements for some
special types of L.

An element a of a multiplicative lattice L is called m-semiprime [10] if
a ‰ 1L and for any x P L,

x2 ≤ a implies x ≤ a.
LetmSprimepLq denote the set of allm-semiprime elements of L. Clearly,

SpecpLq Ď mSprimepLq.

Lemma 4.1. If A is a nonempty subset of mSprimepLq, then
Ź

A P

mSprimepLq.

Proof. If x2 ≤
Ź

A, then x2 ≤ a for each a P A. Since A Ď mSprimepLq,
so x ≤ a for each a P A and so x ≤

Ź

A.

The next question we want to address is for what L, every m-semiprime
element of L is a meet of some prime elements of L?

An element x of a complete lattice L is way-below an element y in L,
written x ! y, if for any directed set D Ď L, y ≤

Ž

D implies x ≤ d for
some d P D [4].

A complete lattice L is continuous if for any a P L,

a “
ł

tx P L : x ! au.

Every algebraic lattice is continuous.
A subset U of a complete lattice A is Scott open iff U “ÒU and for any

directed subset D Ď A,
Ž

D P U implies D X U ­“ ∅. The complements of
Scott open sets are called Scott closed sets [4].

A Scott open set U of a multiplicative lattice L is called m-filtered if
x P U and y P U imply xy P U .
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Lemma 4.2. If U is an m-filtered Scott open set of L, then

(1) for any a P U c “ L´ U , there is a maximal element b of U c such that
a ≤ b;

(2) each maximal element of U c is a prime element.

Proof. (1) Let a P U c. Take any maximal chain C in U c such that a P C.
Since U c, as a Scott closed set, is closed under supremum of directed sets,
Ž

C P U c. Clearly
Ž

C is a maximal element of U c lying above a.
(2) Let p be any maximal element of U c. Let d1, d2 P L such that d1d2 ≤ p.

If d1 ę p and d2 ę p, then d1 _ p P U and d2 _ p P U since p is maximal
in U c. It follows that pd1 _ pqpd2 _ pq “ d1d2 _ d1p _ pd2 _ p2 ≤ p which
implies that pd1_ pqpd2_ pq P U

c, contradicting the fact that U is m-filtered.
Thus p is a prime element of L.

Theorem 4.3. Let a be any element of a multiplicative lattice L. Consider
the following statements:

(1) For any b P L with b ę a, there is an m-filtered Scott open set U such
that b P U and a R U .

(2) a “
Ź

tp P SpecpLq : a ≤ pu.
(3) a is m-semiprime.

Then p1q is equivalent to p2q, and p2q implies p3q.
If L is a continuous lattice, then p3q implies p2q. Thus all the statements

are equivalent.

Proof. (1) implies (2): Let w “
Ź

tp P SpecpLq : a ≤ pu. Clearly, a ≤ w.
Suppose w ę a. Then since (1) holds, there is an m-filtered Scott open set U
such that w P U and a R U . So a P U c. By the previous lemma, there is a
maximal element b P U c such that a ≤ b and that b is prime. So b ≥ w by
definition of w, which implies b P U since U is Scott open. This contradicts
b P U c. Hence w ≤ a and so w “ a.

(2) implies (1): Assume that a “
Ź

tp P SpecpLq : a ≤ pu. If b ­≤ a, then
there is p P SpecpLq such that a ≤ p and b ­≤ p. Let U “ L´ Óp. Clearly,
U is a Scott open set and b P U, a R U . We prove that U is m-filtered. Let
d1 P U and d2 P U . Then d1 ę p and d2 ę p. So d1d2 ę p which implies that
d1d2 P U .

(2) implies (3): Let x P L such that x2 ≤ a. Hence x2 ≤ p for all
p P SpecpLq. Since p is prime, x ≤ p for all p P SpecpLq which implies that
x ≤ a and so a is m-semiprime.

For the proof of (3) implies (2) when L is a continuous lattice, we refer
the reader to [13].
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If L is a continuous distributive lattice, then L is a multiplicative lattice
where the multiplication is the meet. Then every element is m´semiprime,
so by the above theorem we deduce the following result which appeared in [4].

Corollary 4.4. If L is a continuous distributive lattice, then every element
of L is a meet of meet prime elements.

Corollary 4.5. Let L be a continuous multiplicative lattice. Then the open
set lattice of the prime spectrum of L is isomorphic to the lattice mSprimepLq.

For any commutative ring R, an ideal I is a radical ideal if for any x P R,
xn P I for some positive integer n implies x P I. The set of all radical ideals
of R is denoted by RIdlpRq.

