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Abstract: We study the existence of an almost periodic solution of discrete Volterra systems by means of
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proposed in the literature.
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1 Introduction
Volterra type equations have tremendous potential for application in certain �elds of applied mathematics.
Qualitative properties of Volterra equations on continuous, discrete and hybrid domains became topic of
many studies in the literature. By a quick literature review, we refer to [1–9] and references therein. Investiga-
tion of periodic solutions of dynamic equations and systems with periodic structures is of special importance
for studies on population dynamics and control theory. However, it should be pointed out that periodicity is a
very strong restriction for a class of functions. As an alternative relaxation of strict periodicity condition, the
theory of almost periodic functions was �rst introduced by H. Bohr [10] and generalized by A. S. Besicovitch,
W. Stepano�, S. Bochner, and J. von Neumann at the beginning of 20th century (see [11–14]).

A continuous function f : R→ R is said to be almost periodic if the following characteristic property
holds:

A. For any ε > 0, the set

E
(
ε, f (x)

)
:=
{
τ :
∣∣f (x + τ) − f (x)

∣∣ < ε for all x ∈ R
}

is relatively dense in the real lineR. That is, for any ε > 0, there exists a number l (ε) > 0 such that any interval
of length l (ε) contains a number in E

(
ε, f (x)

)
.

Afterwards, S. Bochner showed that almost periodicity is equivalent to the following characteristic prop-
erty which is also called the normality condition:

B. From any sequence of the form {f (x + hn)} , where hn are real numbers, one can extract a subsequence
converging uniformly on the real line (see [12], and [15, 16]). For a comprehensive review on almost periodic
functions on continuous and discrete domains, we refer the reader to [15–20].

There is a vast literature on the existence of almost periodic solutions of Volterra equations constructed
on the real line, and researchers focused on the discrete analogues of Volterra equations in the last decade.
For almost periodic solutions of Volterra integral equations, we may refer to [21]. In [22], Y. Song focused on
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the almost periodic and asymptotically almost periodic solutions of Volterra di�erence equations

x (n) = a (n) +
n∑
j=0
B
(
n, j, x(j)

)
, n = 0, 1, 2, ...

and

x (n) = a (n) +
n∑

j=−∞
B
(
n, j, x(j)

)
, n = 0, 1, 2, ...,

where a (n) and B
(
n, j, x(j)

)
are vector sequences. In [5], S. Elaydi introduced an open problem for the exis-

tence of almost periodic solutions of nonconvolution type Volterra di�erence systems

y(t + 1) = A(t)y(t) +
t∑
j=0
B(t, j)y(j) + g(t), t = 0, 1, 2, ... (1)

In [23], Hamaya studied almost periodic solutions of the system

∆x (n) = f (n, x (n)) +
n∑

m=−∞
F (n,m) x(m) + p (n) , n = 0, 1, 2, ..., (2)

by using �xed point theory. However, assumptions and the method used in [23] exclude a signi�cantly large
class of equations with almost periodic solutions. We have a discussion on this matter in Example 1.

In our study, we use the concept of exponential dichotomy to obtain necessary limit results leading to
some su�cient conditions guaranteeing existence of almost periodic solutions of the system

x(t + 1) = A(t)x(t) +
t∑

j=−∞
B(t, j)x(j) + g(t), t ∈ Z. (3)

Establishing a linkage between the systems (1) and (3), we provide an alternative solution to the above men-
tioned open problem due to Elaydi (see [5]). Note that our solution provides a signi�cant relaxation for the
conditions proposed in [23].

In the next section, we introduce the discrete almost periodic functions, discrete variant of exponential
dichotomyand its limiting property. In the latter part, we prove our existence theoremanddiscuss the e�cacy
of the existence result.

2 Preliminaries: Discrete almost periodicity and exponential
dichotomy

Let X be a (real or complex) Banach space endowed with the norm ‖.‖X and B(X) a Banach space of all
bounded linear operators from X to X with the norm ‖.‖B(X) given by

‖L‖B(X) := sup {‖Lx‖X : x ∈ X and ‖x‖X ≤ 1} .

Throughout the paper, we denote by Z, Z+ and Z− the set of integers, the set of nonnegative integers and the
set of negative integers, respectively.

