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1 Introduction
By a subspace wemean a closed linear manifold of a normed space. Every linear manifold of a normed space
has an algebraic complement which is a linearmanifold not necessarily closed. A subspace is complemented
if it has a subspace as an algebraic complement. Every subspace of a Hilbert space is complemented. This is
not the case in a Banach space. Banach-space operators with complemented range and kernel play a crucial
role in many aspects of operator theory, especially in Fredholm theory, being the main feature behind the
di�erence between Hilbert-space and Banach-space approaches for dealing with Fredholm operators [1, 2].

It is known that compact perturbations of left or right semi-Fredholm (in particular, of invertible) opera-
tors, as well as continuous projections, acting on an arbitrary Banach space have complemented kernel and
complemented closed range, and also that the class of all operators with complemented kernel and comple-
mented closure of range is algebraically and topologically large. This is summarized in Lemma 3.2. The main
result of this note exhibits a Banach-space operator whose closed range and kernel are not complemented,
both for the operator itself as well as for its normed-space adjoint — Theorem 4.1.

The paper is organized as follows. Section 2 deals with notation and terminology, including the concepts
of upper-lower and left-right semi-Fredholmness. Section 3 considers the classes Γ[X] and ∆[X] of operators T
onaBanach spaceX (i.e., operators inB[X]) forwhich closure of range,R(T)−, andkernel,N(T), are both com-
plemented, or are both uncomplemented, respectively. It is shown in Lemma 3.1 that the collection Θ(B[X])
of all classes of operators inB[X] for whichR(T)− is complemented if and only ifN(T) is complemented coin-
cides (as expected) with the power set of the union Γ[X] ∪ ∆[X]. Lemma 3.2 and Corollary 3.1 (on range-kernel
complementation for normed-space adjoints) close the section. Section 4 focuses on range-kernel uncomple-
mentation, where Lemma 4.1 deals with complemented subspaces and their direct sum with the null space,
and themain result appears in Theorem 4.1. All Propositions in Sections 2, 3, 4 are well-known results, which
are applied throughout the text. Since these are used quite frequently, those propositions are stated in full
(whose proofs are always addressed to current literature).
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2 Notation and Terminology
Our notation and terminology are quite standard. Throughout the paperXwill stand for a normed space (or a
Banach space, when completeness is necessary). A closed linear manifold of X (closed in the norm topology
of X) will be referred to as a subspace of X. LetM−denote the closure of a linear manifoldM of X, which is a
subspace ofX, and letB[X] denote the normed algebra of all operators onX; that is, of all bounded linear (i.e.,
continuous linear) transformations ofX into itself. For any operator T ∈ B[X], letN(T) = T−1({0}) denote its
kernel, which is a subspace (i.e., a closed linear manifold) of X, and let R(T) = T(X) denote its range, which
is a linear manifold of X.

For every linear manifold M of any normed space X there exists another linear manifold N such that
X = M +N and M ∩N = {0}, where N and M are referred to as algebraic complements of each other. The
codimension ofM is the (invariant) dimension of any algebraic complement of it: codimM = dimN. A sub-
space M of a normed space X is complemented if it has a subspace as an algebraic complement. In other
words, a closed linear manifold M of a normed space X is complemented if there is a closed linear manifold
N of X such that M and N are algebraic complements (i.e., such that M +N = X and M ∩N = {0}). In this
caseM andN are complementary subspaces. Equivalently, a subspace is complemented if and only if it is the
range of a continuous projection (see e.g. [1, Remark 1.1]). A normed space is complemented if every subspace
of it is complemented. If a Banach space is complemented, then it is isomorphic (i.e., topologically isomor-
phic) to aHilbert space [3] (see also [4]). Thus complementedBanach spaces are identi�edwithHilbert spaces
— only Hilbert spaces (up to an isomorphism) are complemented. However, an uncomplemented subspace
of an uncomplemented Banach space may be isomorphic to a Hilbert space [5]. For a thorough presentation
of results along this line see [6].

De�nition 2.1. (See e.g. [7, De�nition 16.1]). Let X be a Banach space and consider the following classes of
operators on X.