One can easily verify that I P RIdlpRq if and only if I is an m´semiprime
element of the multiplicative lattice IdlpRq of all ideals of R.

Thus Corollary 4.5 deduces the following well known nice fact.

Corollary 4.6. For any commutative ring R, the open set lattice of
SpecpRq is isomorphic to the lattice RIdlpRq of all radical ideals of R.

Example 4.7. Let L “ r0, 1s be the set of all real numbers between 0
and 1. Then pL,≤,ˆq is a multiplicative lattice, which is continuous but
not algebraic. Hence, there is no commutative ring R such that IdlpRq is
isomorphic to L “ r0, 1s.

In general, the Cartesian product of any collection of r0, 1s is a continuous
multiplicative lattice which is not algebraic.

5. Pure elements and the space of maximal elements
An ideal I in a commutative ring R is called a pure ideal [7] if for each

a P I, there exists b P I such that ab “ a. There are a number of papers
that characterize pure ideals in certain special types of rings, such as reduced
Gelfand rings.

By a theorem of G. De Marco [7], for any commutative ring R with
identity in which every prime ideal is contained in a unique maximal ideal,
the lattice of all pure ideals of R is isomorphic to the open set lattice of the
space MaxpRq of all maximal ideals of R. In this section, we first define
and study pure elements of multiplicative lattices; we then generalize G. De
Marco’s result to some types of multiplicative lattices.

Definition 5.1. Let L be a multiplicative lattice. An element a P L is
called a pure element if for any x ≤ a, there exists y ≤ a such that x “ xy.

Proposition 5.2. Let a be any element of a multiplicative lattice L. Then
the following statements are equivalent:
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(i) a is a pure element.
(ii) For any x P L, x ≤ a implies x “ xa.
(iii) For any b P L, ab “ a^ b.

Proof. (i) implies (ii): Since a is a pure element and x ≤ a for any x P L,
so there exists y ≤ a such that x “ xy ≤ xa. Clearly, xa ≤ x for any x P L.
Hence x “ xa.

(ii) implies (iii): We only need to show that a^ b ≤ ab. Let w “ a^ b.
Since w ≤ a, by (ii), w “ wa. Also w ≤ b which implies that wa ≤ ba “ ab.
Thus w “ wa ≤ ab.

(iii) implies (i): Let x ≤ a. Then x “ x^ a and by (iii), x “ xa. Choose
y to be a. Hence there exists y “ a ≤ a such that xy “ xa “ x. It follows
that a is a pure element.

Clearly, 0L and 1L are pure elements of L. We shall denote the set of all
pure elements of L by PurpLq.

Corollary 5.3. If a, b P PurpLq, then ab P PurpLq.

Proof. Let a, b P L. For any x P L such that x ≤ ab, we have x ≤ a and
since a is pure, xa “ x. Similarly, since x ≤ b and b is pure, xb “ x. It then
follows that xab “ pxaqb “ xb “ x, thus ab is pure.

Lemma 5.4. If L is a principally generated multiplicative lattice, then a P L
is a pure element of L if and only if for any principal element y ≤ a,

y “ ya.

Proof. The necessity is trivial. Now let a satisfy the given condition. For any
element x P L with x ≤ a, since L is principally generated, x “

Ž

ty P L : y
is principal, y ≤ xu. So

xa “
´

ł

ty P L : y ≤ x, y is principalu
¯

a

“
ł

tay : y ≤ x, y is principalu

“
ł

ty : y ≤ x, y is principalu (if y ≤ x then y ≤ a)

“ x.

Definition 5.5. Let L be a principally generated multiplicative lattice,
with the top element 1L compact. For any a P L, define:

Dpaq “ tp P SpecpLq : a ę pu;

V paq “ tp P SpecpLq : a ≤ pu;

Supppaq “
ď

tV pr0L : xsq : x is principal, x ≤ au,

where r0L : xs “
ł

ty P L : yx “ 0Lu.
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Let L “ IdlpRq be the multiplicative lattice of all ideals of a commutative
ring R with identity. If I “ pxq is a principal ideal such that IJ “ I for
an ideal J , then there is a principal ideal K Ď J such that IK “ I. In
addition, if I “ pxq, J “ pyq are two principal ideals such that IJ “ I, then
there is j P J such that xj “ x. Take K “ p1R ´ jq. Then IK “ t0Ru and
J `K “ R. Noting that principal elements are the abstraction of principal
ideals in multiplicative lattices; these facts motivate us to define the following.

