
DEMONSTRATIO MATHEMATICA
Vol. XLVIII No 4 2015

J. D. H. Smith

ONE-SIDED QUANTUM QUASIGROUPS AND LOOPS

Communicated by A. Romanowska

Abstract. Quantum quasigroups and quantum loops are self-dual objects providing
a general framework for the nonassociative extension of quantum group techniques. This
paper examines their one-sided analogues, which are not self-dual. Just as quantum
quasigroups are the “quantum” version of quasigroups, so one-sided quantum quasigroups
are the “quantum” version of left or right quasigroups.

1. Introduction
Hopf algebras (or “quantum groups”) have been developed over the last

few decades as an important extension of the concept of a group, from the
category of sets with the Cartesian product to more general symmetric,
monoidal categories, such as the category of vector spaces over a field with
the tensor product [8]. Over the same time period, there has been an intensive
parallel development of the theory of quasigroups and loops (“non-associative
groups”) [11]. Some work has also been done on extending Hopf algebras
to non-associative products [1, 4, 7], and recently the self-dual concepts of
quantum quasigroup and loop were introduced as a far-reaching unification
of Hopf algebras and quasigroups [12].

The purpose of the current paper is to initiate investigation of one-sided
(left or right) versions of quantum quasigroups and loops. The self-dual
definition of a quantum quasigroup requires the invertibility of two dual
morphisms: the left composite (4.1) and the right composite (4.2). The
definition of a left quantum quasigroup requires only the invertibility of the
left composite. Dually, the definition of a right quantum quasigroup requires
only the invertibility of the right composite (Definition 4.1).

Section 2 recalls the combinatorial and equational approaches to tradi-
tional quasigroups and loops, both two-sided and one-sided. Section 3 presents
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the background on symmetric monoidal categories and Hopf algebras. The
basic definitions of the one-sided quantum quasigroups and loops are given in
Section 4, along with a brief discussion of their relation to other structures.
It appears that the left Hopf algebras of Taft and his coauthors may not
generally fit into the framework of left quantum quasigroups, although the
question still awaits a fuller investigation.

Section 5 presents a study of one-sided quantum quasigroups and loops in
the usual combinatorial setting of the category of sets (under the monoidal
structure given by the Cartesian product). Here, left quantum loops reduce to
the usual left loops, and counital left quantum quasigroups reduce to the usual
left quasigroups (Theorem 5.3). General finite left quantum quasigroups are
equivalent to left quasigroups with an automorphism and an endomorphism
(Theorem 5.4). A full characterization of all left quantum quasigroups in the
category of sets is still open.

Sections 6–8 discuss one-sided quantum quasigroups and loops in the
category S of modules over a commutative, unital ring S. Section 6 presents
the one-sided left quasigroup and loop algebras, and their twisted versions
(Remark 6.3), given by any left quasigroup or loop in a module category (or
more general category of entropic algebras) under the tensor product. By
contrast, Section 7 shows that there are no general strictly one-sided analogues
of the two-sided quantum quasigroups of (ring-valued) functions on a finite
left quasigroup, in the module category S under the tensor product. On
the other hand, Section 8 examines module categories under the direct sum,
which also form symmetric monoidal categories. Theorem 8.7 characterizes
the left quantum quasigroups in these categories, under appropriate finiteness
assumptions. As for the category of sets, a full characterization of all left
quantum quasigroups in these categories is still open.

For algebraic concepts and conventions that are not otherwise discussed
in this paper, readers are referred to [13]. In particular, algebraic notation is
used throughout the paper, with functions to the right of, or as superfixes
to, their arguments. Thus compositions are read from left to right. These
conventions serve to minimize the proliferation of brackets.

2. One-sided quasigroups and loops
2.1. Combinatorial or equational quasigroups. Quasigroups may be
defined combinatorially or equationally. Combinatorially, a quasigroup pQ, ¨q
is a set Q equipped with a binary multiplication operation denoted by ¨ or
simple juxtaposition of the two arguments, in which specification of any two
of x, y, z in the equation x ¨ y “ z determines the third uniquely. A loop is a
quasigroup Q with an identity element e such that e ¨ x “ x “ x ¨ e for all x
in Q.
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Equationally, a quasigroup pQ, ¨, {, zq is a set Q with three binary oper-
ations of multiplication, right division { and left division z, satisfying the
identities:

(2.1)
pSLq x ¨ pxzzq “ z ; pSRq z “ pz{xq ¨ x ;

pILq xzpx ¨ zq “ z ; pIRq z “ pz ¨ xq{x .