De�nition 1 ([22]). Let Ω be a subset of the abstract Banach space X. A function f : Z×Ω → X which is
continuous on Ω for each t ∈ Z is said to be uniformly discrete almost periodic in t ∈ Z (uniformly for x ∈ Ω)
if for every ε > 0 and every compact Σ ⊂ Ω there corresponds an integer Nε (Σ) > 0 such that among Nε (Σ)
consecutive integers there is one denoted by p such that

‖f (t + p, x) − f (t, x)‖X < ε for all t ∈ Z, uniformly for x ∈ Σ.

Note that if Ω = ∅, the function f (t) is discrete almost periodic in t.
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It is well known that the above given de�nition is equivalent to the normality condition for a function. Now,
we give an alternative de�nition of discrete almost periodicity in the sense of S. Bochner:

De�nition 2 ([17]). A function f : Z→X is said to be discrete almost periodic if for every integer sequence{
v′n
}
n∈Z+

there exists a subsequence {vn}n∈Z+
such that

lim
n→∞

f (t + vn) =: f̄ (t) (4)

uniformly for all t ∈ Z.

Moreover, almost periodicity of functions with two variables is de�ned as follows:

De�nition 3 ([23]). The function g : Z × X→X is said to be discrete almost periodic in t uniformly for x ∈ X if
for every integer sequence

{
v′n
}
n∈Z+

there exists a subsequence {vn}n∈Z+
such that

lim
n→∞

g(t + vn , x) =: ḡ(t, x)

uniformly on Z×K, where K is a compact set in X.

The following de�nition is useful for our further analysis.

De�nition 4 ([19, 24]). A sequence ϕ : Z+ → X is said to be almost periodic if for every nonnegative integer
sequence

{
p′n
}
n∈Z+

there exists a subsequence {pn}n∈Z+
such that

lim
n→∞

ϕ(t + pn) =: ϕ̄(t), (5)

uniformly for all t ∈ Z+.

For details on the almost periodic sequences, we refer the reader to the pioneering work of Diagana et al. (see
[24]). The basic properties of discrete almost periodic functions are given in the following theorem:

Theorem 1 ([18]). Let f1, f2 : Z→X and g1, g2 : Z × X→X be discrete almost periodic functions in t ∈ Z, then
i. f1 + f2 and g1 + g2 are discrete almost periodic in t ∈ Z
ii. cf1 and cg1 are discrete almost periodic in t ∈ Z for every scalar c
iii. supt∈Z

∥∥f1,2(t)
∥∥
X
< ∞ for each t ∈ Z and supt∈Z

∥∥g1,2(t, x)
∥∥
X
< ∞ for each t ∈ Z and x ∈ K.

De�nition 5 (Discrete exponential dichotomy). Let X(t) be the principal fundamental matrix solution for the
linear homogeneous system

x(t + 1) = A(t)x(t), x(t0) = x0, (6)

where A is a matrix function which is invertible for all t ∈ Z. Then (6) is said to admit an exponential dichotomy
if there exist a projection P and positive constants α1, α2, β1 and β2 such that∥∥∥X(t)PX−1(s)

∥∥∥
B(X)

≤ β1 (1 + α1)s−t , t ≥ s, (7)∥∥∥X(t) (I − P) X−1(s)
∥∥∥
B(X)

≤ β2 (1 + α2)t−s , s ≥ t. (8)

Remark 1. Notice that in [17] and [25], the discrete exponential dichotomy is de�ned by using the exponential
function exp (α (s − t)) instead of the discrete exponential function eα(t, s) = (1 + α)s−t (satisfying ∆teα(t, s) =
αeα(t, s)) in (7) and (8), respectively. For convenience we prefer using De�nition 5 which is evidently equivalent
to [25, De�nition 2.11].

Theorem 2 ([25]). If the system (6) admits an exponential dichotomy and the function f is bounded, then the
nonhomogeneous system

x(t + 1) = A(t)x(t) + f (t, x(t)), x(t0) = x0 (9)
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has a bounded solution of the form

x(t) =
t−1∑
j=−∞

X(t)PX−1(j + 1)f (j, x(j)) −
∞∑
j=t
X(t)PX−1(j + 1)f (j, x(j)).

Since all almost periodic solutions are almost automorphic, the following result is also valid for an almost peri-
odic coe�cient matrix A.

