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Abstract: The results concerninig pointwise approximation and product of summability methods correspond-
ing to the theorems of Xh. Z. Krasniqi [Poincare J. Anal. Appl., 2014, 1, 1-8] and W. kenski and B. Szal [Math.
Slovaca, 2016, 66(6), 1-12] are generalized.

Some special cases are also formulated as corollaries.
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1 Introduction

Let L? (1 < p < oo) be the class of all 2;r—periodic real-valued functions, integrable in the Lebesgue sense,
with p—th power over Q = [-71, 1] with the norm

1/p

IOl 2= / [ f(®) P dt when 1<p < oo,

Consider the trigonometric Fourier series

Sf(x) := aoz(f) + Vil(av(f) cos vx + by(f) sin vx)

and denote by
Sif(x) =

) . <
6102 ¥ ;(av(f) cos vx + by(f) sin vx)

the k-th partial sums of Sf.
Let A := (ay) and B := (b, ;) be infinite lower-triangular matrices with real entries, such that

ap-1 = 0, ap,=0 and b,; >0 when k=0,1,2,...n, @)
apx = 0 and b, =0 whenk>n,
n n
Zan,k=1 and an,k=1, wheren=0,1,2,... 2
k=0 k=0
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andlet, form=0,1,2,..,n,
m - n
An,m = Zan’k and An,m = Zan’k.
k=0 k=m

Let the AB-transformation of (S, f) be given by

n r

Tpasf () :=> > anib i Sif () (n=0,1,2,...).

r=0 k=0

Following L. Leindler [1] a sequence ¢ := (c¢;) of nonnegative numbers tending to zero is called the Mean
Rest Variation Sequence, or briefly c € MRBVS, if it has the property

- 1
;m—cnn <K@ D ¢ €)

mzrzm/2

for every positive integer m.
Similarly, following W. Lenski and B. Szal [2], a sequence ¢ := (c,) of nonnegative numbers will be called
the Mean Head Bounded Variation Sequence, or briefly c € MHBVS, if it has the property

-1

-m 1 n
Y ler—cral <K@ > o )

r=0 r=n-m

n

for all positive integers m < n, where the sequence c has finitely many nonzero terms and the last nonzero
term is cn.
Moreover, we assume that the sequence (K (an)),. is bounded, that is, that there exists a constant K,
such that
O0<K(an)<K

holds for every n, where K (a,) denote the constants appearing in the inequalities (3) or (4) for the sequences
an = (an,r):lzo, n= O, 1, 2, cese
Next, we assume that foreverynand O < m < n

n-1 m
|an,r — apre1| < K ! an,r
. m+1
=m m=r>m/2
or
n-m-1 n
|an,r — an,re1] s K 1 Qn,r
5 m+1
r= r=n-m

hold if (an,r)f:0 belongs to MRBVS or MHBVS, forn = 1, 2, ..., respectively.

Let
Al An,m , when (an,r);, € MRBVS,
m Ann-m , when (an,);, € MHBVS
and
t
@:(0)= [ Ipxwldu
0
where

pxO) =fx+)+f(x-1)-2f(x).

As ameasure of pointwise approximation of a function f by T, , pf we will use the generalized pointwise
modulus of continuity of f defined by the formula

t
wxlf 810 = 18 (5) 00 - 18 (F) [ lorlau, ©
0
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where f is a positive and non-decreasing function of ¢.

The deviation T, 4 pf(-) - f(-) with lower-triangular infinite matrices A and B was investigated among
others by W. Eenski and B. Szal [3], Xh. Z. Krasniqi [4], R. Kranz and A. Rzepka [5]. In this paper the results
corresponding to the following theorems of Xh. Z. Krasniqi [4] and W. £enski and B. Szal [2] are shown.