Φ+[X] =
{
T ∈ B[X] : R(T) is closed and dimN(T) < ∞

}
is the class of upper semi-Fredholm operators fromB[X], and

Φ−[X] =
{
T ∈ B[X] : R(T) is closed and codimR(T) < ∞

}
is the class of lower semi-Fredholm operators fromB[X]. Set

Φ[X] = Φ+[X] ∩ Φ−[X],

which is the class of Fredholm operators fromB[X].

De�nition 2.2. (See e.g. [8, Section 5.1]). Let X be a Banach space and consider the following classes of
operators on X.

F`[X] =
{
T∈B[X] : T is left essentially invertible

}
=
{
T∈B[X] : ST = I + K for some S ∈ B[X] and some compact K ∈ B[X]

}
is the class of left semi-Fredholm operators fromB[X], and

Fr[X] =
{
T∈B[X] : T is right essentially invertible

}
=
{
T∈B[X] : TS = I + K for some S ∈ B[X] and some compact K ∈ B[X]

}
is the class of right semi-Fredholm operators fromB[X]. Set

F[X] = F`[X] ∩ Fr[X] =
{
T ∈ B[X] : T is essentially invertible

}
,

which is the class of Fredholm operators fromB[X], and

SF[X] = F`[X] ∪ Fr[X],

which is the class of semi-Fredholm operators fromB[X].
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For a collection of relations among Φ+[X], Φ−[X], F`[X], and Fr[X] see e.g. [1, Section 3]. In particular, the
well-known identity

Φ[X] = F[X].

The classes Φ+[X] and Φ−[X] are open in B[X] (see e.g. [7, Proposition 16.11]), and so are the classes F`[X]
and Fr[X] (see e.g. [9, Proposition XI.2.6]). For a collection of standard results involving F`[X], Fr[X], F[X]
and SF[X] see e.g. [8, Section 5.1] (also [10, Problem 181]).

De�nition 2.3. Let X be any normed space and de�ne the following classes of operators on X.
ΓR[X] =

{
T ∈ B[X] : R(T)− is a complemented subspace of X

}
,

ΓN [X] =
{
T ∈ B[X] : N(T) is a complemented subspace of X

}
.

Left and upper, as well as right and lower, semi-Fredholm operators are linked by range and kernel comple-
mentation, respectively, as follows.

Proposition 2.1. Let X be a Banach space.

F`[X] = Φ+[X] ∩ ΓR[X]
=
{
T ∈ Φ+[X] : R(T) is a complemented subspace of X

}
.

Fr[X] = Φ−[X] ∩ ΓN [X]
=
{
T ∈ Φ−[X] : N(T) is a complemented subspace of X

}
.

Proof. [7, Theorems 16.14, 16.15] (since R(T)−=R(T) if T∈Φ+[X] ∪ Φ−[X]).

That is, T ∈ F`[X] if and only if T ∈ Φ+[X] and R(T) (which is closed by De�nition 2.1 so that R(T) = R(T)−)
is complemented, and T ∈ Fr[X] if and only if T ∈ Φ−[X] andN(T) is complemented.

3 Range-Kernel Complementation
Wewill be dealingwith operators for which closure of range and kernel are either both complemented or both
uncomplemented. We begin by describing these two classes of operators. Let X be a normed space and set

Γ[X] = ΓR[X] ∩ ΓN [X]
=
{
T ∈ B[X] : R(T)− and N(T) are complemented subspaces of X

}
,

the class of operators on X for which closure of range and kernel are complemented. (Operators with this
property are sometimes called inner regular [11, Section0]— see also [12,Theorem3.8.2].) Clearly ΓR[X]=ΓN [X]
if and only if ΓR[X]=ΓN [X] = Γ[X]. On the other hand consider the complement of the union ΓR[X] ∪ ΓN [X],

∆[X] = B[X]\(ΓR[X] ∪ ΓN [X])
=
{
T ∈ B[X] : R(T)− and N(T) are not complemented subspaces of X

}
,

so that
Γ[X] ∩ ∆[X] = ∅.