Theorem 3 ([26]). Suppose that the system (6) admits an exponential dichotomy with the projection P and the
positive constants α1, α2, β1, and β2. Let the matrix valued function A(t) in (6) be almost automorphic. That is,
for any sequence {θ̃k}k∈Z+ of integers there exists a subsequence {θk}k∈Z+ such that

lim
k→∞

A(t + θk) := Ā(t)

is well de�ned and
lim
k→∞

Ā(t − θk) = A(t)

for each t ∈ Z. Then

lim
k→∞

X(t + θk)PX−1(s + θk) := X̄(t)P̄X̄−1(s) for s ∈ (−∞, t] ∩ Z (10)

and
lim
k→∞

X(t + θk) (I − P) X−1(s + θk) := X̄(t)
(
I − P̄

)
X̄−1(s) for s ∈ [t, ∞) ∩ Z (11)

are well de�ned for each t ∈ Z and the limiting system

x(t + 1) = Ā(t)x(t), x(t0) = x0 (12)

admits an exponential dichotomy with the projection P̄ and the same constants. Furthermore, for each t ∈ Zwe
have

lim
k→∞

X̄(t − θk)P̄X̄−1(s − θk) = X(t)PX−1(s), s ∈ (−∞, t] ∩ Z (13)

and
lim
k→∞

X̄(t − θk)
(
I − P̄

)
X̄−1(s − θk) = X(t) (I − P) X−1(s), s ∈ [t, ∞) ∩ Z. (14)

3 Existence results
In this section, we provide su�cient conditions for existence of an almost periodic solution of the following
Volterra di�erence system with in�nite delay

x(t + 1) = A(t)x(t) +
t∑

k=−∞
B(t, k)x(k) + g(t), t ∈ Z, (15)

where A(t) =
[
aij (t)

]
, B(t, k) =

[
bij (t, k)

]
are n×nmatrix functions and g(t) is a vector function. By a solution

of system (15), we refer to a vector valued function x de�ned on Z satisfying (15) for all t ∈ Z+. By de�ning
the initial vector function θ : Z− → Rn with supt∈Z− |θ (t)| < Mθ < ∞, we denote an almost periodic solution
of (15) by xθ so that xθ (t) is almost periodic sequence satisfying (15) for t ∈ Z+ and xθ (t) = θ (t) for all t ∈ Z−.

Let AP(X) be the set of functions on Z satisfying the condition (5) for all t ∈ Z+ given in De�nition 4.
ThenAP (X) is a Banach space endowed by the norm

‖f‖AP(X) := sup
t∈Z+

∥∥f (t)∥∥
X
. (16)
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Theorem 4 ([24, Theorem 2.12]). Let g : Z×X→X be discrete almost periodic in t ∈ Z, for each x, y ∈ X

satisfying Lipschitz condition in x uniformly in t, that is∥∥g(t, x) − g(t, y)
∥∥
AP(X) ≤ L ‖x − y‖X , ∀x, y ∈ X.

Suppose φ : Z→X is discrete almost periodic function, then the function g (t, φ (t)) is discrete almost periodic.

We employ the following �xed point theorem to prove the main result of this section.

Theorem 5 (Schauder). Let B be a Banach Space. Assume that K is a closed, bounded and convex subset of B.
If T : K → K is a compact operator, then it has a �xed point in K.

Henceforth, we suppose that the following conditions hold:
A1 Functions A(t) and g(t) are discrete almost periodic on Z
A2 Thematrix function B(t, k) is discrete almost periodic in t and k (bi-almost periodic, see [27]) i.e., for every

integer sequence
{
v′n
}
n∈Z+

there exists a subsequence {vn}n∈Z+
such that

lim
n→∞

B(t + vn , k + vn) = B̄ (t, k)

uniformly for all t, k ∈ Z
A3 There exists a positive constant UB such that 0 < supt∈Z+

∑t
k=−∞

∥∥B(t, k)
∥∥ ≤ UB < ∞

A4 The homogeneous system (6) admits an exponential dichotomy with positive constants α1,2 and β1,2.

Remark 2. If the matrix function B(t, s) has a component f (t, s) which is a function of the convolution type
i.e. f (t, s) = f (t − s), then we do not require f to satisfy the condition in (A2). However, the almost periodicity
condition in (A2) is a compulsory condition for all nonconvolution type components of thematrix valued function
B.