Definition 5.6. A principally generated multiplicative lattice L with the
top element 1L compact is called an mp-multiplicative lattice if L satisfies
the following two conditions:

(1) If x P L is a principal element of L and x “ xa, then there exists
a principal element c P L, c ≤ a such that x “ xc.

(2) If x, y P L are principal elements in L such that x “ xy, there exists
a principal element c P L such that c_ y “ 1L and cx “ 0L.

Lemma 5.7. Let L be an mp-multiplicative lattice and a be any element
of L. Then the following statements are equivalent:

p1q a is pure.
p2q Supppaq “ Dpaq.

Proof. (1) implies (2): For any a P L, if p P Dpaq, then a ę p. So
there exists a principal element x P L such that x ≤ a but x ę p. Now,
p ≥ r0L : xsx “ 0L and since p is prime, p ≥ r0L : xs which implies that
p P V pr0L : xsq Ď Supppaq. So Dpaq Ď Supppaq.

Since a is pure, for any principal x ≤ a, xa “ x. As L is a mp-
multiplicative lattice, there exists a principal element y P L such that y ≤ a
and xy “ x. Also there exists a principal element c P L such that c_ y “ 1L
and cx “ 0L.

Now, 1L “ c _ y ≤ r0L : xs _ a ≤ 1L. Thus r0L : xs _ a “ 1L. Hence
V pr0L : xsq X V paq “ ∅. Then V pr0L : xsq Ď pV paqqc “ Dpaq. Thus
Supppaq Ď Dpaq. Therefore Supppaq “ Dpaq.

(2) implies (1): Let x ≤ a be any principal element. Since Supppaq “
Dpaq, then V pr0L : xsq Ď Dpaq “ pV paqqc. So V pr0L : xsq X V paq “ ∅.
There is no prime element p P L satisfying p ≥ a and p ≥ r0L : xs. Then
r0L : xs _ a “ 1L. In fact, if r0L : xs _ a ă 1L, then using the assumption
that 1L is compact, we can deduce that there exists a maximal element p
such that r0L : xs _ a ă p (for instance take p to be the supremum of a
maximal chain C with r0L : xs _ a P C and 1L R C). Since p is maximal, p is
prime and so p P V pr0L : xsq X V paq which is a contradiction.

It follows that x “ x¨1L “ xpr0L : xs_aq “ xr0L : xs_xa “ 0L_xa “ xa.
Hence a is pure.
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Proposition 5.8. Let L be an mp-multiplicative lattice satisfying the
following condition:

For any principal element x P L such that x ≤ a_ b, there exist principal
elements e1, e2 P L such that

e1 ≤ a and e2 ≤ b such that r0L : e1s ^ r0L : e2s ≤ r0L : xs.

Then for any a, b P PurpLq, a_ b P PurpLq.

Proof. Let a, b P PurpLq. By Lemma 5.7, we just need to verify that
V pr0L : xsq Ď Dpa_ bq holds for any principal element x with x ≤ a_ b.

By the condition given, there exist principal elements e1 ≤ a and e2 ≤ b
such that r0L : e1s ^ r0L : e2s ≤ r0L : xs. For any p P V pr0L : xsq,
p ≥ r0L : xs. So p ≥ r0L : e1s or p ≥ r0L : e2s which implies that p P
V pr0L : e1sq Ď Supppaq or p P V pr0L : e2sq Ď Supppbq. Since a and b are
pure, Supppaq “ Dpaq Ď Dpa _ bq and Supppbq “ Dpbq Ď Dpa _ bq. Thus
p P Dpa_ bq. It follows that V pr0L : xsq Ď Dpa_ bq and so a_ b P PurpLq.

Remark 5.9. Let L “ IdlpRq be the multiplicative lattice of all ideals
of a commutative ring R with identity. If I “ pxq Ď J _K (which equals
J ` K) for some x P R and J,K P L, then there are j P J, k P K such
that x “ j ` k. Then J 1 “ pjq Ď J,K 1 “ pkq Ď K and if A P L such that
AJ 1 “ 0L, AK

1 “ 0L then AI “ 0L, so r0L : J 1s ^ r0L : K 1s Ď r0L : Is. Thus,
if every principal element of L “ IdlpRq is a principal ideal, then L satisfies
the condition in Proposition 5.8.

A multiplicative lattice L is said to be reduced if for any x P L,
Ź

tr : r P SpecpLqu “ t0Lu. Clearly, if L is reduced, then for any x P L,
xn “ 0L for some positive integer n implies x “ 0L.

