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Abstract: In this paper, we introduce the q-analogue of the Jakimovski-Leviatan type modi�ed operators in-
troduced by Atakut with the help of the q-Appell polynomials. We obtain some approximation results via the
well-known Korovkin’s theorem for these operators. We also study convergence properties by using the mod-
ulus of continuity and the rate of convergence of the operators for functions belonging to the Lipschitz class.
Moreover, we study the rate of convergence in terms ofmodulus of continuity of these operators in aweighted
space.
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1 Introduction and Preliminaries
During the last two decades, applications of q-calculus have emerged as a new area in the �eld of approx-
imation theory. Lupaş [1] was the �rst who introduced the q-analogue of the well known Bernstein polyno-
mials and investigated its approximating and shape-preserving properties. In 1997 Phillips [2] considered
another q-analogue of the classical Bernstein polynomials. Subsequently, many authors have introduced q-
generalizations of various operators and investigated several approximation properties (see, e.g., [3–13]).

Jakimovski and Leviatan [14] in 1969 introduced a new type of operators Pn by usingAppell polynomials
as follows. Let g(u) =

∑∞
n=0 anu

n , g(1) ≠ 0 be an analytic function in the disk |u| < r (r > 1) and pk(x) =∑k
i=0 ai

xk−i
(k−i)! (k ∈ N) be the Appell polynomials de�ned by the identity

g(u)eux =
∞∑
k=0

pk(x)uk . (1.1)

We consider the class of functions of exponential type which are de�ned on the semi-axis and satisfy the
property |f (x)| ≤ κeϑx for some �nite constants κ, ϑ > 0 and denote the set of such functions by E[0,∞). In
[14], the authors considered the sequence of operators Pn, with

Pn(f ; x) =
e−nx
g(1)

∞∑
k=0

pk(nx)f
(
k
n

)
, (1.2)

for f ∈ E[0,∞) and established several approximation properties of these operators.
If g(1) = 1 in (1.1) we get pk(x) = xk

k! , and we recover the well-known classical Favard-Szász operators de�ned
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by

Sn(f ; x) = e−nx
∞∑
k=0

(nx)k
k! f

(
k
n

)
. (1.3)

Recently (see [15]), the q-Appell polynomials Jakimovski-Leviatan type operators have been de�ned by

Kqn(f ; x) =
Eq
(
− [n]qx

)
Aq(1)

∞∑
k=0

Ak,q
(
[n]qx

)
[k]q!

f
(
[k]q
[n]q

)
, (1.4)

where the q-Appell polynomials [16] are de�ned by means of generating function Aq(t),

Aq(t) =
∞∑
n=0

An,q
tn

[n]q!
, Aq(1) ≠ 0,

which is an analytic function in the disk |t| < r (r > 1), and

An,q(x) =
n∑
k=0

[
n
k

]
q

An−k,qxk (n ∈ N),

Aq(t)eq(tx) =
∞∑
n=0

An,q(x)
tn

[n]q!
(0 < q < 1).

Here and in the following, let C, R and N be the set of complex numbers, real numbers and positive
integers respectively, and let N0 := N ∪ {0} and R+ = [0,∞).

Also for f ∈ L1[0,∞) the integral type Jakimovski-Leviatan operators given by Atakut (see [17]) are
de�ned as follows:

L*n(f ; x) =
e−an(x)
g(1)

∞∑
k=0

Pk(an(x))
bλ+k+1n

Γ(λ + k + 1)

1
1−q∫
0

e−bn t tλ+k f (t)dt, (1.5)

where λ > 0 and {an}, {bn} are increasing and unbounded sequences of positive numbers such that
limn→∞ 1

n = 0, an
bn = 1 + O

(
1
bn

)
.

Motivated by the above discussed work, we de�ne q-generalization of operators (1.5) (see [17]).
We now present some basic de�nitions and notations of the q-calculus which are used in this paper.

De�nition 1.1. For |q| < 1, the basic (or q-) number [λ]q is de�ned by

[λ]q =


1 − qλ
1 − q (λ ∈ C)

n−1∑
k=0

qk = 1 + q + q2 + · · · + qn−1 (λ = n ∈ N).