The series Sf (x) with partial sums S;f (x) is said to be summable to s by A(E,r)-means when the transfor-
mation

n v
a v i
Tl 0= Gl > (z) PISF00, (50, m=0,1,2,.),
v=0 j=0

tends to s, as n — oo, where s is a finite number.
Theorem A [4] Let A := (ay, ) be a positive lower-triangular matrix, such that > _; a, x = 1 and (a, ) Z:o
is a non-increasing sequence, (n =0, 1, 2, ...). Let B (t) be a positive and non-decreasing function of t. If

t +
d)x t = X 1N ’ t 0 ’
=0 (ﬁ(})) as t —

and B(t) — oo, ast — oo, then a sufficient condition for the Fourier series Sf(x) to be summable to f(x) by

A(E, r) means is
n

nlul gy~ 0(1), asn — oo. (6)
/ up 7 OW
Alower-triangular matrix C = (cp, k) is called a maximal hump matrix if , for each n, there exists an integer
= ko(n), such that (c,, k) lis non-decreasing for 0 < k < ko, and (c,, e k.18 non-increasing for ko < k < n.
Denote by

1/p

[
3 [l ox(usin® 4 1P du when 1<p < oo,
whf (8)g = (5‘ ?

ess sup | gx(u)sin” ¥ | when p = co.
0O<us<d

Theorem B [2] Let f € LP with 1 < p < co. If matrix A is a maximal hump matrix with ky' = O (n‘l), such
that (an,r)y_, € MRBVS and

ZZbrk (2k+ 1)t <7,

=1 k=0
n|, when n=1,2,..., then

n
1)ﬁ+n741-12W)1(f(k:[

1 )ﬁ:| )
for almost all considered x and0 < S <1 - + whenp >1,and =0, whenp = 1.
We shall write J; < J,, if there exists a posmve constant C, sometimes depending on some parameters,
such that J; < CJ,.

forO<pu<vand t=[%],witht e [[Z

n+1?

| Toa.5f ()£ (9] = Ox <(n +1)f [Wfff (-2

2 Statement of the results

Let wyx be a positive function of modulus continuity type, i.e., wx(0) = 0, wx (t1) s wx (t2) s wx(t1 +t3) <
Wy (t1) + wx (t2), forany O<t; <t, <ty +t; < 2m.
Now we can formulate our main results:

Theorem 1. Let f € L” (1 < p < o) and let the entries of the matrices A = (an,r) and B = (b, ;) satisfy the
conditions (1) and (2). Additionally, let (b, i) be such that

Z Z br LS (2’( + 1)t <7 (7)

=1 k=0
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holds,forO<p<v<n,andt = [}], witht € [[Z,n| ,whenn=1,2, ...
If a sequence (an,r)r., € MRBVS U MHBVS,

Al =0 (555) - ®)
and for some x
t
Y / |ox ()] du = O(wy (£)), ©)
0

where wx has a continuous derivative, B(t) and tﬁ(it’) are positive and non-decreasing functions of t, then

| Toa8f ()~ F (9] = 0x (1) {wx (n:[1) . B(n1+ . / wy (£) +tth ® 4

holds, for all considered x.
More generally:

Theorem 2. Let f € L? (1 < p < o) and let the entries of the matrices A = (an,r) and B = (b, x) satisfy the
conditions (1) and (2). Additionally, let (b, i) satisfy (7), forO < p <v <n,andt = [§], witht € [, 7],
whenn=1,2,...

If asequence (an,r);., € MRBVS U MHBVS satisfies (8), tB(}), B(t) are positive and non-decreasing
functions of t, then

|Tn,a,8f () -f(X)| =0 <ﬁ("+1 w"[fﬁ](n+1)

1 < 1 b4 an (k) m
e ;ﬁ(k+ e A (%) +;ﬁ(k+ @Al (k))

holds, for all considered x, where

an (k) - An k1> When (an,r);_, € MRBVS,
. Ay n-k-1, When (an,r);_o € MHBVS.

3 Corollaries

Finally, we give some corollaries as an application of our results.

Corollary 1. Theorem A, from Xh. Z. Krasniqi’s paper [4, Theorem 3.1], and Theorem 1 are comparable. Condi-
tion (6) is more general than (8), but condition (7) is satisfied by a more general class of summability methods.

