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Abstract. Let K be any field and L be any lattice. In this note we show that L is a
sublattice of annihilators in an associative and commutative K-algebra. If L is finite, then
our algebra will be finite dimensional over K.

1. Introduction
The problem of representing lattices as lattices of subalgebras or congru-

ences in various abstract algebras is quite often investigated. In some cases
it is natural to restrict considerations to finite lattices. We refer the reader
to [11, 13, 12] for some results on this problem. Some papers are devoted
to representing lattices as lattices of annihilators in associative rings, for
example [8, 6], or annihilators in semigroups with zero (see [14, 9]).

In this paper K is any field. In [5] it is shown that every lattice L is
embeddable in a lattice of left annihilators of a K-algebra, denoted there by
KxLy. If L is finite then this algebra is finite dimensional over K. If L has
at most 3 elements then the algebra KxLy is commutative, but for greater
number of elements it is noncommutative. Thus there is a natural question,
whether every (finite) lattice is isomorphic to a sublattice of the lattice of
annihilators in a commutative (finite dimensional) algebra over K. This
question was asked by some participants of conferences, where the results
of [5] were presented. We solve this problem here by constructing suitable
algebras over K.

To make the paper more readable and self-contained, in Section 2 we
recall some definitions and facts on algebras and some results from [5]. We
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use this opportunity to add a new consequence of Theorem 3.2 from that
paper.

In Section 3, using ideas from [5], we show that for every lattice L there
exists a local, commutative K-algebra KxxLyy and a lattice embedding of L
into the lattice of annihilators in KxxLyy.

The cardinality of any set X we denote by |X|. All lattices considered
here have the smallest element ω and the largest element Ω ‰ ω. If P is
any partially ordered set (poset), then by P op we denote the set P , with the
reverse order.

2. Lattices of annihilators
Here, by an algebra over K we mean a vector space A over K together with

a bilinear associative multiplication. In other words, for arbitrary elements
a, b, c P A and for arbitrary λ P K the following equalities are satisfied:

1. apb` cq “ ab` ac;
2. pb` cqa “ ba` ca;
3. pabqc “ apbcq;
4. pλaqb “ apλbq “ λpabq.

All algebras over K considered here, named simply algebras, are with 1 ‰ 0.
An algeba A is called commutative if ab “ ba for any a, b P A and is finite
dimensional if the space A is finite dimensional over K. If A is an algebra,
then by JpAq we denote the Jacobson radical of A. All other information
about algebras used here one can find for example in [7, 3].

If X Ď A is a subset of an algebra A then let LApXq “ LpXq be the left
annihilator of X in A and let RApXq “ RpXq be the right annihilator of X
in A :

LpXq “ ta P A : aX “ 0u and RpXq “ ta P A : Xa “ 0u.

Thus, by associativity of A, every left annihilator is a left ideal, and every
right annihilator is a right ideal in A.

Let AlpAq be the set of all left annihilators in A and let ArpAq be the set of
all right annihilators in A. Then AlpAq is a complete lattice with operations:
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for every family tJsu Ď ArpAq. In every algebra, the lattices AlpAq and ArpAq
have ω “ 0 and Ω “ A.

Between AlpAq and ArpAq we have a Galois correspondence

(2.1) AlpAq
R
Ñ pArpAqq

op and pArpAqq
op L
Ñ AlpAq.

We need some notions related to monoids and their algebras. They are
taken from [10]. Let M be a monoid and let I be an ideal in M. Then the
Rees factor monoid M{I is equal to M{ρ, where ρ is the congruence on M
given by ps, tq P ρ if either s “ t or s, t P I. In this way we obtain a monoid
with 0.

If M is a monoid, then a monoid algebra KrM s is a K-space with the
basis M and the multiplication induced by the multiplication in M. If M is a
monoid with 0, then K0 is an ideal in KrM s. By contracted monoid algebra
of M over K, denoted by K0rM s, we mean the factor algebra KrM s{K0.

Now we recall the construction of an algebra KxLy given in [5]. We also
slightly extend some results about this algebra, proved there.

Example 2.1. ([5], Example 3.1) Let P be a nonempty poset. Then there
exists a contracted monoid algebra KpP q such that P Ă KpP q and KpP q has
a natural gradation given by:

(2.2) KpP q “ K‘ V ‘ V 2,

where the natural base of V can be identified with P and the natural base of
V 2 can be identified with txy : x, y P P, x ę yu. In this algebra xy “ 0 for
x ≤ y P P and V 3 “ 0. If P “ ∅ then KpP q “ K.

The algebra KpP q is a local algebra with the Jacobson radical J “ V ‘V 2

and with the residue field KpP q{J “ K.
If L is a lattice, then KxLy “ KpP q, where P “ LztΩ, ωu. Using the

above notations we have

Theorem 2.2. ([5], Theorem 3.2) Let P be any poset and let φ : P ÝÑ
AlpKpP qq be given by φpxq “ LKpP qpxq for x P P. Then φ is an embedding
and preserves all existing meets and joins.