(1.6)

De�nition 1.2. For |q| < 1, the basic (or q-) the q-factorial [n]q! is de�ned by

[n]q! =


1 (n = 0)

n∏
k=1

[k]q (n ∈ N).
(1.7)

De�nition 1.3. For |q| < 1, the generalized basic (or q-) binomial coe�cient
[
λ
n

]
q

is de�ned by

[
λ
n

]
q

=

(
q−λ; q

)
n

(q; q)n

(
−qλ

)n
q−(

n
2) (λ ≥ n; n ∈ N0) . (1.8)
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For q, ν ∈ C (|q| < 1), the basic (or q-) shifted factorial (λ; q)ν is de�ned by (see, e.g.,[18–20])

(λ; q)ν =
∞∏
j=0

(
1 − λqj
1 − λqν+j

)
(|q| < 1; λ ≥ n, ν ∈ C), (1.9)

so that

(λ; q)n :=


1 (n = 0)

n−1∏
j=0

(
1 − λqj

)
(n ∈ N)

and

(λ; q)∞ :=
∞∏
j=0

(
1 − λqj

)
(|q| < 1; λ ≥ n). (1.10)

De�nition 1.4. For |q| < 1, the basic (or q-) exponential function eq(z) of the �rst kind is de�ned by

eq(z) :=
∞∑
k=0

zk
(q; q)k

= 1
(z; q)∞

. (1.11)

De�nition 1.5. For |q| < 1, the basic (or q-) exponential function Eq(z) of the second kind is de�ned by

Eq(z) :=
∞∑
k=0

q(
k
2) zk
(q; q)k

= (−z; q)∞. (1.12)

Remark 2. It is easily seen by applying the de�nitions (1.11) and (1.12) that

lim
q→1
{eq
(
(1 − q)z

)
} = ez = lim

q→1
{Eq

(
(1 − q)z

)
}and eq(z) · Eq(−z) = 1. (1.13)

De�nition 1.6. For 0 < |q| < 1, the q- analog of the derivative, denoted by Dq, is de�ned by (see, e.g., [21])

Dq f (x) =
f (x) − f (qx)
(1 − q)x , x ≠ 0. (1.14)

If f ′(0) exists, then Dq f (0) = f ′(0). As q tends to 1−, the q-derivative reduces to the usual derivative. Clearly,
if f is di�erentiable, then

lim
q→1−

Dq f (x) =
f (x) − f (qx)
(1 − q)x = df (x)

dx , x ≠ 0. (1.15)

It is easy to check the q-analog of Leibniz’s rule

Dq[f (x)g(x)] = f (qx)Dqg(x) + g(x)Dq f (x). (1.16)

Proposition. ([21]) For 0 < |q| < 1 and n ∈ N,

Dq(1 + x)nq = [n]q(1 + qx)n−1q (1.17)

and
Dq
{

1
(1 + x)nq

}
= − [n]q

(1 + x)n+1q
. (1.18)

De�nition 1.7. For 0 < |q| < 1, q-analog of integration, is de�ned by (see, e.g., [22])

1∫
0

f (x)dqx = (1 − q)
∞∑
i=0

f (qi)qi , (1.19)
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which reduces to
∫ 1
0 f (x)dx in the case of q → 1−. More generally, the q-Jackson integral from 0 to a ∈ R can

be de�ned by (see, e.g., [23, 24])

a∫
0

f (x)dqx = a(1 − q)
∞∑
i=0

f (aqi)qi , (1.20)

provided the sum converges absolutely. The q-Jackson integral on a general interval [a, b] may be de�ned by
(see, e.g., [23, 24])

b∫
a

f (x)dqx =
b∫

0

f (x)dqx −
a∫

0

f (x)dqx. (1.21)

The q-Jackson integral and q-derivative are related by the fundamental theorem of quantum calculus which
can be restated as follows, (see, e.g., ([24], p. 73)).

De�nition 1.8. For |q| < 1, the basic (or q-) Gamma function Γq(z) is de�ned by

Γq(z) :=
(q; q)∞
(qz; q)∞

(1 − q)1−z (|q| < 1; z ∈ C), (1.22)

so that
lim
q→1
{Γq(z)} = Γ(z)

in terms of the familiar (Euler’s) Gamma function Γ(z).

Here the two representations are based on the following remarkable function (see [25, p. 15])

K(A; t) = At−1
(− qA ; q)∞
(− qtA ; q)∞

(−A; q)∞
(−Aq1−t; q)∞

(t ∈ R), (1.23)

where

Γq(α)} =

1
1−q∫
0

xα−1Eq(q(1 − q)x)dqx (α > 0) (1.24)

and

Γq(α)} = K(A; α)

∞
A(1−q)∫
0

xα−1eq(−(1 − q)x)dqx (α > 0). (1.25)

Remark 3. In terms of the basic (or q-) Gamma function Γq(z) de�ned by (1.22), the generalized basic (or q-)

binomial coe�cient
[
λ
ν

]
q

in (1.8) can by extended to the following form:

[
λ
ν

]
q

= Γq(λ + 1)
Γq(λ − ν + 1)Γq(ν + 1)

=

(
qλ−ν+1, qν+1; q

)
∞(

q, qλ+1
)
∞

(|q| < 1; λ, ν ∈ C) . (1.26)