Corollary 2. Taking B(t) = t",(t > 0,0 < n < 1) and assuming

t
%/I(px(u)\du=0x(t“), 0<a<1)
0

we get
wx[f, B1(6) = Ox (t ),  for a>n.
Hence, under the assumptions for the matrices A = (an,r) and B = (b, i) from Theorem 2, we have

| Tn,a,8f () = f ()| = 0x(1)

for almost all considered x.
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Example3. Let an,, = n+1, whenr = 0,1,2,...,n, any = O, whenr > n, b, = (,’()%, when k =
0,1,2,...,r,and bn,y = 0, when k > r with v > 0. Clearly, the sequence (an,r)y_, € MRBVS U MHBVS and
|Alp: =0 (35), fort = [§], with t € [n+1, n|, whenn = 1,2, .... W. Eenski and B. Szal proved in [2, proof of

Corollary 2.4.1] that the sequence (b, ), 1o Satisfies the condition

ZZbrk (2’(+1)t <7,
r=p k=0

for 0 < p < v. So conditions (7) and (8) are satisfied. If f € LP and (9) holds , where B(t) and tB(%) are positive
and non-decreasing functions of t, then

n 1 2 (1+71v)’ > (,r() Ve Sif () - f(0)
=0 k=0

_ m 1 r wx (1) + twi (b)
= 01 Wx(n+1>+ﬁ(n+1)/ t dt

Remark 1. Analogously, for sequences (an,r)y-, and (b”»k)2=0 defined as above, we can derive the following
estimation from Theorem 2

D) ﬁ 3 (,ﬁ) VESuf (0) - F(x)
r=0 k=0

- OX(ﬁ(n1+1) XUB(n+1)+niléﬁ(kil)wxv’ﬁ](;:)>’

where B(t) and tB(¥) are positive and non-decreasing functions of t.

4 Auxiliary results

We begin this section with some notation following A. Zygmund [6, Section 5 of Chapter II].
It is clear that

S ()= [ 0D de

and
Tyaf () = = /f(x+t)22ambrknk(t)dt
r=0 k=0
where .
k+1)t
sin
Di()=5+)» cosvt=——2—
KO Z 2 sm =
v=1
Hence,

Topaf (0~ F () = /wx(t)ZZanrb Dy (O dt.

r=0 k=0

Now, we formulate some estimates of the considered kernel.

Lemmal. (see[6])If t € R, then
D (6)] < k+ %
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Lemma 2. (see [2]) Let B = (b, ) be such that condition (7) holds for 0 < y < v. If (ay, k) € MRBVS,

then
n r
Z Aan,r Z br’ka (t) < TAn,r
r=0 k=0
and if (ay, k) € MHBVS, then
n r
Z Aan,r Z br,ka <« TZn,n—T,
r=0 k=0

where T = [n/t] and t € [;[Z, 7|, forn=0,1,2, ...

5 Proofs of the results

5.1 Proof of Theorem 1

Let
w7
1
Tasf 0-F00= = | [+ [ | a0,
0
where
n r
Gn(t) = an,rby ; Dy (£)
r=0 k=0
and

o
n+l

0

Toasf 000 <| 1 -

/!
/ Gn () px (t)dt| = |I1] + |I2]|.
Ll

For the first term, from Lemma 1 and (9) we obtain

L1 LSS b b / I ()] dt

rOkO

_n
n+l

< (n+1) /|(Px O dt < ﬁ(n1+1)Wx(n7_:1)'

For the second one, from (7) and Lemma 2 we get

Li= % [ 16Ol lpc(0]de < [ 14 e d g () at

T T
n+l n+1

‘A|n,‘r
:[T(D"(t)} . /Qx(”dt< ; ) dt

n
< {|A|n’1 Dy (1) = (1 + 1) [Al ey Px (m)

/@x t){ dt(Lﬁ(r;r;)ﬁ(t)—dt@( )) L‘Zbﬂ dt
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1Al

)]

< [|A|n,1¢>x (m) - (n + 1) Dy (HT’Tl)} +/ﬁ(%)¢’x ) {—% <tﬁ(g’)
ﬁ(”)cbx(t) Al [ d
Z Ok {‘a (ﬁ(g))] dt
=21+2,+25.

