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1 Introduction
Our main goal in this paper is to investigate the existence of solutions to the following nonlocal initial value
problem for the second order evolution equation

y′′(t) − A(t)y(t) = f (t, y(t)), t ∈ J := [0,∞), (1)

y(0) = g(y), y′(0) = h(y), (2)

where {A(t)}0≤t<+∞ is a family of linear closed operators from E into E, that generate an evolution system of
linear bounded operators {U(t, s)}(t,s)∈J×J for 0 ≤ s ≤ t < +∞, f : J × E → E is a Carathéodory function,
g, h : C(J; E)→ E are given functions, and (E, | · |) is a real Banach space.

Evolution equations arise in many areas of applied mathematics [1, 2]. This type of equations have re-
ceived a lot of attention in recent years [3]. There are many results concerning second-order di�erential equa-
tions, see for example Fattorini [4], and Travis and Webb [5]. Useful for the study of abstract second order
equations is the existence of an evolution system U(t, s) for the homogenous equation

y′′(t) = A(t)y(t), for t ≥ 0.

For this purpose there are many techniques to show the existence of U(t, s) which have been developed by
Kozak [6]. On the other hand, recently there has been an increasing interest in studying the abstract non-
autonomous second order initial value problem

y′′(t) − A(t)y(t) = f (t, y(t)), t ∈ [0, T], (3)
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y(0) = y0, y′(0) = y1. (4)

The reader is referred to [7–10] and the references mentioned in these works. The pioneering work on evolu-
tion initial value problemswith nonlocal conditions is due to Byszewski. As pointed out by Byszewski [11–14].
the study of evolution initial value problems with nonlocal conditions is of signi�cance since they have ap-
plications in problems in physics and other areas of applied mathematics. Several authors have investigated
the problem of nonlocal initial conditions for di�erent classes of abstract di�erential equations in Banach
spaces, for example, we refer the reader to [15–21] and the references therein.

In this paper we use the technique of measures of noncompactness. It is well known that this method
provides an excellent tool for establishing the existence of solutions of nonlinear di�erential equations. This
technique works fruitfully for both integral and di�erential equations. More details are found in Akhmerov
et al. [22], Alv́ares [23], Banaś and Goebel [24], Guo et al. [25], Olszowy [26–28], Olszowy and Wȩdrychowicz
[29], and the references therein.

Motivated by the above-mentioned works, we derive some su�cient conditions for the existence of solu-
tions of second order semilinear functional evolution equations with nonlocal conditions in Fréchet spaces.
Our results are achieved by applying the Hausdor� measure of noncompactness and �xed point theorem.

The work is organized as follows: In Section two, we recall some de�nitions and facts about evolution
systems. In Section three, we give the existence of mild solutions to the problem (1)-(2). In Section four we
present an example to illustrate our main result.

2 Preliminaries
Let C(J, E) be the Fréchet space of all continuous functions y, mapping J into E, equipped with the family of
seminorms

‖y‖T = sup{|y(t)|, t ∈ [0, T], T ≥ 0}.

In what follows, let {A(t), t ≥ 0} be a family of closed linear operators on the Banach space E with
domain D(A(t)) which is dense in E and independent of t.

In this work the existence of solutions the problem (1)-(2) is related to the existence of an evolution oper-
ator U(t, s) for the following homogeneous problems

y′′(t) = A(t)y(t), t ∈ J. (5)

This concept of evolution operator has been developed by Kozak [6].

De�nition 2.1. A family U of bounded operators U(t, s) : E → E, (t, s) ∈ ∆ := {(t, s) ∈ J × J : s ≤ t} is called
an evolution operator of the equation (5) if the following conditions hold:

(e1) For any x ∈ E the map (t, s) 7−→ U(t, s)x is continuously di�erentiable and

(a) for any t ∈ J, U(t, t) = 0,
(b) for all (t, s) ∈ ∆ and for any x ∈ E, ∂∂t U(t, s)x

∣∣
t=s = x and

∂
∂s U(t, s)x

∣∣
t=s = −x.

(e2) For all (t, s) ∈ ∆, if x ∈ D(A(t)), then ∂
∂s U(t, s)x ∈ D(A(t)), the map (t, s) 7−→ U(t, s)x is of class C2 and

(a) ∂2
∂t2 U(t, s)x = A(t)U(t, s)x,

(b) ∂2
∂s2 U(t, s)x = U(t, s)A(s)x,

(c) ∂2
∂s∂t U(t, s)x

∣∣
t=s = 0.
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(e3) For all (t, s) ∈ ∆, then ∂
∂s U(t, s)x ∈ D(A(t)), there exist ∂3

∂t2∂s U(t, s)x,
∂3

∂s2∂t U(t, s)x and

(a) ∂3
∂t2∂s U(t, s)x = A(t)

∂
∂s (t)U(t, s)x.