Let T[X] ⊆ B[X] be an arbitrary class of operators such that the collection of operators with complemented
closure of range coincides with the collection of operators with complemented kernel. That is, let T[X] be
a class of operators for which

ΓR[X] ∩ T[X] = ΓN [X] ∩ T[X].

Equivalently, T[X] is any class of operators fromB[X] such that

ΓR[X] ∩ T[X] = ΓN [X] ∩ T[X] = Γ[X] ∩ T[X].
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Let Θ(B[X]) stand for the collection of all these classes. In other words, let ℘(B[X]) stand for the power set of
B[X] (the collection of all classes of operators fromB[X]), and consider the subcollection Θ(B[X]) ⊆ ℘(B[X])
of all classes T[X] of operators fromB[X] for which ΓR[X] ∩ T[X] = ΓN [X] ∩ T[X]:

Θ(B[X]) =
{
T[X] ∈ ℘(B[X]) : ΓR[X] ∩ T[X] = ΓN [X] ∩ T[X]

}
=
{
T[X] ∈ ℘(B[X]) : ∀ T ∈ T[X],

R(T)− is complemented if and only if N(T) is complemented
}
.

Since Γ[X]∩ΓR[X] = Γ[X]∩ΓN [X] = Γ[X], and ∆[X]∩ΓR[X] = ∆[X]∩ΓN [X] =∅,

Γ[X] ∪ ∆[X] ∈ Θ(B[X]).

Lemma 3.1. Θ(B[X]) = ℘(Γ[X] ∪ ∆[X]).

Proof. Observe:
Γ[X] ∪ ∆[X] is a maximum in Θ(B[X])

in the inclusion ordering of B[X]. Indeed, take any class T[X] ∈ Θ(B[X]) so that, for every T ∈T[X], R(T)−

is complemented if and only if N(T) is complemented. Hence either both R(T)− and N(T) are comple-
mented, or both R(T)− and N(T) are not complemented. This means T[X] ⊆ Γ[X] ∪ ∆[X]. Since Γ[X] ∪ ∆[X]
lies in Θ(B[X]), the above statement holds true. Equivalently, T[X] ∈ Θ(B[X])=⇒T[X] ⊆ Γ[X] ∪ ∆[X], and so
T[X] ∈ Θ(B[X]) ⇐⇒ T[X] ⊆ Γ[X] ∪ ∆[X]; that is,

Θ(B[X]) =
{
T[X] ∈ ℘(B[X]) : T[X] ⊆ Γ[X] ∪ ∆[X]

}
,

which means Θ(B[X]) = ℘(Γ[X] ∪ ∆[X]).

The following proposition is required for proving the next lemma. It is an immediate consequence of De�ni-
tion 2.2 since the class of all compact operators is an ideal inB[X].

Proposition 3.1. The class of all compact perturbations of left semi-Fredholm, right semi-Fredholm, semi-
Fredholm, and Fredholm operators coincideswith the class of all left semi-Fredholm, right semi-Fredholm, semi-
Fredholm, and Fredholm operators, respectively.

Proof. See e.g. [8, Theorem 5.6].

Classes of operators in Θ(B[X]) restricted to subclasses of Γ[X] are summarized in Lemma 3.2 below, which
contains auxiliary results that will be required in the sequel. In particular, it shows that Γ[X] is topologically
and algebraically large in the sense that it includes an open group fromB[X].

Let X be a Banach space and consider the following classes of operators.

(i) K[X] : the ideal of all compact operators fromB[X].
(ii) G[X] : the group of all invertible operators inB[X] (with an inverse inB[X]).
(iii) (G +K)[X] : the essentially invertible operators in B[X] (the collection of all operators of the form G + K

where G ∈ G[X] and K∈ K[X]).
(iv) F[X] : the class of all Fredholm operators fromB[X].
(v) (F +K)[X] : the collection of all compact perturbations of Fredholm operators in B[X] (operators of the

form F + K where F ∈ F[X] and K∈ K[X]).
(vi) SF[X] : the class of all semi-Fredholm operators fromB[X].
(vii) (SF+K)[X]:the collection of all compact perturbations of semi-Fredholm operators in B[X] (operators of

the form F+K where F∈ SF[X] and K∈ K[X]).
(viii) E[X] : the set of all projections in B[X] (the collection of all linear, continuous, idempotent (i.e., E = E2)

operators on X).
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Lemma 3.2. LetX be a Banach space. The above classes of operators fromB[X] share the following properties.