If x and y are elements of a group pQ, ¨q, the left division is given by xzy “
x´1y, with x{y “ xy´1 as right division. For an abelian group considered as
a combinatorial quasigroup under subtraction, the right division is addition,
while the left division is subtraction.

2.2. Equational or combinatorial one-sided quasigroups. Equation-
ally, a left quasigroup pQ, ¨, zq is a set Q equipped with a multiplication
and left division satisfying the identities (SL) and (IL) of (2.1). Dually, a
right quasigroup pQ, ¨, {q is a set Q equipped with a multiplication and right
division satisfying the identities (SR) and (IR) of (2.1). A left loop is a left
quasigroup with an identity element. Dually, a right loop is a right quasigroup
with an identity element.

Combinatorially, a left quasigroup pQ, ¨q is a set Q with a multiplication
such that in the equation a ¨ x “ b, specification of a and b determines
x uniquely. In equational terms, the unique solution is x “ azb. The
combinatorial definition of right quasigroups is dual. If Q is a set, the right
projection product xy “ y yields a left quasigroup structure on Q, while the
left projection product xy “ x yields a right quasigroup structure.

3. Structures in symmetric monoidal categories
The general setting for the algebras studied in this paper is a symmetric

monoidal category (or “symmetric tensor category” — compare [14, Ch. 11])
pV,b,1q. The standard example is provided by the category K of vector
spaces over a field K. More general concrete examples are provided by vari-
eties V of entropic (universal) algebras, algebras on which each (fundamental
and derived) operation is a homomorphism (compare [2]). These include the
category Set of sets, the category of pointed sets, the category R of (right)
modules over a commutative, unital ring R, the category of commutative
monoids, and the category of semilattices.

In a monoidal category pV,b,1q, there is an object 1 known as the unit
object. For example, the unit object of K is the vector space K. For objects
A and B in a monoidal category, a tensor product object AbB is defined.
For example, if U and V are vector spaces over K with respective bases
X and Y , then U b V is the vector space with basis X ˆ Y , written as
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txb y | x P X, y P Y u. There are natural isomorphisms with components

αA,B;C : pAbBq b C Ñ Ab pB b Cq , ρA : Ab 1Ñ A , λA : 1bAÑ A

satisfying certain coherence conditions guaranteeing that one may as well
regard these isomorphisms as identities [14, p. 67]. Thus the bracketing of
repeated tensor products is suppressed in this paper, although the natural
isomorphisms ρ and λ are retained for clarity in cases such as the unitality
diagram (3.1) below. In the vector space example, adding a third space W
with basis Z, one has

αU,V ;W : pxb yq b z ÞÑ xb py b zq

for z P Z, along with ρU : xb 1 ÞÑ x and λU : 1b x ÞÑ x for x P X.
A monoidal category pV,b,1q is symmetric if there is a given natu-

ral isomorphism with twist components τA,B : A b B Ñ B b A such that
τA,BτB,A “ 1AbB [14, pp. 67–8]. One uses τU,V : xb y ÞÑ y b x with x P X
and y P Y in the vector space example.

3.1. Diagrams. Let A be an object in a symmetric monoidal category
pV,b,1q. Consider the respective associativity and unitality diagrams

(3.1) AbAbA
1Ab∇ //

∇b1A
��

AbA

∇
��

AbA
∇

// A

and AbA

∇

%%JJJJJJJJJJ Ab 1
1Abηoo

ρA
��

1bA

ηb1A

OO

λA
// A

in the category V, the respective dual coassociativity and counitality diagrams

(3.2) AbAbA AbA
1Ab∆oo

AbA

∆b1A

OO

A

∆

OO

∆
oo

and AbA
1Abε //

εb1A
��

Ab 1

1bA A

∆

eeJJJJJJJJJJ

λ´1
A

oo

ρ´1
A

OO

in the category V, the bimagma diagram

(3.3) A
∆

))SSSSSSSSSSSSSSSSS

AbA

∆b∆

��

∇
55kkkkkkkkkkkkkkkkk

**TTTTTTTTTTTTTTTTT AbA

AbAbAbA
1Abτb1A

//

44jjjjjjjjjjjjjjjjj
AbAbAbA

∇b∇

OO
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in the category V, the biunital diagram