Moreover, the map (t, s) 7−→ A(t) ∂∂s (t)U(t, s)x is continuous,

(b) ∂3
∂s2∂t U(t, s)x =

∂
∂t U(t, s)A(s)x.

Throughout this paper, we will use the following de�nition of the concept of Hausdor� measure of noncom-
pactness [24].

De�nition 2.2. The Hausdor� measure of noncompactness µ is de�ned by

µ(D) = inf {r > 0, D can be covered by a �nite number of balls with radius r}

for a bounded set D in any Banach space X.

Lemma 2.3. [24] Let X be a Banach space and C, D ⊂ X be bounded, then the following properties hold:

(i1) µ(D) = 0 if only if D is relatively compact,
(i2) µ(D) = µ(D) ; D the closure of D,
(i3) µ(C) ≤ µ(D) when C ⊂ D,
(i4) µ(C + D) ≤ µ(C) + µ(D) where C + D = {x | x = y + z; y ∈ C; z ∈ D},
(i5) µ(aD) = |a|µ(D) for any a ∈ R,
(i6) µ(ConvD) = µ(D); where ConvD is the convex hull of D,
(i7) µ(C ∪ D) = max(µ(C), µ(D)),
(i8) µ(C ∪ {x}) = µ(D) for any x ∈ E.

Denote by ωT(y, ϵ) the modulus of continuity of y on the interval [0, T], i.e.,

ωT(y, ϵ) = sup
{∣∣y(t) − y(s)∣∣ ; t, s ∈ [0, T], |t − s| ≤ ϵ} .

Moreover, let us put
ωT(D, ϵ) = sup

{
ωT(y, ϵ); y ∈ D

}
,

ωT0 (D) = lim
ϵ→0

supωT(D, ϵ).

Lemma 2.4. [30, Lemma 2.6] If {Dn}+∞n=0 is a sequence of nonempty, bounded and closed subsets of E, such
that Dn+1 ⊂ Dn(n = 0, 1, 2, . . .) and if lim

n→∞
µ(Dn) = 0 for each n ∈ N, then the intersection

D∞ = ∩+∞n=0Dn

is nonempty and compact.

Lemma 2.5. [31] If B is a bounded subset of Banach space, then for each ε > 0 there is a sequence {bn}∞n=0 ⊂ B,
such that

µ(B) ≤ 2µ({bn}∞n=0) + ε.

We recall that a subset B ⊂ L1([0; T]; E) is uniformly integrable if there exists ξ ∈ L1([0; T];R+), such that

‖x(s)‖ ≤ ξ (s) for x ∈ B and a.e. s ∈ [0; T].
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Lemma 2.6. [32] If {Bn}∞n=0 ⊂ L1([0; T], E) is uniformly integrable, then the function t → µ({Bn(t)}∞n=0) is
measurable and

µ


t∫

0

Bn(s))ds


∞

n=0

≤ 2
t∫

0

µ({Bn(s)}∞n=0)ds, t ∈ [0; T].

Lemma 2.7. [31] Assume that a set X ⊂ C([0; T], E) is bounded, then

sup
t∈[0,T]

µ(X(t)) ≤ µ(X([0, T])) ≤ ωT0 (X) + sup
t∈[0,T]

µ(X(t)),

sup
t∈[0,T]

µ(X(t)) ≤ η(X) ≤ ωT0 (X) + sup
t∈[0,T]

µ(X(t)),

where
X(t) =

{
x(t) : x ∈ X

}
t ∈ [0, T],

X([0, T]) =
{
x(s) : x ∈ X, s ∈ [0, T]

}
and η is a measure of noncompactness in C([0, T], E).

Theorem 2.8 (Tykhono� �xed point theorem). [33] Let F be a locally convex space,K a compact convex sub-
set of F and N : K→ K a continuous map. Then N has at least one �xed point inK.