(a) (G +K)[X] ⊆ (F +K)[X] ⊆ (SF +K)[X] ⊆ Γ[X],
(b) if X is a re�exive Banach space with a Schauder basis, thenK[X] ⊆ Γ[X],
(c) E[X] ⊆ Γ[X] but E[X] ⊈ (SF +K)[X] ∪K[X],
(d) Γ[X] includes an open group inB[X].

Proof. By Proposition 3.1, (iv) and (v), and (vi) and (vii), are equivalent:

(F +K)[X] = F[X] and (SF +K)[X] = SF[X].

Since Φ+[X] ⊆ ΓN [X] and Φ−[X] ⊆ ΓR[X] (see e.g. [1, Lemma 3.1]), it follows by Proposition 2.1 that
F`[X] ∪ Fr[X] ⊆ ΓN [X] ∩ ΓR[X]. That is,

SF[X] ⊆ Γ[X].

Moreover, G[X] ⊆ F[X] ⊆ SF[X] trivially. Thus we get (a):

(G +K)[X] ⊆ (F +K)[X] ⊆ (SF +K)[X] ⊆ Γ[X],

and so all classes in (ii) to (viii) lie in Γ[X]. In fact, since the null operator O ∈ B[X] is compact, the above
chain of inclusions trivially ensures

G[X] ⊆ F[X] ⊆ SF[X] ⊆ Γ[X].

On the other hand, since the null operator O ∈ K[X] is not in SF[X], that chain of inclusions does not imply
K[X] ⊆ Γ[X]. But such an inclusion holds ifX is a re�exive Banach space with a Schauder basis [2, Corollary
5.1] (see also [1, Theorem 2.1(f)] for a partial result along this line). This is item (b). There are, however, sub-
classes of Γ[X] consisting of operators that are not included in (SF +K)[X] ∪K[X]. For instance, let E ∈ B[X]
be a projection. Thus R(E) and N(E) are complementary subspaces of X, and conversely, if M and N are
complementary subspaces of a Banach space X, then the (unique) projection E : X→ X with R(E) = M and
N(E) = N is continuous (i.e., E ∈ B[X] — see e.g. [13, Theorem 3.2.14 and Corollary 3.2.15] or [14, Problem
4.35]). Therefore,

E[X] ⊆ Γ[X].

On the other hand let M, N and M⊕N be in�nite-dimensional Banach spaces. If E = I ⊕ O =
( I O
O O

)
on

X = M⊕N, then E ∈ E[X] with R(E) = M⊕ {0} and N(E) = {0} ⊕N (and so they are complemented in
M⊕N). Since dimN = ∞, we get dimN(E) = ∞ and codimR(E) = ∞, and hence E ∉ SF[X] (cf. De�nitions
2.1 and 2.2, and Proposition 2.1). The restriction E|M⊕{0} is isometrically isomorphic to the identity operator
I on M (i.e., E|M⊕{0} ∼= I : M→M). Since dimM = ∞, the identity on the in�nite-dimensional space M is
not compact, and so E|M⊕{0} is not compact, which implies that E ∈ ̸ K[X]. Hence,

E[X] ⊈ SF[X] ∪K[X].

Since (SF +K)[X] = SF[X] by Proposition 3.1, it follows that

E[X] ⊈ (SF +K)[X] ∪K[X],

completing the proof of (c). Since the group G[X] is open in B[X] (see e.g. [14, Problem 4.48(b)]), the class
Γ[X] is algebraically and topologically large, thus (d).

LetX* stand for the dual of the normed spaceX, let T*∈ B[X*] denote the normed-space adjoint of T ∈ B[X],
and set

Γ[X*] =
{
S ∈ B[X*] : R(S)− and N(S) are complemented subspaces of X*

}
,

∆[X*] =
{
S ∈ B[X*] : R(S)− and N(S) are not complemented subspaces of X*

}
.