(3.4) 1b 1
∇ // 1 1

η
����������

∆ //1oo 1b 1

ηbη

��
AbA

∇ //

εbε

OO

A
∆ //

ε

__>>>>>>>>

AbA

in the category V, and the antipode diagram

(3.5) AbA
Sb1A // AbA

∇

��66666666666666

A
ε //

∆

CC��������������

∆

��66666666666666 1 η
// A

AbA
1AbS

// AbA

∇

CC��������������

in the category V, all of which are commutative diagrams. The arrow across
the bottom of the bimagma diagram (3.3) makes use of the twist isomorphism
τA,A or τ : AbAÑ AbA.

3.2. Magmas and bimagmas. This paragraph and its successor collect a
number of basic definitions of various structures and homomorphisms between
them.

Definition 3.1. Let V be a symmetric monoidal category.

pa.1q A magma in V is a V-object A with a V-morphism

∇ : AbAÑ A

known as multiplication.
pa.2q Let A and B be magmas in V. Then a magma homomorphism f : AÑ

B is a V-morphism such that the diagram

A

f

��

AbA

fbf
��

∇oo

B B bB
∇

oo

commutes.
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pb.1q A comagma in V is a V-object A with a V-morphism
∆: AÑ AbA

known as comultiplication.
pb.2q Let A and B be comagmas inV. A comagma homomorphism f : AÑ B

is a V-morphism such that the diagram

B
∆ // B bB

A

f

OO

∆
// AbA

fbf

OO

commutes.
pc.1q A bimagma pA,∇,∆q in V is a magma pA,∇q and comagma pA,∆q in

V such that the bimagma diagram (3.3) commutes.
pc.2q Let A and B be bimagmas in V. Then a bimagma homomorphism

f : AÑ B is a magma and comagma homomorphism between bimagmas
A and B.

Remark 3.2. (a) Commuting of the bimagma diagram (3.3) in a bimagma
pA,∇,∆q means that

∆: pA,∇q Ñ
`

AbA, p1A b τ b 1Aqp∇b∇q
˘

is a magma homomorphism (commuting of the upper-left solid and dotted
quadrilateral), or equivalently, that

∇ :
`

AbA, p∆b∆qp1A b τ b 1Aq
˘

Ñ pA,∆q

is a comagma homomorphism (commuting of the upper-right solid and dotted
quadrilateral).

(b) If V is an entropic variety of universal algebras, the comultiplication
of a comagma in V may be written as
(3.6) ∆: AÑ AbA; a ÞÑ

`

paL1 b aR1q . . . paLna b aRna q
˘

wa

in a universal-algebraic version of the well-known Sweedler notation. In (3.6),
the tensor rank of the image of a (or any such general element of A b A)
is the smallest arity na of the derived word wa expressing the image (or
general element) in terms of elements of the generating set tbb c | b, c P Au
for A b A. A more compact but rather less explicit version of Sweedler
notation, generally appropriate within any concrete monoidal category V, is
a∆ “ aL b aR, with the understanding that the tensor rank of the image is
not implied to be 1.

(c) As with quasigroups (§2), the magma multiplication on an object A
of a concrete monoidal category is often denoted by juxtaposition, namely
pab bq∇ “ ab, or with a ¨ b as an infix notation, for elements a, b of A.
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Definition 3.3. Suppose that A is an object in a symmetric monoidal
category V.

paq A magma pA,∇q is commutative if τ∇ “ ∇. Thus if V is concrete, this
may be written in the usual form ba “ ab for a, b P A.

pbq A comagma pA,∆q is cocommutative if ∆τ “ ∆. In Sweedler notation:
aR b aL “ aL b aR for a P A.

pcq A magma pA,∇q is associative if the associativity diagram (3.1) com-
mutes. In the concrete case, one often writes ab ¨ c “ a ¨ bc, with ¨ binding
less strongly than juxtaposition, for a, b, c in A.

pdq A comagma pA,∆q is coassociative if the coassociativity diagram (3.2)
commutes. Coassociativity takes the form

aLL b aLR b aR “ aL b aRL b aRR

when written in Sweedler notation for a P A.