3 Main result
De�nition 3.1. A function y ∈ C(J, E) is called a mild solution to the problem (1)-(2) if y satis�es the integral
equation

y(t) = − ∂∂s U(t, 0)g(y) + U(t, 0)h(y) +
t∫

0

U(t, s)f (s, y(s))ds. (6)

To prove our results we introduce the following conditions:

(H1) There exists a constant M ≥ 1, such that:

‖U(t, s)‖B(E) ≤ M, (t, s) ∈ ∆.

(H2) There exists a constant M̃ ≥ 0, such that:

‖ ∂∂s U(t, s)‖B(E) ≤ M̃, (t, s) ∈ ∆.

(H3) There exist an integrable function p : J → R+ and a continuous nondecreasing function ψ : [0,∞) →
(0;∞), such that: ∣∣f (t, u)∣∣ ≤ p(t)ψ(|u|) for a.e t ∈ J and each u ∈ E.

(H4) There exists a locally integrable function σ : J → R+, such that for any nonempty bounded set D ⊂ E we
have :

µ(f (t, D)) ≤ σ(t)µ(D) for a.e t ∈ J.

(H5) g, h : C(J, E)→ E are continuous mappings and

sup
y∈D
|g(y)| < ∞, sup

y∈D
|h(y)| < ∞

for any nonempty bounded set D ⊂ C(J, E).
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(H6) There exist Li > 0 (i = 1, 2), such that:
µ(g(D)) ≤ L1η(D),

and
µ(h(D)) ≤ L2η(D),

for any nonempty bounded set D ⊂ C(J, E).
(H7) There exists a constant R > 0, such that:

M̃ sup
y∈BR

|g(y)| +M( sup
y∈BR

|h(y)| + ψ(R) ‖p‖L1 ) ≤ R,

where BR is the closed ball in C(J; E), centered at zero and with radius R.

Consider the operators Ni : C(J, E)→ C(J, E)(i = 1, 2, 3), de�ned by

(N1y)(t) = −
∂
∂s U(t, 0)g(y),

(N2y)(t) = U(t, 0)h(y),

(N3y)(t)) =
t∫

0

U(t, s)f (s, y(s))ds.

Lemma 3.2. [34] Assume that the hypotheses (H1) − (H7) hold and D ⊂ C(J; E) is a bounded set. Then

ωT0 (N1(D)) ≤ 2Mµ(g(D)),

ωT0 (N2(D)) ≤ 2Mµ(h(D)),

ωT0 (N3(D)) ≤ 2M
T∫

0

µ(f (s, D(s))ds.

Theorem 3.3. Assume that the hypotheses (H1) − (H7) are satis�ed. If

3M̃L1 + 3ML2 +
6
τ < 1, τ > 6, (7)

then the problem (1)-(2) admits at least one mild solution.

Proof. Consider the operator N : C(J, E)→ C(J, E), de�ned by

(Ny)(t) = − ∂∂s U(t, 0)g(y) + U(t, 0)h(y) +
t∫

0

U(t, s)f (s, y(s))ds.

We de�ne

D = BR =
{
y ∈ C(J, E) : ‖y‖T ≤ R

}
.

The set BR is non-empty, convex and closed.
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Now, for t ∈ [0, T], T > 0, from (H1) − (H3) and (H7) we have

∣∣(Ny)(t)∣∣ ≤
∥∥∥∥ ∂∂s U(t, 0)

∥∥∥∥
B(E)

∣∣g(y)∣∣ + ∥∥U(t, s)∥∥B(E) |h(y)| + ∥∥U(t, s)∥∥B(E)
t∫

0

p(s)ψ(|y(s)|)ds

≤ M̃|g(y)| +M|h(y)| +M
t∫

0

p(s)ψ(R)ds

≤ M̃ sup
y∈BR

|g(y)| +M( sup
y∈BR

|h(y)| + ψ(R) ‖p‖L1 )

≤ R. (8)

Equation (8) ensures that the operator N maps the set BR into itself.
Step 1. N is continuous.

Let (yn)n∈N be a sequence in BR, such that yn → y in BR.
For t ∈ [0, T], T ≥ 0 we have∣∣(Nyn)(t) − (Ny)(t)∣∣ ≤ |g(yn) − g(y)| + |h(yn) − h(y)|

+ M
t∫

0

∣∣f (s, yn(s)) − f (s, y(s))∣∣ ds.
Since the functions g, h are continuous and f is Carathéodory, the Lebesgue dominated convergence theorem
implies that

‖Nyn − Ny‖T → 0 as n → +∞.