If L is a lattice, then φ extends uniquely to a lattice embedding of L into
AlpKxLyq.

If L is a complete lattice, then this extended φ is an isomorphism of L
with the interval rφpωq, φpΩqs Ď AlpKxLyq.

For finite sets we have

Theorem 2.3. ([5], Theorem 3.4) Let P be a poset with |P | “ m ă 8.
Under the notation from the above theorem we have

1`
mpm` 1q

2
≤ DimKpKpP qq ≤ 1`m2.
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If L is a lattice with |L| “ n ă 8, then

1`
pn´ 2qpn´ 1q

2
≤ DimKpKxLyq ≤ 1` pn´ 2q2.

From the construction of KxLy and KpP q we obtain that, for |L| ≤ 3,
the algebra KxLy is commutative, because for |P | ≤ 1, the algebra KpP q is
commutative. Thus, annihilators in these algebras are (two-sided) ideals. We
can prove a more general result

Theorem 2.4. If P is a poset then every annihilator in KpP q is an ideal.
In particular, if L is a lattice, then every annihilator in the algebra KxLy is
an ideal.

Proof. Let us denote KpP q by A. Using arguments as in the proof of Theorem
3.2 in [5], for every nonempty subset X Ď V ‘ V 2 we have V 2 Ď LpXq and
LpXqA Ď LpXq`V 2. Hence LpXqA Ď LpXq. If X Ę V ‘V 2 then X contains
an invertible element and LpXq “ 0. Thus any left annihilator in A is a right
ideal, hence an ideal in A. Every right annihilator in A is also an ideal, as a
right annihilator of its left annihilator.

The lattice of ideals in any algebra is isomorphic to the lattice of congru-
ences in this algebra, so we have

Corollary 2.5. Let L be a lattice. Then φ is a natural embedding
of L into the lattice of all congruences of the algebra KxLy. This is a lower
semilattice embedding.

This, in general, is only a semilattice embedding, because any algebraic
sum of annihilators need not be an annihilator.

3. Commutative case
Let A be a commutative algebra. Then RpXq “ LpXq for any subset

X Ď A. Thus AlpAq “ ArpAq. Hence, we put in this section RpXq “ LpXq “
ApXq and AlpAq “ ArpAq “ ApAq. We point out that, as a consequence of
the Formula (2.1), the mapping X ÝÑ ApXq is an antiautomorphism of the
lattice ApAq.

Each commutative, finite dimensional algebra is uniquely (up to isomor-
phism) a finite direct product of local, commutative algebras ([1], Theorem
8.7.). It is obvious that, for a local algebra A, the lattice ApAq has a unique
atom and a unique coatom. Moreover, if A and B are algebras, then we have:

(3.1) ApA‘Bq “ ApAq ˆ ApBq.

From these facts, it can be deduced that, for an algebra A, the lattice ApAq
is indecomposable (is not a direct product of two nontrivial lattices) if and
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only if A is local. In this section, due to Formula (3.1), we restrict to local
algebras.

As a modification of Example 2.1 we can consider

Example 3.1. Let P ‰ ∅ be a poset and let P 1 be the set such that
|P | “ |P 1|. Let f : P ÝÑ P 1 be a bijection given by fpxq “ x1 P P 1. Put
P ˚ “ P Y P 1. Let SpP ˚q be the free, commutative monoid with the set P ˚
of free generators.

Consider in SpP ˚q an ideal I generated by all products xyz where x, y, z P
P ˚ and by all elements of the set tyx1 | x, y P P and x ≤ yu. Put S “ SpP ˚q{I,
the Rees factor monoid.

Clearly P ˚ Ď S in a natural way and pP ˚q2 “ t0uYtxy | x, y P P uYtx1y1 |
x1, y1 P P 1u Y tyx1 | x, y P P, x ę yu. Moreover, S “ t1u Y P ˚ Y pP ˚q2.

Now let KppP qq “ K0rSs be the contracted monoid algebra.
Thus P Ă KppP qq and KppP qq has the natural gradation given by:

(3.2) KppP qq “ K‘W ‘W 2,

where the natural base of W can be identified with P ˚ and the natural base
of W 2 can be identified with pP ˚q2zt0u.

Our algebra KppP qq is a local, commutative algebra with the Jacobson
radical J “W ‘W 2 and with the residue field KppP qq{J “ K.

It is easily seen from the above construction that, for every nonempty
poset P , the lattice of annihilators in algebra KppP qq contains a unique atom
W 2 “ J2 and a unique coatom W ‘W 2 “ J. Moreover, we observe that, for
x, y, z, t P P ˚, we have

(3.3) If xy “ zt ‰ 0, then either x “ z and y “ t, or x “ t and y “ z.