Remark 3.4. In a bimagma pA,∇,∆q, the concepts of Definition 3.3 may
be applied to the respective magma and comagma reducts of A.

3.3. Unital structures and Hopf algebras.

Definition 3.5. Let V be a symmetric monoidal category.

pa.1q A magma pA,∇q in V is unital if it has a V-morphism η : 1Ñ A such
that the unitality diagram (3.1) commutes.

pa.2q Let A and B be unital magmas in V. Then a unital magma homomor-
phism f : AÑ B is a magma homomorphism such that the diagram

A

f
��

1
ηoo

1
��

B 1η
oo

commutes.
pb.1q A comagma pA,∆q in V is counital if it has a V-morphism ε : AÑ 1

such that the counitality diagram (3.2) commutes.
pb.2q Let A and B be comagmas in V. Then a counital comagma homo-

morphism f : A Ñ B is a comagma homomorphism such that the
diagram

B
ε // 1

A

f

OO

ε
// 1

1

OO

commutes.
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pc.1q A biunital bimagma pA,∇,∆, η, εq is a unital magma pA,∇, ηq and
counital comagma pA,∆, εq such that pA,∇,∆q is a bi-magma, and
the biunital diagram (3.4) commutes.

pc.2q A biunital bimagma homomorphism f : A Ñ B is a unital magma
and counital comagma homomorphism between biunital bimagmas A
and B.

Remark 3.6. Joint commuting of the bimagma diagram (3.3) and biunital
diagram (3.4) in a biunital bimagma pA,∇,∆, η, εq means that the comulti-
plication ∆: AÑ AbA is a unital magma homomorphism, or equivalently,
that ∇ : AbAÑ A is a counital comagma homomorphism.

Definition 3.7. Let V be a symmetric monoidal category.

paq A monoid in V is an associative unital magma in V.
pbq A comonoid in V is a coassociative counital comagma in V.
pcq A bimonoid in V is defined as an associative, coassociative, and biunital

bimagma.
pdq A Hopf algebra in V is a bimonoid A in V that is equipped with a

V-morphism S : AÑ A known as the antipode, such that the antipode
diagram (3.5) commutes.

4. One-sided quantum quasigroups and loops
Definition 4.1. Consider a symmetric monoidal category pV,b,1q.

paq A left quantum quasigroup pA,∇,∆q in V is a bimagma in V for which
the left composite morphism

p4.1q AbA
∆b1A // AbAbA

1Ab∇ // AbA

is invertible.
pbq A right quantum quasigroup pA,∇,∆q in V is a bimagma in V for which

the right composite morphism

p4.2q AbA
1Ab∆ // AbAbA

∇b1A // AbA

is invertible.

Definition 4.2. Suppose that pA,∇,∆, η, εq is a biunital bimagma in a
symmetric monoidal category pV,b,1q.

paq Suppose that pA,∇,∆q is a left quantum quasigroup in V. Then
pA,∇,∆, η, εq is said to be a left quantum loop.

pbq Suppose that pA,∇,∆q is a right quantum quasigroup in V. Then
pA,∇,∆, η, εq is said to be a right quantum loop.
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Remark 4.3. (a) Unlike the concepts of quantum quasigroup and quantum
loop, the concepts of left and right quantum quasigroups and loops are not
self-dual.

(b) In the bimonoid context, the left and right composites are often
described as fusion operators or Galois operators.

4.1. Relations with other structures. The quantum quasigroups consid-
ered in [12] are structures that are simultaneously left and right quantum
quasigroups. Similarly, the quantum loops considered there are structures
that are simultaneously left and right quantum loops. Both quantum quasi-
groups and quantum loops are self-dual structures. Hopf algebras (include
reducts that) are quantum loops [12].

Taft and his co-authors have investigated left Hopf algebras [3, 6, 9].
These structures satisfy all of the requirements for a Hopf algebra listed in
Definition 3.7(d), except for the commuting of the lower pentagon in the
antipode diagram (3.5). In this situation, the V-morphism S is known as a
left antipode. Since the proof in [12] that Hopf algebras are quantum loops
uses the commuting of both pentagons in the antipode diagram to show that
Hopf algebras are left quantum quasigroups, it appears that general left Hopf
algebras may not necessarily form left quantum quasigroups. This is a topic
for further investigation.