— 357

(10)

Now we estimate X', X, and X3 separately. Namely, from (8), (9) and by W*f(t) < 2WXT(”), forO<uc<t,

1 1 b4
< |Alp Ox () < mwx (m) < wa (m) .

For the second term, integrating by parts and from (8) and (9), we obtain

:, ”/nth(t){ d (tﬂl(;;r;)] Z/th(t)[ ('tﬁ(’kg

n+l

- [ Aly 1Al
_kl{ B wx(t)] ;/(wx(t)+th(t))tﬂ( dt

=L
k+1

‘A|nn+1 U / / |A |nr
B(n+1)w (n+1)+n/(wx(t)+th(t))tﬂ(n dt

n+l

n+1 n+1

K

1 (rr )+ 1 /ﬂwx(t)+tw§((t) Lo

< B+ ™ t tB(%)

T
n+l

By the monotonicity of the function t8(F) we get

T

! +
ﬁ(n+1)wx (n+1) Bn+1)

n

n+l

2H K

Further, from ( 8) and by the monotonicity of the function wy

23

IN
——x
<
r_'.><
=
G
—_— ] -
==
|22
~ |3
N
|
2 a
S
=
=
~IN
p—
N——
| I
Q
~
IN

Wx (nZl)n/ [ﬁ(,lt,)]z {_% (B(%))} dt < ﬁ(l) (m

Combining these estimates we obtain the desired result.

5.2 Proof of Theorem 2

As usual let
|Tn,a,8f () = f ()] < [I1] + 15| .

n
wx () + twi (b) dt

n

)
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From Lemma 1 and (5), we get

|Il|sﬂ(n1+ 1) wxlf, B](n+1)

For the second term, from Lemma 2 and by (10) in the previous proof we have

n
1 [ Al d
Li= 7 [16nOllpcolde < [ =pr 3 @co)de

s

i

n+

[0 (1) (o[- (1))

n
|Aln,r @ () d n _
| g @ (B(F))]dt=n1+n2+2s.
Now we estimate A1, A, and As. For A; from (5) and (8) we obtain
1
< ipme A

< n+1(px(n) (n+1)<17x(n+1)

1 1 i
n+1§ﬁ(k+ 1)wXD‘,,B] (?)

For the second term, by the monotonicity of the function (%) and O (t) we get

A2<Z/ @x(t)t{ ('tﬂ(";ﬂdt

k+1 ; d ‘A|n,‘r
; ﬁ(/+1)cpx()n/t{—dt (tﬁ(iz))}dt.

Further, integrating by parts and using (5) and (8) we obtain

V4 |A‘n,k+1 |A|n k U 1
) 203 n+1/tzﬁ(g)dt

n
Astwx[f,ﬁ] (% ﬁ(k"'l)
k=1 =
Since
Aliier Al _ VAlnjes = 1Al _
Blk+1) By —  Blk+1)
_ | iy when (@i € MRBVS - an (g
i Bt » when (an,)iL, € MHBVS © Bl 1)’
therefore n
E an (k) 1 1
A < Z_;wxv,ﬁ] (k) L;(JH D nv 1B+ 1)} ’

For the third term by (5) and (8) we obtain
. %cDx(t)|A|n,T _d (g(m
©ogen T (P (7))
k+1

A3

B (%)

n7+T1 ;/ ®Xt(t) tﬁ?’%) [_;t (ﬂ (%))
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<

IN

<

n

ke (1) ity T[4 ()] a

k+1

n 2
S w0 i [ [ (7))

T
k+1

1 < my 1 k+1
n+1kz_;wxvyl3](k>mw[ﬂ(’ﬁl)—ﬂ(k)]-

By the monotonicity of {3(F), we can notice that ¥ (k) < 5 B(k + 1), fork =1, 2, 3, ..., and thus

So

U+ )-B0 = L (kB(k+ 1)~ B9 < 2 (G + DB - kB(O)

= B,

1 <« 1 n
N <1 2 e P (%)-

The desired result follows by combining these estimates.
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