Proposition 3.2 gives a full account on how range-kernel complementedness travels between an operator
and its adjoint.
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Proposition 3.2. Let X be a Banach space and take any operator T ∈ B[X].

(a1) If R(T)− is complemented, thenN(T*) is complemented:

T ∈ ΓR[X] =⇒ T* ∈ ΓN [X*].

(a2) If X is re�exive andN(T*) is complemented, then R(T)− is complemented:

X re�exive and T* ∈ ΓN [X*] =⇒ T ∈ ΓR[X].

(b1) If X is re�exive and R(T*)− is complemented, thenN(T) is complemented:

X re�exive and T* ∈ ΓR[X*] =⇒ T ∈ ΓN [X].

(b2) If R(T) is closed andN(T) is complemented, then R(T*) complemented:

R(T) = R(T)− and T ∈ ΓN [X] =⇒ R(T*) = R(T*)− and T* ∈ ΓR[X*].

Proof. [2, Theorem 3.1]

Corollary 3.1. Let X is a Banach space and take T ∈ B[X].

(a1) If T ∈ (G +K)[X], then T* ∈ (G +K)[X*].
(a2) If T ∈ (F +K)[X], then T* ∈ (F +K)[X*].
(a3) If T ∈ (SF +K)[X], then T* ∈ (SF +K)[X*].

(a) (G +K)[X*] ⊆ (F +K)[X*] ⊆ (SF +K)[X*] ⊆ Γ[X*].

(b) If T ∈ K[X] and X is a re�exive Banach space with a Schauder basis, then T* ∈ K[X*] ⊆ Γ[X*].

(c) If T ∈ E[X], then T* ∈ E[X*] ⊆ Γ[X*].

(d1) If T ∈ Γ[X] and R(T) is closed, then T* ∈ Γ[X*].
(d2) If T* ∈ Γ[X*] and X is re�exive, then T ∈ Γ[X].

Proof. As it is well known, if T ∈ B[X] is compact, invertible, Fredholm, or semi-Fredholm, then so is its
normed-space adjoint T* ∈ B[X*] (see e.g. [13, Theorem 3.4.15], [13, Proposition 3.2.5], [7, Theorem 16.4], and
[8, Section 5.1], respectively), and the normed-space adjoint of the sum is the sum of the normed-space ad-
joints (see e.g. [13, Proposition 3,1,4]). Thus the results in (ai) for i = 1, 2, 3 hold true, and so (a) holds by
Lemma 3.2. Since re�exivity for X is equivalent to re�exivity for X* (see e.g. [9, Theorem V.4.2]), since X* has
a Schauder basis whenever X has (see e.g. [13, Theorem 4.4.1]), and since if E ∈ B[X] is a continuous projec-
tion and so is its adjoint E* ∈ B[X*] (reason: E*2 = E2* = E* — see e.g. [13, Proposition 3.1.10]), the results in
(b) and (c) follow from Lemma 3.2. The results in (d1) and (d2) follow from Proposition 3.2.

4 Range-Kernel Uncomplementation
Classes of operators T such that T ∈ Γ[X] and T*∈ Γ[X*] where exhibited in Lemma 3.2 and Corollary 3.1. In
this section we exhibit an operator T ∈ B[X] for which T ∈ ∆[X] and T*∈ ∆[X*].

For any pair of normed spaces (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) over the same scalar �eld, let X⊕ Y denote the
direct sumofX andY equippedwith any standardnorm ( e.g., ‖(x, y)‖p = (‖x‖pX+‖y‖

p
Y )

1
p , p ≥ 1, or ‖(x, y)‖∞ =

max{‖x‖X , ‖y‖Y} ), so that if X and Y are Banach spaces, then so is X⊕ Y (see e.g. [14, Example 4.E]). The
following lemma will be used to prove Theorem 4.1.