If P is finite set then the algebra KppP qq is finite dimensional.
Using the above notations we have

Theorem 3.2. Let P be a nonempty poset and let ψ : P ÝÑ ApKppP qqq be
given by ψpxq “ AKppP qqpxq for x P P. Then ψ is an embedding and preserves
all existing meets and joins.

Proof. Observe that for every element x P P we have

W 2 Ď ψpxq “ Apxq “ P 1x ‘W
2,

where P 1x ĎW is a subspace spanned by elements of the set ty1 P P 1 | y ≤ x,
where x, y P P u. In particular, x1 P ψpxq and ψ is an order preserving
embedding.

Now let Px ĎW be a subspace spanned by elements ty P P | x ≤ y where
x, y P P u. Note that Apx1q “ Px ‘W

2.
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Assume that, for S Ď P there exists
Ž

S PP. We’ll show that ψp
Ž

Sq “
Ž

sPS ψpsq “ ApAp
ř

sPS ψpsqqq.
It turns out that only annihilators of elements in P ˚ are important. Let

z “
ř

i αizi and w “
ř

j βjwj where αi, βj P Kz0 and tziu, twju are finite
subsets of P ˚. Assume that zw “

ř

i j αiβjziwj “ 0. If, for example, w1 “ z1
then, by the independence of suitable elements of pP ˚q2, we obtain that
α1β1 “ 0, a contradiction. Hence tziu X twju “ ∅, and then ziwj “ 0 for
every pair i, j. In view of this, every annihilator in the algebra KppP qq properly
contained in J is the intersection of annihilators of elements in P ˚. Moreover,
we can see that for any J2 Ĺ X Ĺ J we have ApXq “ B ‘W 2, where B is a
subspace spanned by some elements in P ˚.

Let z P P ˚ and z P Ap
ř

sPS ψpsqq. Then, in particular, zs1 “ 0 for each
s P S and hence z ≥ s for all s P S. This implies z ≥

Ž

S. Therefore
Ap

ř

sPS ψpsqq Ď PŽS ‘W
2. Obviously PŽS ‘W

2 Ď Ap
ř

sPS ψpsqq and thus
PŽS ‘W

2 “ Ap
ř

sPS ψpsqq. It is easy to see that ApPŽS ‘W
2q “ Ap

Ž

Sq.
Consequently ψ preserves all existing joins.

It is easy to show that ψ preserves all existing meets.

Corollary 3.3. Every finite lattice can be represented as a sublattice of
a lattice of annihilators in a commutative K-algebra.

Similarly as in [5], with use of the result 16.7 in [2], we have

Corollary 3.4. There is no nontrivial lattice identity satisfied in lattices
of annihilators of all finite dimensional, commutative algebras.

If P is a finite poset then we can estimate the dimension of the algebra
KppP qq.

Theorem 3.5. Let |P | “ m ă 8. Then

2` 5m` 3m2

2
≤ DimKpKppP qqq ≤ 1` 2m` 2m2.

Proof. Under notation from Formula (3.2), we have

(3.4) DimKpW q “ 2m and
3m2 `m

2
≤ DimKpW

2q ≤ 2m2.

Hence

(3.5) 1` 2m`
3m2 `m

2
≤ DimKpKppP qqq ≤ 1` 2m` 2m2.

The first inequality can be checked by induction on m, while the second
is evident.

In the case when L is a lattice, the dimension of the algebra KppLqq is
relatively big. Due to the fact that every annihilator in an algebra A is a
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subspace in A, we have that the length of any chain in ApAq is less or equal
to the dimension of A.

Let L be a lattice and A be an algebra such that L is a sublattice of ApAq.
Keeping in mind that, if A is local then ApAq has unique atom and unique
coatom, one can indicate a lower bound of dimension of A. For some special
lattices L we give commutative algebras A of the least possible dimension
with L Ď ApAq.

Example 3.6. Let L be a chain with n elements and A “ Krxs{pxn´1q. It
is easy to check that L is isomorphic to ApAq and A is an algebra with the
least possible dimension.

Example 3.7. Let K be an infinite field, n ą 3 and let Mn be the lattice
of length 2 with n elements. Let us take the commutative polynomial algebra
Krx, ys and A “ Krx, ys{px2, y2q. Then the latticeMn is embeddable in ApAq
and A is an algebra with the least possible dimension. Indeed, if B is an
algebra of dimension at most 3, then ApBq is either a chain or a product of
chains.

Example 3.8. Let B2n be the boolean algebra of cardinality 2n. Obviously
B2n is isomorphic to the lattice of annihilators in the non local algebra Kn

and this is an algebra with the least possible dimension. Indeed, B2n contains
a chain of n+1 elements.

Let L be a finite lattice. Just as in [5] one can find a general way to
construct an algebra A with L Ď ApAq and DimKpAq ă DimKpKppLqqq.
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