2 Construction of Operators and Auxiliary results
Appell polynomials were introduced by Appell in 1880 (see [26]). In 1967, Al-Salam [27] introduced the family
of q-Appell polynomials {An,q(x)}∞n=0, and studied some of their properties.
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In this paper, we de�ne q-generalization of Jakimovski-Leviatan operators de�ned by (1.5) as follows:

L*n,q(f ; x) =
1

gq(1)eq(a[n]q (x))

∞∑
k=0

Pk,q(a[n]q (x))Qn(t), (2.1)

where

Qn(t) =
bλ+k+1n

Γq(λ + k + 1)

1
1−q∫
0

Eq(−bnqt)tλ+k f (t)dqt

for x ∈ [0,∞), qn ∈ (0, 1] andwith the samenotations {a[n]qn } and {b[n]qn } given increasing andunbounded
sequences of positive numbers such that

lim
n→∞

1
[n]qn

= 0,
a[n]qn
b[n]qn

= 1 + O
(

1
b[n]qn

)
. (2.2)

It is easy to verify that if qn → 1, these operators turn into the classical one.
Here we also introduce q-analogue of modi�ed Jakimovski-Leviatan-Stancu type operators and obtain better
approximation results. Let α, β ∈ R such that 0 ≤ α ≤ β. Then for x ∈ [0,∞), q ∈ (0, 1],

S*n,q(f ; x) =
1

gq(1)eq(a[n]q (x))

∞∑
k=0

Pk,q(a[n]q (x))Q
α,β
n,q(t), (2.3)

where

Qα,βn,q(t) =
bλ+k+1[n]q

Γq(λ + k + 1)

1
1−q∫
0

Eq(−b[n]qqt)t
λ+k f

(
[n]q t + α
[n]q + β

)
dqt.

If we take α = β = 0 in (2.3), then the operators S*n,q(f ; x) reduce to operators de�ned by (2.1).

Lemma 2.1. Let L*n,q( · ; · ) be the operators given by (2.1). Then for all x ∈ [0,∞), q ∈ (0, 1) and each n ∈ N,
we have the following identities:

(1) L*n,q(1; x) = 1
(2) L*n,q(t; x) =

( a[n]q
b[n]q

)
x + 1

b[n]q

(
λ + 1 + g′q(1)

gq(1)

)
(3) L*n,q(t2; x) =

( a[n]q
b[n]q

)2
x2 + 2a[n]q

b2[n]q

(
λ + 2 + g′q(1)

gq(1)

)
x + 1

b2[n]q

(
(λ + 1)(λ + 2) + 2(λ + 2) g

′
q(1)
gq(1) +

g′′q (1)
gq(1)

)
Proof. Using (1.1), it can be easily seen that

∞∑
k=0

Pk,q(a[n]q x) = gq(1)eqa[n]q x, (2.4)

∞∑
k=0

kPk,q(a[n]q x) =
(
g′q(1) + a[n]qgq(1)x

)
eqa[n]q x, (2.5)

∞∑
k=0

k2Pk,q(a[n]q x) =
(
g′′q (1) + 2a[n]qg

′
q(1)x + g′q(1) + a2[n]qgq(1)x

2
)
eqa[n]q x. (2.6)

(1) For f ≡ 1

L*n,q(1; x) =
eq(−a[n]q (x))

gq(1)

∞∑
k=0

Pk,q(a[n]q (x))
bλ+k+1[n]q

Γq(λ + k + 1)

1
1−q∫
0

Eq(−b[n]qqt)t
λ+kdqt

=
eq(−a[n]q (x))

gq(1)
gq(1)eq(a[n]q (x))

1
Γq(λ + k + 1)

1
1−q∫
0

Eq(−qt)tλ+kdqt

= 1.
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(2) For f ≡ t

L*n,q(t; x) =
eq(−a[n]q (x))

gq(1)

∞∑
k=0

Pk,q(a[n]q (x))
bλ+k+1[n]q

Γq(λ + k + 1)

1
1−q∫
0

Eq(−b[n]qqt)t
λ+k+1dqt

=
eq(−a[n]q (x))

gq(1)

∞∑
k=0

Pk,q(a[n]q (x))
1

b[n]qΓq(λ + k + 1)

1
1−q∫
0

Eq(−qt)tλ+k+1dqt

=
eq(−a[n]q (x))

gq(1)

∞∑
k=0

Pk,q(a[n]q (x))
λ + k + 1

b[n]qΓq(λ + k + 2)

1
1−q∫
0

Eq(−qt)tλ+k+1dqt

=
(λ + 1)eq(−a[n]q (x))

b[n]qgq(1)

∞∑
k=0

Pk,q(a[n]q (x)) +
eq(−a[n]q (x))
b[n]qgq(1)

∞∑
k=0

kPk,q(a[n]q (x))

=
(λ + 1)eq(−a[n]q (x))

b[n]qgq(1)
gq(1)eq(a[n]q x) +

eq(−a[n]q (x))
b[n]qgq(1)

(
g′q(1) + a[n]qgq(1)x

)
eq(a[n]q x)

=
a[n]q
b[n]q

x + 1
b[n]q

(
λ + 1 + g

′
q(1)
gq(1)

)
.