Now, de�ne the mapping

(
Hxθ

)
(t) :=


θ (t) , t ∈ Z−

t−1∑
k=−∞

X(t)PX−1 (k + 1)Λ (k, x (k)) −
∞∑
k=t
X(t) (I − P) X−1 (k + 1)Λ (k, x (k)) , t ∈ Z+,

where

Λ (k, x (k)) :=
k∑

s=−∞
B(k, s)x(s) + g(k). (17)

Lemma 1. If ω ∈ AP (X) , then Λ (., ω (.)) ∈ AP (X) .

Proof. For any t ∈ Z and ξ , ψ ∈ X, consider

‖Λ (t, ξ ) − Λ (t, ψ)‖AP(X) =

∥∥∥∥∥
t∑

k=−∞
B(t, k)ξ −

t∑
k=−∞

B(t, k)ψ

∥∥∥∥∥
AP(X)

= sup
t∈Z+

∥∥∥∥∥
t∑

k=−∞
B(t, k)ξ −

t∑
k=−∞

B(t, k)ψ

∥∥∥∥∥
X

≤ sup
t∈Z+

t∑
k=−∞

∥∥B(t, k)
∥∥ ‖ξ − ψ‖X

≤ UB ‖ξ − ψ‖X ,

where we use assumption A3. Then by employing Theorem 4, we conclude that Λ (., x (.)) ∈ AP (X) for any x
in a compact subset ofAP (X) .
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In preparation for the next result, we de�ne the subset ΩM ofAP (X) by

ΩM :=
{
xθ ∈ AP (X) :

∥∥∥xθ∥∥∥
AP(X)

≤ M
}

for a �xed M. Then, ΩM is a bounded, closed and convex subset ofAP (X) .

Theorem 6. Assume (A1-A4). Then (15) has an almost periodic solution.

Proof. At �rst, we need to show that H maps ΩM into ΩM . Suppose that xθ ∈ AP (X) and by Lemma 1 we
know that the function Λ (t, x (t)) , which is de�ned in (17), is an almost periodic sequence in t for any t ∈ Z+
uniformly for x. That is for every nonnegative integer sequence

{
p′n
}
n∈Z+

there exists a subsequence {pn}n∈Z+

such that
lim
n→∞

Λ (t + pn , x (t + pn)) =: Λ̄ (t, x (t))

is uniformly for each t ∈ Z+ on any compact subset of Z×AP (X). Additionally, we have

(Hx) (t + pn) =
t−1∑
k=−∞

X(t + pn)PX−1 (k + pn + 1)Λ (k + pn , x (k + pn))

−
∞∑
k=t
X(t + pn) (I − P) X−1 (k + pn + 1)Λ (k + pn , x (k + pn))

for t ∈ Z+. If we let the limit as n → ∞ and employ the Lebesgue Convergence Theorem and Theorem 3, we
get the uniform convergence

(Hx) (t) =
t−1∑
k=−∞

X̄(t)PX−1
(k + 1) Λ̄ (k, x (k))

−
∞∑
k=t
X̄(t)

(
I − P

)
X−1

(k + 1) Λ̄ (k, x (k)) , for each t ∈ Z+.

Moreover ∥∥(Hx) (t)
∥∥

AP(X)
≤

∥∥∥∥∥
t−1∑
k=−∞

X(t)PX−1 (k + 1)Λ (k, x (k))

∥∥∥∥∥
AP(X)

+

∥∥∥∥∥
∞∑
k=t
X(t) (I − P) X−1 (k + 1)Λ (k, x (k))

∥∥∥∥∥
AP(X)

≤
t−1∑
k=−∞

∥∥∥X(t)PX−1 (k + 1)
∥∥∥ ‖Λ (k, x (k))‖

AP(X)

+
∞∑
k=t

∥∥∥X(t) (I − P) X−1 (k + 1)
∥∥∥ ‖Λ (k, x (k))‖

AP(X)

≤ UΛ
t−1∑
k=−∞

β1 (1 + α1)k+1−t + UΛ
∞∑
k=t
β2 (1 + α2)t−k−1

= UΛ
(
β1

1 + α1
α1

+ β2
α2

)
,

where UΛ is the upper bound for Λ (t, x (t)) for all t ∈ Z+. By setting M := max
{
Mθ , UΛ