4.2. Symmetric monoidal functors. Since right and left quantum quasi-
groups and loops are formulated entirely in the language of symmetric
monoidal categories, one immediately has the following result. (Compare [14,
p. 86] for the concept of a symmetric monoidal functor.)

Proposition 4.4. Suppose that pV,b,1Vq and pW,b,1Wq are symmetric
monoidal categories. Let F : VÑW be a symmetric monoidal functor.

paq If pA,∇,∆q is a left (right) quantum quasigroup in V, then the structure
pAF,∇F ,∆F q is a left (right) quantum quasigroup in W.

pbq Suppose that pA,∇,∆, η, εq is a left (right) quantum loop in V. Then
pAF,∇F ,∆F , ηF , εF q is a left (right) quantum loop in W.

Noting that the conditions of (co)commutativity and (co)associativity are
also formulated entirely in the language of symmetric monoidal categories,
one obtains the following.

Corollary 4.5. In the context of Proposition 4.4, validity of any one of the
commutativity, cocommutativity, associativity, or coassociativity conditions
for the left or right quantum quasigroup pA,∇,∆q implies validity of the cor-
responding condition for the left or right quantum quasigroup pAF,∇F ,∆F q.
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5. Combinatorial examples
In this section, the basic symmetric monoidal category pV,b,1q is taken

to be pSet,ˆ,Jq, the category of sets with the Cartesian product ˆ and
singleton set J “ t1u (a terminal object of Set), with the twist symmetry

τ : AˆB Ñ B ˆA; pa, bq ÞÑ pb, aq

and identifications such as ρA : AˆJ Ñ A; pa, 1q ÞÑ a. In order to facilitate
reference to the diagrams of §3.1, the direct product of two sets A and B
will be written in monoidal category notation as A b B, while an ordered
pair pa, bq P Aˆ B will be written as an element ab b of Ab B, of tensor
rank 1. In this case, the Sweedler notation ∆: A Ñ A b A; a ÞÑ aL b aR

introduced in Remark 3.2(b) corresponds directly with a pair of functions
L : AÑ A; a ÞÑ aL and R : AÑ A; a ÞÑ aR.

To avoid tedious repetition, from now on the discussion will be explicitly
restricted to left quasigroups and loops. The corresponding results for right
quasigroups and loops are readily formulated and proved in dual fashion
(reversal of arrows in diagrams, along with a syntactical left/right switch).

Lemma 5.1. If pA,∆, εq is a counital comagma in Set, then the comulti-
plication is the diagonal embedding ∆: a ÞÑ ab a. Conversely, the diagonal
embedding on each set A yields a cocommutative, coassociative counital co-
magma pA,∆, εq in Set.

Corollary 5.2. Left quantum loops and counital left quantum quasigroups
in pSet,ˆ,Jq are cocommutative and coassociative.

5.1. Left quantum loops and counital quasigroups. Lemma 5.1 leads
to a direct identification of left quantum loops and counital left quantum
quasigroups in Set.

Theorem 5.3. Consider the category Set of sets and functions, with the
symmetric monoidal category structure pSet,ˆ,Jq.

paq Counital left quantum quasigroups in Set are equivalent to left quasi-
groups.

pbq Left quantum loops in Set are equivalent to left loops.

Proof. (a): Let pA,∇,∆, εq be a counital left quantum quasigroup in Set.
By Lemma 5.1, the left composite function (4.1) takes the form

(5.1) ab b �∆b1A // ab ab b �1Ab∇ // ab pa ¨ bq

for a, b P A. Thus the inverse function may be written as

(5.2) cb pczdq cb d�oo
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for c, d P A and a binary operation pc, dq ÞÑ czd on A. The mutual inverse
relationship between (5.1) and (5.2) yields the identities (SL) and (IL) of
(2.1) on A.

Conversely, given a left quasigroup pA, ¨, zq, one may define

∇ : ab b ÞÑ a ¨ b .

The left quasigroup identities (SL) and (IL) of (2.1) yield an inverse (5.2) to
(4.1), and a dual inverse to (4.2). The remaining structure is provided by
Lemma 5.1, and verification of the bimagma condition (3.3) is immediate.