Lemma 4.1. If M, Y and Z are subspaces of a Banach spaceX such that Y and Z includeM ( i.e.,M ⊆ Y ∩ Z),
then the following assertions
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(a) M is complemented in X,
(a′) M⊕ {0} is complemented in X⊕ X,
(a′′) {0} ⊕M is complemented in X⊕ X,

(b) M is complemented in Y,
(b′)M⊕ {0} is complemented in Y⊕ Z,

(c) M is complemented in Z,
(c′) {0} ⊕M is complemented in Y⊕ Z,

are pairwise equivalent.

Proof. Part 1.Let O denote the null operator on X (or its restriction toY or to Z). Suppose the subspace M

is complemented in the Banach space X. Then there exists a continuous projection P : X→ X with R(P) =
P(X) = M (see e.g. [14, Problem4.35(b)]). SinceR(P) = M ⊆Y ∩ Z, set PY = P|Y : Y→ Y and PZ = P|Z : Z→ Z,
the restrictions of P to the normed spaces Y and Z, respectively. These are continuous projections both with
range equal toM. Indeed, PY is continuous (since it is the restrictionof a continuous function P on thenormed
space X to the normed space Y ⊆ X), and R(PY ) = P(Y) ⊆ P(X) = M = P(M) ⊆ P(Y) (since M ⊆ Y ⊆ X and
P = P2), so that R(PY ) = R(P) = M, and hence PY is idempotent (since (PY )2 = P|YP|Y = P2|Y = PY) —
similarly, PZ is continuous, idempotent, and R(PZ) = M. Thus, since M = R(PY ) = R(PZ) is a subspace of
the normed spaces Y and Z, it is complemented in Y and in Z as well (see e.g. [14, Problem 4.35(a)]). Thus (a)
implies (b,c). Moreover, since P, PY and PZ are continuous projections, then set

EX = P ⊕ O =
( P

O
)
: X⊕ X→ X⊕ X,

EX = O ⊕ P =
( O

P
)
: X⊕ X→ X⊕ X,

EY = PY ⊕ O =
( PY

O
)
: Y⊕ Z→ Y⊕ Z,

EZ = O ⊕ PZ =
( O

PZ

)
: Y⊕ Z→ Y⊕ Z,

to get continuous projections on the normed spacesX⊕ X and Y⊕ Zwith rangesM⊕ {0} and {0} ⊕M, and
so M⊕ {0} and {0} ⊕M are (closed) subspaces of the normed spaces X⊕ X and Y⊕ Z, which are comple-
mented in X⊕ X and in Y⊕ Z (see e.g. [14, Problem 4.35(a)]). Thus (a) implies (a′,a′′,b′,c′). Hence,

(a) =⇒ (a′), (a′′), (b), (b′), (c), (c′).

Since Y and Z are subspaces of the Banach space X, they are Banach spaces, and so the same argument that
shows that (a) implies (a′,a′′) also shows that

(b) =⇒ (b′) and (c) =⇒ (c′).

Part 2. SinceX, Y and Z are Banach spaces, the direct sumsX⊕ X and Y⊕ Z are again Banach spaces. Since
M is a subspace of the Banach space X (thus a Banach space itself) it follows that M⊕ {0} and {0} ⊕M

are Banach spaces, and so (closed) subspaces of the Banach spaces X⊕ X and Y⊕ Z. If M⊕ {0} is com-
plemented in the Banach space Y⊕ Z, then there exists a continuous projection QY : Y⊕ Z→ Y⊕ Z with
R(QY ) = M⊕ {0} (see e.g. [14, Problem 4.35(b)]), so that QY (N ⊕R) = M⊕ {0} if M ⊆ N ⊆ Y and R ⊆ Z.
Let JY: Y→ Y⊕ {0} be the natural embedding of Y onto Y⊕ {0} (which is an isometric isomorphism with
R(JY ) = Y⊕ {0} and R((JY )−1) = Y). Set

FY = (JY )−1QYJY: Y→ Y,

which is a continuous projection with range M (i.e., R(FY ) = M). In fact (FY )2 = (JY )−1QYJY(JY )−1QYJY =
(JY )−1QY JY = FY, ‖FY‖ = ‖(JY )−1QYJY‖ = ‖QY‖ (since JY and (JY )−1 are isometries), and R(FY ) = FY(Y) =
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(JY )−1QYJY(Y) = JY−1QY(Y⊕ {0}) = JY−1(M⊕ {0}) = M. ThusM is complemented in the normed Y space (see
e.g. [14, Problem 4.35(a)]), and therefore

(b′) =⇒ (b).