(
β1

1+α1
α1

+ β2
α2

)}
and

using the boundedness of the initial function θ, we prove that H : ΩM → ΩM for all t ∈ Z. Now, we have to
show that H is continuous. Let ξ , ψ ∈ ΩM and de�ne the number δ (ε) > 0 by

δ := ε
L ‖ξ − ψ‖

AP(X)

(
β1

1+α1
α1

+ β2
α2

) .
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If ‖ξ − ψ‖
AP(X)

< δ, then we have

‖(Hξ ) (t) − (Hψ) (t)‖X ≤
t−1∑
k=−∞

∥∥∥X(t)PX−1 (k + 1)
∥∥∥ ‖Λ (k, ξ (k)) − Λ (k, ψ (k))‖

AP(X)

+
∞∑
k=t

∥∥∥X(t) (I − P) X−1 (k + 1)
∥∥∥ ‖Λ (k, ξ (k)) − Λ (k, ψ (k))‖

AP(X)

≤ L ‖ξ − ψ‖
AP(X)

[ t−1∑
k=−∞

β1 (1 + α1)k+1−t +
∞∑
k=t
β2 (1 + α2)t−k−1

]

= L ‖ξ − ψ‖
AP(X)

(
β1

1 + α1
α1

+ β2
α2

)
< ε,

which shows that the mapping H is continuous. To conclude, we must show that H (ΩM) is precompact. Let
{xl}l∈Z+ be a sequence in ΩM. Then, for each �xed l ∈ Z+, {xl (t)}t∈Z is a bounded sequence and by the
Bolzano-Weierstrass Theorem, {xl (t)}t∈Z has a convergent subsequence {xl (tk)}. By repeating the diagonal-
ization process for each l ∈ Z+, we can construct a convergent subsequence {xlk}lk∈Z+ of {xl}l∈Z+ in ΩM .
By continuity of H, we obtain {H(xl)}l∈Z+ has a convergent subsequence in H (ΩM). This means, H (ΩM) is
precompact. The proof follows by applying Schauder’s �xed point theoremwhich ensures that is there exists
a x ∈ ΩM such that

(
Hxθ

)
(t) = x(t) for all t ∈ Z+.

In preparation for the next example, we present the existence result of [23] for almost periodic solutions of
the system (2).

Theorem 7 ([23, Theorem 2.3]). Suppose that f , F, and p are almost periodic functions and the following con-
ditions are satis�ed:
i.

∥∥p(n) + f (n, 0)
∥∥ ≤ L for all n ∈ Z, where L is a positive constant

ii. There exists a positive constant γ such that

lim
n−m→∞

1
n − m

n−1∑
j=m
e(j) = −γ < 0,

where e : Z→ R is a function
iii. For all (n, x) ∈ Z ×Rl ,[

x − y, f (n, x) − f (n, y) +
n∑

m=−∞
F(n,m)x(m) −

n∑
m=−∞

F(n,m)y(m)
]
≤ e (n) ‖x − y‖ ,

where [x, y] = h−1 (‖x + hy‖ − ‖x‖) for h > 0.

Then, the system (2) has a unique almost periodic solution.

It is clear that if the function f (n, x(n)) in the system (2) is speci�cally chosen to be
(
A(n) − I

)
x(n) where I

indicates the identity matrix, then the equation (2) reduces the system (15).

Example 1. Consider the in�nite delayed abstract system

x(t + 1) = A(t)x(t) +
t∑

k=−∞
B(t, k)x(k) + g(t), (18)

where A and B are certain matrix functions satisfying (A1-A3) and ‖I + hA‖ ≥ 1 + hUB for a positive constant
h, where UB is as in A3. Then, [23, Theorem 2.3] is not su�cient to ensure the existence of an almost periodic
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solution of (18). To see this, we focus on the conditions (ii) and (iii) of Theorem 7. Consider[
x − y, A(t)x − A(t)y +

t∑
k=−∞

B(t, k)x(k) −
t∑

k=−∞
B(t, k)y(k)

]

= h−1
(∥∥∥∥∥x − y + hA (x − y) + h

t∑
k=−∞

B(t, k)
(
x(k) − y(k)

)∥∥∥∥∥ − ‖x − y‖
)
. (19)