(b): If pA,∇,∆, η, εq is a left quantum loop in Set, the counital left
quantum quasigroup reduct pA,∇,∆, εq yields a left quasigroup pA, ¨, zq by
(a). The unit η : J Ñ A selects an element e of A, which then becomes an
identity element for pA, ¨, zq by virtue of the unitality.

Conversely, given a left loop pA, ¨, z, eq, the left quasigroup reduct pA, ¨, zq
specifies a counital left quantum quasigroup pA,∇,∆, εq by (a). Defining
η : 1 ÞÑ e with the identity element e then makes pA,∇,∆, η, εq a biunital
bimagma.

5.2. Finite left quantum quasigroups.

Theorem 5.4. In the category pFinSet,ˆ,Jq, left quantum quasigroups
are equivalent to triples pA,L,Rq consisting of a left quasigroup A with an
automorphism L and endomorphism R.

Proof. Let pA,∇,∆q be a left quantum quasigroup in FinSet, with comagma
∆: a ÞÑ aL b aR. Commuting of the bimagma diagram (3.3) shows that
the functions L : AÑ A and R : AÑ A are endomorphisms of the magma
pA,∇q. The left composite function (4.1) takes the form

(5.3) ab b �∆b1A // aL b aR b b �1Ab∇ // aL b paR ¨ bq

for a, b P A. Its invertibility implies that L is surjective. Since A is finite, it
follows that L is invertible.

The inverse function to the left composite (5.3) may now be written as

(5.4) cL
´1
b pcL

´1Rzdq cb d�oo

for c, d P A and a binary operation px, yq ÞÑ xzy on A. The mutual inverse
relationship between (5.3) and (5.4) yields the identities (SL) and (IL) of
(2.1) on A. Thus pA, ¨, zq is a left quasigroup equipped with an automorphism
L and endomorphism R.

Conversely, given a left quasigroup pA, ¨, zq with automorphism L and
endomorphism R, define a multiplication

∇ : AbAÑ A; ab b ÞÑ ab
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and comultiplication

∆: AÑ AbA; a ÞÑ aL b aR .

It is then straightforward to verify that pA,∇,∆q is a left quantum quasigroup
in Set.

Since finiteness of the underlying set A was not assumed in the concluding
paragraph of the proof of Theorem 5.4, one may immediately observe the
following.

Corollary 5.5. Given a left quasigroup pA, ¨, zq equipped with an auto-
morphism L and endomorphism R, define ∇ : Ab AÑ A; ab b ÞÑ ab as a
multiplication and ∆: AÑ AbA; a ÞÑ aL b aR as a comultiplication. Then
pA,∇,∆q is a left quantum quasigroup in Set.

Corollary 5.6. Let pA,∇,∆q be a left quantum quasigroup in FinSet,
with corresponding triple pA,L,Rq.

paq The left quantum quasigroup pA,∇,∆q is commutative if and only if the
left quasigroup A is commutative.

pbq The left quantum quasigroup pA,∇,∆q is associative if and only if the
left quasigroup A is associative.

pcq The left quantum quasigroup pA,∇,∆q is cocommutative if and only if
the endomorphisms L and R coincide.

6. Left quasigroup and loop algebras
For simplicity, the results of this section are presented within the category

S of modules over a commutative, unital ring S, construed as a symmetric
tensor category pS,b, Sq under the tensor product of modules. Discussion of
extensions to more general entropic varieties is confined to Remark 6.3.

Proposition 6.1. Let Q be a left quasigroup. Suppose that QS is the
free S-module over Q. Define a magma pQS,∇q by the free extension of the
quasigroup multiplication ∇ : Q b Q Ñ Q;x b y ÞÑ xy. Define a comagma
pQS,∆q by the free extension of the diagonal ∆: q ÞÑ q b q for q in Q. Then
pQS,∇,∆q is a cocommutative, coassociative left quantum quasigroup in S.

Proof. The left composite (4.1) takes the form

xb y �∆b1QS// xb xb y �1QSb∇// xb px ¨ yq

for x, y P Q. The inverse is given by

ub puzvq ub v�oo

for u, v P Q. Verification of the commuting of the bimagma diagram (3.3) is
straightforward.
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Definition 6.2. The left quantum quasigroup QS of Proposition 6.1 is
known as the left quasigroup algebra of Q over the ring S.