So N is continuous.
Consider the measure of noncompacteness µ*(D), de�ned on the family of bounded subsets of the space

C(J, E) by

µ*(D) = sup
{
e−τσ̃(T)(ωT0 (D) + sup

t∈[0,T]
µ(Dn(t)); T ≥ 0

}
,

where

σ̃(t) = M
t∫

0

σ(s)ds, τ > 6.

Step 2. D∞ = ∩+∞n=0Dn is compact.

In the sequel, we consider the sequence of sets {Dn}+∞n=0, de�ned by induction as follows :

D0 = D = BR , Dn+1 = Conv(N(Dn)) for n = 0, 1, 2, · · · and D∞ = ∩+∞n=0Dn .

This sequence is nondecreasing, i.e., Dn+1 ⊂ Dn for each n.

Claim 1. lim
n→+∞

µ*(Dn) = 0.
We know from Lemma 2.5 that for each ε > 0 there is a sequence of functions {Wk}∞k=0 ⊂ (N3Dn)(s), such that

µ(N3Dn)(s) ≤ 2µ({Wk}
∞
0 ) + ε.

This implies that there is a sequence {Qk}∞k=0 ⊂ Wk(s), such that

Wk = (N3Qk)(s) for k = 1, 2, . . .

Using the properties of µ, Lemma 2.5, Lemma 2.6 and assumptions (H4), (H5), we get
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µ(Dn+1(t)) = µ(ConvN(Dn)(t))
= µ((N1Dn)(t)) + µ((N2Dn)(t)) + µ((N3Dn)(t))
= µ(g(Dn)) + µ(h(Dn)) + 2µ({Wk}

∞
k=0) + ε

= µ(g(Dn)) + µ(h(Dn)) + 2µ({(N3Qk)(s)}∞k=0) + ε

= µ(g(Dn)) + µ(h(Dn)) + 4µ


t∫

0

U(t, s)f (s, (N3Qk)(s))ds


∞

k=0

 + ε

≤ M̃L1η(Dn) +MK2η(Dn) + 4M
t∫

0

σ(s)µ({Qk(s)}∞k=0)ds + ε

≤ M̃L1η(Dn) +MK2η(Dn) + 4M
t∫

0

σ(s)µ(Dn(s))ds + ε.

Since ε is arbitrary, using Lemma 2.7 we obtain

µ(Dn+1(t)) ≤ M̃L1(ωT0 (Dn) + sup
t∈[0,T]

µ(Dn(t)))

+ ML2(ωT0 (Dn) + sup
t∈[0,T]

µ(Dn(t)))

+ 4M
t∫

0

σ(s)(ωT0 (Dn) + sup
s∈[0,T]

µ(Dn(s)))ds.

(9)

Now, applying Lemma 3.2 and using assumptions (H4), (H5) (see also [35]), we derive

ωT0 (Dn+1) = ωT0 (Conv(NDn))
= ωT0 (N1Dn) + ωT0 (N2Dn) + ωT0 (N3Dn))

≤ M̃L1η(Dn) +ML2η(Dn) + 2M
t∫

0

σ(s)µ(Dn(s))ds

≤ 2M̃L1(ωT0 (Dn) + sup
t∈[0,T]

µ(Dn(t))

+ 2ML2(ωT0 (Dn) + sup
t∈[0,T]

µ(Dn(t)))

+ 2M
t∫

0

σ(t)(ωT0 (Dn) + sup
s∈[0,T]

µ(Dn(s))ds.

(10)

From (9) and (10), we have

ωT0 (Dn+1) + sup
t∈[0,T]

µ(Dn+1(t))

≤ (3M̃L1 + 3ML2)(ωT0 (Dn) + sup
t∈[0,T]

µ(Dn(t))) +M
t∫

0

σ(s)(ωT0 (Dn) + sup
s∈[0,T]

µ(Dn(s)))ds.
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Then

ωT0 (Dn+1) + sup
t∈[0,T]

µ(Dn+1(t))

≤ (3M̃K1 + 3MK2)(ωT0 (Dn) + sup
t∈[0,T]

µ(Dn(t))) + 6M
t∫

0

σ(s)e−τσ̃(t)eτσ̃(t)(ωT0 (Dn) + sup
s∈[0,T]

µ(Dn(s)))ds.

We obtain

e−τσ̃(T)(ωT0 (Dn+1) + sup
t∈[0,T]

µ(Dn(t)))

≤
(
3M̃K1 + 3MK2 +

6
τ

)
sup{e−τσ̃(T)(ωT0 (Dn) + sup

t∈[0,T]
µ(Dn(t))) : T ≥ 0}.