Similarly, if {0} ⊕M is complemented in the Banach space Y ⊕ Z, then take the continuous projection
QZ : Y⊕ Z→ Y⊕ Z with R(QZ) = {0} ⊕M, consider the natural embedding JZ: Z→ {0} ⊕ Z of Z onto
{0} ⊕ Z, and set

FZ = J−1Z QZ JZ : Z→ Z,

a continuous projection with R(FZ) = M. HenceM is complemented in Z, so

(c′) =⇒ (c).

Replacing Y andZwithX it follows, in particular, that ifM⊕ {0} or {0} ⊕M is complemented in the Banach
space X⊕ X, thenM is complemented in X. Thus

(a′) =⇒ (a) and (a′′) =⇒ (a),

which completes the proof.

The next result (due to H.P. Rosenthal [15, Theorem 6]) seems to have been the �rst example of an injective
(N(W) = {0}) Banach-space operator W∈ B[X] with a closed range (R(W) = R(W)−) which is not comple-
mented.

Proposition 4.1. For every p ∈ (2,∞) there exists a proper (closed) subspace M of `p+ which is not comple-
mented and is the range of a topological isomorphismW : `p+→ R(W) = M ⊂ `p+, so that there exists an operator
W ∈ B[`p+] for which R(W) = R(W)− is not complemented.

Proof. [15, Theorem 6].

Operators in Γ[X] whose adjoints are in Γ[X*] were discussed in Section 3. Now it is exhibited an operator in
∆[X] whose adjoint is in ∆[X*]. Precisely, an operator with uncomplemented closed range and kernel whose
the adjoint has uncomplemented closed range and kernel. The proof uses an argument borrowed from [16,
Example 6] plus Proposition 4.1, Lemma 4.1 and Proposition 3.2.

Theorem 4.1. There exists a Banach space operator T ∈ B[X] such that T ∈ ∆[X] and T* ∈ ∆[X*].

Proof. Consider the re�exive Banach space X = `p+ for an arbitrary p ∈ (2,∞). According to Proposition
4.1 there exists a (proper, closed) uncomplemented subspace M of X which is the range of a topological
isomorphism W : X→M = R(W) ⊂ X. Now take the null operator O ∈ B[M], and consider the operator
T ∈ B[X⊕M] (acting on the Banach spaceX⊕M obtained by the direct sum of the Banach spacesX andM

equipped with any standard norm inherited from the norm of X) given by

T = W ⊕ O =
(W

O
)
: X⊕M→ X⊕M,

and hence
R(T) = R(W)⊕R(O) = M⊕ {0} ⊂ X⊕M,

N(T) = N(W)⊕N(O) = {0} ⊕M ⊂ X⊕M,

where R(T) = M⊕ {0} is a subspace of X⊕M, so that R(T) = R(T)−.

(a) Suppose R(T) = M⊕ {0} is complemented in X⊕M. Since M is a subspace of the Banach space X, set
Y = X and Z = M in Lemma 4.1 (b′)⇒(b), so that M is complemented in X, which contradicts the fact that
M = R(W) is not complemented in X. Therefore R(T) = M⊕ {0} is not complemented in X⊕M.

(b) Similarly, suppose N(T) = {0} ⊕M is complemented in X⊕M. The same argument (using Lemma 4.1
(c′)⇒(c)) ensures that M is complemented in X, which is again a contradiction. So N(T) = {0} ⊕M is not
complemented in X⊕M.
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Outcome. Both R(T)−andN(T) are not complemented, which means T∈ ∆[X].

Moreover, sinceX is re�exive, Proposition 3.2(a2,b1) thus ensures that bothN(T*) andR(T*)−= R(T*) are not
complemented, which means T*∈ ∆[X*].
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