Remark 6.3. If V is an entropic variety, with corresponding free algebra
functor V : SetÑ V, then an analogous left quasigroup algebra in V may
be constructed on the free V-algebra QV over the set Q. It is obtained
by applying Proposition 4.4, with the free V-algebra functor V , to the left
quantum quasigroup in Set corresponding under Theorem 5.4 to the triple
pQ, 1Q, 1Qq. Note that Proposition 6.1 actually represents the special case
whereV “ S. More generally, taking a triple pQ,L,Rq with an automorphism
L and endomorphism R of Q yields a twisted left quasigroup algebra in V.

Corollary 6.4. If pQ, ¨, eq is a left loop, then the left quasigroup algebra
pQS,∇,∆q of Q over the ring S admits an augmentation to a left quantum
loop pQS,∇,∆, η, εq in S.

Proof. The counit ε : QS Ñ S is the free extension of ε : QÑ S;x ÞÑ 1. The
unit η : S Ñ QS is the free extension of η : t1u Ñ QS; 1 ÞÑ e. Verification of
the unitality, counitality, and biunitality conditions is straightforward.

Definition 6.5. The left quantum loop QS of Corollary 6.4 is known as
the left loop algebra of Q over the ring S.

Example 6.6. If Q is a group, then the left loop algebra of Q over a field
K is (a reduct of) the usual group Hopf algebra (compare [5, Ex. 1.6]).

7. Dual quasigroup algebras
For a commutative, unital ring S, let S be the category of modules over S,

taken as a symmetric tensor category under the tensor product of modules.
For a finite set Q, recall that the free S-module over Q is modeled by the set
SQ of functions from Q to S, under the pointwise module structure. A basis
is provided by the delta functions δq : QÑ S with

(7.1) xδq “

#

1 if x “ q;

0 otherwise

for elements x, q of Q. If Q is a two-sided quasigroup, the set SQ carries a
quantum quasigroup structure in S known as a dual quasigroup algebra:

Proposition 7.1. [12] Let Q be a finite quasigroup. Define a magma
pSQ,∇q by pointwise multiplication of S-valued functions. Define a comagma
pSQ,∆q by the free extension of the factorization

∆: δq ÞÑ
ÿ

qLqR“q

δqL b δqR
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for an element q of Q. Then pSQ,∇,∆q is a commutative, associative
quantum quasigroup in S.

The following example shows that if the commutative, unital ring S is
non-trivial, there need be no analogous left quantum quasigroup structure in
S when Q is just a left quasigroup.

Example 7.2. Let Q be the two-element set ta, bu, construed as a left
quasigroup with the projection product xy “ y. Mimicking the construction
of Proposition 7.1, the left composite (4.1) takes the form

δx b δy
�∆b1

SQ//
ř

xLxR“x δxL b δxR b δy
�1SQb∇//

ř

zy“x δz b δy

for x, y P Q. In particular, it maps δa b δb to 0, as there is no element z in Q
with zb “ a. But since the ring S is nontrivial, δabδb ‰ 0 in SQbSQ, so the
linear left composite (4.1) is not injective, and thus certainly not invertible.

8. Linear one-sided quasigroups
In this section, let S be a commutative, unital ring. The category S

of S-modules is taken as a symmetric tensor category pS,‘, t0uq under the
direct sum (biproduct) ‘ of modules.

8.1. Linear bimagmas.

Lemma 8.1. Let pA,∇q be a magma in pS,‘, t0uq. Then

(8.1) ∇ : A‘AÑ A;x‘ y ÞÑ xρ ` yλ

for endomorphisms ρ, λ of the module A.

Proof. Note that A‘A is the coproduct of two copies of A in S.

Lemma 8.2. Let pA,∆q be a comagma in pS,‘, t0uq. Then

(8.2) ∆: AÑ A‘A;x ÞÑ xL ‘ xR

for endomorphisms L,R of the module A.

Proof. Note that A‘A is the product of two copies of A in S.

Remark 8.3. The expression (8.2) serves as a model for the general ab-
breviated version of Sweedler notation established in Remark 3.2(b).