Hence, we get

µ*(Dn+1) ≤
(
3M̃K1 + 3MK2 +

6
τ

)
µ*(Dn).

By the method of mathematical induction, we can prove that

µ*(Dn+1) ≤
(
3M̃K1 + 3MK2 +

6
τ

)n+1
µ*(D0).

Hence, by (7), we get
lim
n→+∞

µ*(Dn) = 0.

Taking into account Lemma 2.4, we infer that D∞ = ∩+∞n=0Dn is nonempty, convex and compact. Thus, by
Tykhono�’s �xed point theorem, the operator N : D∞ → D∞ has at least one �xed point, which is a mild
solution to problem (1)-(2).

4 An example
Consider the following partial di�erential equation with nonlocal conditions

∂2z(t,τ)
∂t2 = ∂2z(t,τ)

∂τ2 + a(t) ∂z(t,τ)∂t
+f1(t, z(t, τ)), t ∈ J, τ ∈ [0, π],

z(t, 0) = z(t, π) = 0 t ∈ J,
z(0, τ) =

∫ +∞
0 g1(t, z(t, τ))dt, τ ∈ [0, π],

∂
∂t z(0, τ) =

∫ +∞
0 h1(t, z(t, τ))dt, τ ∈ [0, π]

(11)

where a : J → R is a Hölder continuous function and h1, g1 : J × R → R are given functions.
Let E = L2([0, π],C) be the space of 2-integrable functions from [0, π] into R, and let H2([0, π],C) be the
Sobolev space of functions x : [0, π] → R, such that x′′ ∈ L2([0, π],C). We consider the operator A1y(τ) =
y′′(τ) with domain D(A1) = H2(R,C), which is an in�nitesimal generator of strongly continuous cosine func-
tion C(t) on E. Moreover,we takeA2(t)y(s) = a(t)y′(s), de�ned onH1([0, π],C), and consider the closed linear
operator A(t) = A1 + A2(t) which, generates an evolution operator U, de�ned by

U(t, s) =
∑
n∈Z

zn(t, s)〈x, wn〉wn ,

where zn is a solution to the following scalar initial value problem{
z′′(t) = −n2z(t) + ina(t)z(t)
z(0) = 0, z′(0) = 1.

Set
w(t)(τ) = z(t, τ), t ≥ 0, τ ∈ [0, π],
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f (t, z(t, τ)) = f1(t, z(t, τ)),

g(z)(τ) =
+∞∫
0

g1(t, z(t, τ))dt, τ ∈ [0, π],

h(z)(τ) =
+∞∫
0

h1(t, z(t, τ))ds, τ ∈ [0, π].

We now assume that:

(1) The map f is Carathéodory and satis�es conditions (H3), (H4).
(2) The maps g and h satisfy the Carathéodory conditions and there exist functions ϱi ∈ L2(J) (i = 1, 2) such

that

|g1(t; s2) − g1(t; s1)| ≤ ϱ1(t)|s2 − s1| for a.e. t, s ∈ R; (12)

and

|h1(t; s2) − h1(t; s1)| ≤ ϱ2(t)|s2 − s1| for a.e. t, s ∈ R; (13)

Next, let us observe that, in view of (12) and (13), the mappings g and h ful�l the inequalities

‖g(t; z2) − g(t; z1)‖ ≤

 T∫
0

ϱ21(t)dt


1
2

‖z2 − z1‖,

and

‖h(t; z2) − h(t; z1)‖ ≤

 T∫
0

ϱ22(t)dt


1
2

‖z2 − z1‖.

Hence, reasoning similarly as in the proof of Claim 1 and using Lemma 2.7, we infer that for any D ⊂ C(J; E)

µ(g(D)) ≤ 4

 T∫
0

ϱ21(t)dt


1
2

sup
t∈J

µ(D(t))

≤ 4

 T∫
0

ϱ21(t)dt


1
2

η(D),

and

µ(h(D)) ≤ 4

 T∫
0

ϱ22(t)dt


1
2

sup
t∈J

µ(D(t))

≤ 4

 T∫
0

ϱ22(t)dt


1
2

η(D).

These show that the maps g and h satisfy conditions (H5) and (H6) with the constants

Li =

 T∫
0

ϱ2i (t)dt


1
2

, i = 1, 2.

Problem (11) can be written in the abstract form (1)-(2) with A(t) and f de�ned above. The existence of
mild solutions can be deduced from an application of Theorem 3.3.
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