Proposition 5.10. Let L be a reduced mp-multiplicative lattice. Then
PurpLq Ď mSprimepLq.

Proof. Let a P PurpLq. Suppose x P L such that x2 ≤ a. For any principal
element y P L such that y ≤ x, we have y2 ≤ a. Then since a is pure,
ay2 “ y2. As y2 is a principal element and L is an mp-multiplicative lattice,
there exists a principal element b P L such that b ≤ a and by2 “ y2. Also,
there exists a principal element c P L such that c_ b “ 1L and cy2 “ 0L. It
then follows that pcyq2 “ 0L (noting that 0L ≤ pcyq2 ≤ cy2), which implies
cy “ 0L as L is reduced. Hence y “ pc_ bqy “ cy_ by “ by and so y ≤ b ≤ a.
It follows that x ≤ a, hence a P mSprimepLq.

Recall that an element a in a frame H, is regular [11] if

a “
ł

tx P H : xK _ a “ 1Hu,

where xK is the largest y P H such that x^ y “ 0H .
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The set of all regular elements of H will be denoted by RegpHq.
Recall that if L is a continuous multiplicative lattice, then mSprimepLq

is a frame by Corollary 4.5.

Proposition 5.11. Let L be a reduced, continuous mp-multiplicative lattice
such that for any principal element x, ppxq “

Ź

tr P SpecpLq : x ≤ ru is a
compact element of M “ mSprimepLq. Then a PM is a regular element of
M if and only if a is a pure element of L.

Proof. First, 0L PM because L is reduced.
Let a be a pure element of L. For any principal element x ≤ a, ax “ x

as a is pure. Since L is an mp-multiplicative lattice, there exists a principal
element b P L, b ≤ a such that bx “ x. Also there exists a principal element
c P L such that b_L c “ 1L and cx “ 0L.

Then ppxq “
Ź

Ltu P SpecpLq : x ≤ uu P mSprimepLq by Theorem 4.3.
From cx “ 0L, we have ppcq ^L ppxq “ ppcxq “ pp0Lq by Lemma 3.2 (here S
= SpecpLq). Also L is reduced, pp0Lq “ 0L. Note that, by Lemma 3.2 again,
M “ mSprimepLq is a meet sub-semilattice of L. Thus ppcq ^M ppxq “ 0L
so ppcq ≤ pppxqqK. It follows that a_M pppxqqK ≥ a_L ppcq ≥ b_L c “ 1L.

Note that a_M yK “ 1L implies y ≤ a for any y PM . Hence

a ≥
ł

M

ty PM : a_M yK “ 1Lu ≥
ł

M

tppxq : a_M pppxqqK “ 1Lu

≥
ł

M

tppxq : x ≤ a and x is principalu

≥
ł

L

tx : x ≤ a and x is principalu “ a.

Thus a “
Ž

Mty PM : a_M yK “ 1Lu, implying that a is a regular element
of M .

Conversely, assume that a is a regular element of M . Let x ≤ a be any
principal element of L. Then ppxq ≤ ppaq “ a “

Ž

Mty PM : a_M yK “ 1Lu.
Note that y1, y2 P ty PM : a_M yK “ 1Lu imply y1 _M y2 P ty PM : a_M

yK “ 1Lu. Since ppxq is a compact element of M , there exist y1, y2, ¨ ¨ ¨ , yn P
ty P M : a _M yK “ 1Lu such that ppxq ≤ y1 _M y2 _M ¨ ¨ ¨ _M yn. Let
y “ y1_M y2_M ¨ ¨ ¨_M yn. Then y PM,ppxq ≤ y and yK_M a “ 1L. Then
as 1L is a compact element of L, we must have yK _L a “ 1L (otherwise
there is a maximal element q such that yK _L a ≤ q ă 1L, so yK _M a ≤ q).
As ppxq ^ yK “ 0L, so ppxqyK “ 0L because ppxqyK ≤ ppxq ^ yK. Now
x “ x1L “ xpyK _L aq “ xyK _L xa “ 0L _ xa “ xa. The last equation
holds because xyK ≤ ppxqyK. Thus by Lemma 5.4, a is pure.

Let MaxpLq be the set of all maximal elements of the multiplicative
lattice L. We have indicated earlier that MaxpLq Ď SpecpLq.
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In the next part we show that, for certain types of multiplicative lattices L,
the lattice PurpLq is isomorphic to the open set lattice of MaxpLq with the
hull kernel topology.

The following result can be proved in a similar way as for the lattice
IdlpRq of ideals of commutative rings R with identity (see [2]).