Proposition 8.4. Suppose that an S-module A carries a magma structure
(8.1) and a comagma structure (8.2). Then pA,∇,∆q is a bimagma in
pS,‘, t0uq if and only if the commutation relations

(8.3) λL “ Lλ , ρL “ Lρ , λR “ Rλ , ρR “ Rρ

are satisfied by the endomorphisms λ, L, ρ,R of the module A.
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Proof. The bimagma diagram (3.3) takes the form

x‘ y � ∆b∆ //
_

∇
��

xL ‘ xR ‘ yL ‘ yR_

1A‘τ‘1A

��

xρ ` yλ_

∆
��

pxρ ` yλqL ‘ pxρ ` yλqR

xLρ ` yLλ ‘ xRρ ` yRλ xL ‘ yL ‘ xR ‘ yR�
∇‘∇
oo

for x, y P A. Thus the relations (8.3) are equivalent to commutativity of the
diagram.

8.2. Linear quantum left quasigroups.

Definition 8.5. A combinatorial left quasigroup pA, ¨q is (S-)linear if there
is an S-module structure pA,`, 0q, with automorphism λ and endomorphism
ρ, such that

(8.4) x ¨ y “ xρ ` yλ

for x, y in A.

Remark 8.6. In Definition 8.5, the unique solution x “ azb to the equation
a ¨ x “ b for given a and b is x “ pb´ aρqλ´1 .

The following theorem may be regarded as a linear version of the combi-
natorial Theorem 5.4, in a sense made precise by Corollary 8.8 below.

Theorem 8.7. Let S be a commutative, unital ring.

paq Finite left quantum quasigroups in the symmetric, monoidal category
pS,‘, t0uq are equivalent to triples pA,L,Rq consisting of a finite linear
left quasigroup A, along with an automorphism L and endomorphism R
of the left quasigroup A.

pbq Suppose that S is a field. Suppose that V is the category of finite-
dimensional vector spaces over S. Then left quantum quasigroups in
pV,‘, t0uq are equivalent to triples pA,L,Rq consisting of a finite-dimen-
sional linear left quasigroup A with an automorphism L and endomor-
phism R of the left quasigroup A.

Proof. Let pA,∇,∆q be a left quantum quasigroup in pS,‘, t0uq, with
multiplication as in (8.1) and comultiplication as in (8.2). For case (a),
assume that A is finite. For case (b), assume that A is finite-dimensional.
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By Proposition 8.4, the commutation relations (8.3) are satisfied by the
endomorphisms λ, L, ρ,R of the module A. The invertible left composite
morphism (4.1) takes the form

(8.5) x‘ y �∆‘1A // xL ‘ xR ‘ y �1A‘∇ // xL ‘ pxRρ ` yλq

for x, y P A. Its invertibility implies that L is surjective. Then by the
assumptions on A in each case, it follows that L is invertible. The equation
px‘ yqp∆‘ 1Aqp1A ‘∇q “ 0‘ yλ implies x “ 0, so 0‘ yλ can only be the
image of 0‘ y. Thus λ is surjective, and again by the assumptions on A in
each case, it follows that λ is invertible.

The inverse to the left composite (8.5) is given by

(8.6) uL
´1
‘ pv ´ uL

´1Rρqλ
´1

u‘ v�oo

for u, v P A, noting that L and λ are automorphisms. Thus the multiplication
(8.1) on A yields a linear left quasigroup; the commutation relations (8.3)
imply that L is a left quasigroup automorphism and R is a left quasigroup
endomorphism.

Conversely, a linear left quasigroup pA, ¨q with x ¨ y “ xρ ` yλ, automor-
phism L, and endomorphism R yields a bimagma pA,∇,∆q with multiplica-
tion (8.1) and comultiplication (8.2) by Proposition 8.4. Invertibility of the
left composite (4.1) follows as illustrated above for (8.5) by means of (8.6).

Since no assumptions were placed on the underlying module A in the
concluding paragraph of the proof of Theorem 8.7, one may observe the
following.

Corollary 8.8. Let S be a commutative, unital ring. Consider a triple
pA,L,Rq comprising an S-linear left quasigroup A with an automorphism
L and endomorphism R of A. The triple yields a left quantum quasigroup
in pSet,ˆ,Jq by Corollary 5.5, and also in pS,‘, t0uq. Then the former is
obtained by applying Proposition 4.4 to the latter, with the underlying set
functor S Ñ Set.

Acknowledgment. I am grateful to Earl Taft for helpful discussions in
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