By using (19), it may be deduced that

h−1
(
‖(I + hA) (x − y)‖ −

∥∥∥∥∥h
t∑

k=−∞
B(t, k)

(
x(k) − y(k)

)∥∥∥∥∥ − ‖x − y‖
)

≤
[
x − y, A(t)x − A(t)y +

t∑
k=−∞

B(t, k)x(k) −
t∑

k=−∞
B(t, k)y(k)

]
,

and

0 ≤ h−1 (‖(I + hA)‖ − hUB − 1) ‖x − y‖ ≤
[
x − y, A(t)x − A(t)y +

t∑
k=−∞

B(t, k)x(k) −
t∑

k=−∞
B(t, k)y(k)

]
.

Thus, under the condition ‖I + hA‖ ≥ 1 + hUB there is no function e : Z→ R satisfying (ii) and (iii) of Theorem
7. That is, [23, Theorem 2.3] is insu�cient for almost periodic solutions of (18). Unlike the conditions (ii) and
(iii) of Theorem 7, we use a more general concept called discrete exponential dichotomy in our main result. If
the homogeneous part of the equation (18) admits an exponential dichotomy, then Theorem 6 implies that the
in�nite delayed Volterra di�erence system has an almost periodic solution.

As an implementation of our results, we present the following numerical example:

Example 2. Let us set A(t) = 1
h I2×2,

B(t, k) =
[

1
2h
(1

4
(

sin
( π

2 k
)

+ sin
( π

2 k
√

2
)))t−k 0

0 1
2h exp(k − t)

]
, k ≤ t,

and

g(t) =
[
g1(t)
g2(t)

]
in (15) where g1(t), g2(t) are any periodic or almost periodic functions de�ned on Z, abstract Banach space
is X =R and h is any positive integer.We have 0 < supt∈Z+

∑t
k=−∞

∥∥B(t, k)
∥∥ < 1

h < ∞ or equivalently, 0 <
max1≤i≤2 Ni < 1

h < ∞ where

Ni :=
t∑

k=−∞

n∑
j=1

∣∣bij(t, k)
∣∣ , i = 1, 2.

Since b11 (t, k) = 1
2h
(1

4
(

sin
( π

2 k
)

+ sin
( π

2 k
√

2
)))t−k is an almost periodic function (see [24]) and b22 (t, k) =

1
2h exp(k − t) is a convolution type function, the conditions (A1-A4) are satis�ed and we guarantee the existence
of an almost periodic solution by Theorem 6. However, Theorem 7 is insu�cient to ensure the existence of an
almost periodic solution of the system (15), since ‖I + hA‖ ≥ 1 + hUB for any positive integer h (see Example 1).

As it is discussed in [4], if
−1∑

k=−∞
B(t, k)θ(k) = 0, then the in�nite delay Volterra system (15) reduces to the

nonconvolution type Volterra system

y(t + 1) = A(t)y(t) +
t∑
k=0
B(t, k)y(k) + g(t), t ∈ Z+. (20)
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For any matrix valued function B̃(t, k) satisfying the conditions A2 and A3, if we set B(t, k) := B̃(t, k)u0(k),

where u0 is discrete Heaviside function, then
−1∑

k=−∞
B(t, k)θ(k) = 0 andwe obtain the reduced system (20). This

means, the existence of an almost periodic solution of the system (20) can be proven similar to Theorem 6.
Hence, if xθ is an almost periodic solution of the system (15), then x(t) = xθ(t), t ∈ Z+ is an almost periodic
solution of the system (20). This along with Theorem 6 leads to the following result providing a solution for
the open problem proposed by S. Elaydi (see [5]) in 2009.

Theorem 8. Assume A1-A4 and consider the equation

y(t + 1) = A(t)y(t) +
t∑
k=0
B(t, k)y(k) + g(t), t ∈ Z+. (21)

If the following assumptions hold:
A5 The matrix function B̃(t, k) is discrete almost periodic in t and k for t, k ∈ Z
A6 The matrix function B(t, k) is de�ned as B(t, k) = B̃(t, k)u0(k)
A7 supt∈Z+

∑t
k=0
∥∥B(t, k)

∥∥ < ∞ and nonzero

then the system (21) has an almost periodic solution.

Acknowledgement: The authors are grateful for the reviewers’ valuable comments and suggestions that sub-
stantially improved the manuscript.
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