Proposition 5.12. Let L be an r-lattice. Then

(1) for any x P L,

ppxq “
ľ

ty P SpecpLq : x ≤ yu

“
ł

tz P L : zn ≤ x for some positive integer nu;

(2) an element a is a compact element of mSprimepLq if and only if

a “ ppc1 _ c2 _ ¨ ¨ ¨ _ cnq

for some compact elements ci of L;
(3) mSprimepLq is a coherent frame.

To prove the main result of this section we need the following definitions
and results from [12].

(1) Let L be a compact frame (that is, 1L is compact). For each a P L, let
spaq “ tz P L : z _ y “ 1L implies a_ y “ 1Lu. Then spaq _ y “ 1L implies
a_y “ 1L, by the compactness of 1L. We shall denote SL “ ta P L : spaq“au.

(2) A frame L is normal [6] if whenever x_ y “ 1L, there exist u, v P L
such that u^ v “ 0L and x_ v “ u_ y “ 1L.

Proposition 5.13. [12] For any compact normal frame L, a P SL if and
only if a is an infimum of maximal elements of L.

Theorem 5.14. [12] Let L be a compact normal frame. Then lattices
RegpLq and SL are isomorphic.

Lemma 5.15. The prime elements of a multiplicative lattice L are the same
as the prime elements of the lattice mSprimepLq.

Proof. Let r be a prime element of L. Then clearly, r P mSprimepLq.
Suppose a ^mSprimepLq b ≤ r for a, b P mSprimepLq. Since mSprime is
closed under meets, a^mSprimepLq b “ a^L b. Thus ab ≤ a^L b ≤ r, implying
a ≤ r or b ≤ r. So r is a prime element of the lattice mSprimepLq.

Conversely, suppose r is a prime element of mSprimepLq, and ab ≤ r,
where a, b P L. Then ppabq ≤ pprq “ r, so ppaq ^ ppbq ≤ r. But ppaq ^
ppbq “ ppaq ^mSprimepLq ppbq, thus ppaq ≤ r or ppbq ≤ r because ppaq, ppbq P
mSprimepLq. As a ≤ ppaq and b ≤ ppbq, so a ≤ r or b ≤ r. Hence r is a
prime element of L.
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Since every maximal element of L is in mSprimepLq, so the following is
true.
Lemma 5.16. The maximal elements of a multiplicative lattice L are exactly
the maximal elements of mSprimepLq.
Proposition 5.17. Let L be a multiplicative lattice. Then the hull
kernel topology of Max pLq is the same as the hull kernel topology of
Max pmSprimepLqq.
Proof. We need to show that any open set of the space MaxpLq under the
hull kernel topology is also an open set of the space MaxpmSprimepLqq and
vice versa. Let x P Wppaq “ tm P MaxpLq : ppaq ę mu. Then x P MaxpLq
and ppaq ę x. Then as x P SpecpLq, a ę x. Thus x PWa.

Now let v PWa. Then v PMaxpLq and a ę v. Suppose v RWppaq. Then
ppaq ≤ v which implies that a ≤ v, a contradiction. Hence v PWppaq.
Remark 5.18. By [12], in a coherent normal frame, every prime element
is below a unique maximal element. Conversely, if every prime element in a
coherent frame is below a unique maximal element, then the frame is normal.
Theorem 5.19. Let L be a reduced mp-multiplicative lattice and an r-lattice
in which every prime element is beneath a unique maximal element. Then
PurpLq is isomorphic to the open set lattice,MaxpLq, of all maximal elements
of L endowed with the hull kernel topology.
Proof. By Proposition 5.12, mSprimepLq is a coherent frame. Since ev-
ery prime element of mSprimepLq is beneath a unique maximal element,
mSprimepLq is a normal coherent frame. Since L is a reduced mp-multi-
plicative lattice and an r-lattice, by Proposition 5.11, RegpmSprimepLqq
“ PurpLq. By Theorem 5.14, RegpmSprimepLqq is isomorphic to
SpmSprimepLqq “ ta P mSprimepLq : spaq “ au. By Proposition 5.13,
a P SpmSprimepLqq if and only if a is the meet of all maximal elements
above a, if and only if a P ΩSpLq where S “ MaxpLq (see Theorem 3.9).
Hence by Theorem 3.9, PurpLq is isomorphic to the open set lattice of
MaxpLq.

One remaining problem that interests us is the following: Let L be
a multiplicative lattice and SpecpΩSpLqq be the set of prime elements of ΩSpLq.
For what subset S of SpecpLq, SpecpΩSpLqq “ S?
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