(3) For f ≡ t2

L*n,q(t2; x) =
eq(−a[n]q (x))

gq(1)

∞∑
k=0

Pk,q(a[n]q (x))
bλ+k+1[n]q

Γq(λ + k + 1)

1
1−q∫
0

Eq(−b[n]qqt)t
λ+k+2dqt

=
eq(−a[n]q (x))

gq(1)

∞∑
k=0

Pk,q(a[n]q (x))
1

b2[n]qΓq(λ + k + 1)

1
1−q∫
0

Eq(−qt)tλ+k+2dqt

=
eq(−a[n]q (x))

gq(1)

∞∑
k=0

Pk,q(a[n]q (x))
(λ + k + 1)(λ + k + 2)
b2[n]qΓq(λ + k + 3)

1
1−q∫
0

Eq(−qt)tλ+k+2dqt

=
(λ + 1)(λ + 2)eq(−a[n]q (x))

b2[n]qgq(1)

∞∑
k=0

Pk,q(a[n]q (x))

+
(2λ + 3)eq(−a[n]q (x))

b2[n]qgq(1)

∞∑
k=0

kPk,q(a[n]q (x)) +
eq(−a[n]q (x))
b2[n]qgq(1)

∞∑
k=0

k2Pk,q(a[n]q (x))

= (λ + 1)(λ + 2)
b2[n]q

+ (2λ + 3)
b2[n]q

(
g′q(1)
gq(1)

+ a[n]q x
)

+ 1
b2[n]q

(
g′′q (1)
gq(1)

+ g
′
q(1)
gq(1)

+
(
2g′q(1)
gq(1)

+ 1
)
a[n]q x + a

2
[n]q x

2
)
.

Lemma 2.2. Let S*n,q( · ; · ) be the operators given by (2.3). Then for all x ∈ [0,∞), q ∈ (0, 1) and each n ∈ N,
we have the following identities:

1◦ S*n,q(1; x) = 1;

2◦ S*n,q(t; x) =
(

[n]q
[n]q+β

)( a[n]q
b[n]q

)
x + 1

b[n]q

(
[n]q

[n]q+β

)(
λ + 1 + g′q(1)

gq(1)

)
+ α

[n]q+β ,
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3◦ S*n,q(t2; x) =
(

[n]q
[n]q + β

)2
(
a[n]q
b[n]q

)2

x2

+
(
2a[n]q
b[n]q

)(
[n]q

[n]q + β

)(
1
b[n]q

[n]q
[n]q + β

(
λ + 2 + g

′
q(1)
gq(1)

)
+ α
[n]q + β

)
x

+ 1
b2[n]q

(
[n]q

[n]q + β

)2(
(λ + 1)(λ + 2) + 2(λ + 2) g

′
q(1)
gq(1)

+ g
′′
q (1)
gq(1)

)

+ 1
b[n]q

(
2[n]qα
[n]q + β

)(
λ + 1 + g

′
q(1)
gq(1)

)
+
(

α
[n]q + β

)2
.

Proof. From (2.3) and Lemma 2.1, we have

S*n,q(t; x) =
[n]q

[n]q + β
L*n,q(t; x) +

α
[n]q + β

L*n,q(1; x),

S*n,q(t2; x) =
(

[n]q
[n]q + β

)2
L*n,q(t2; x) +

2[n]qα
([n]q + β)2

L*n,q(t; x) +
(

α
[n]q + β

)2
L*n,q(1; x).

Hence it can be easily proved.

It is also interesting to �nd L*n,q((t − x)j; x) and S*n,q((t − x)j; x) for j = 1, 2.

Lemma 2.3. Let the operators L*n,q( · ; · ) be given by (2.1). Then for each x ≥ 0, q ∈ (0, 1), we have

L*n,q(t − x; x) =
(
a[n]q
b[n]q

− 1
)
x + 1

b[n]q

(
λ + 1 + g

′
q(1)
gq(1)

)

L*n,q((t − x)2; x) =
(
a[n]q
b[n]q

− 1
)2

x2 + 2
b[n]q

((
a[n]q
b[n]q

− 1
)(

λ + 1 + g
′
q(1)
gq(1)

)
+
a[n]q
b[n]q

)
x

+ 1
b2[n]q

(
(λ + 1)(λ + 2) + 2(λ + 2) g

′
q(1)
gq(1)

+ g
′′
q (1)
gq(1)

)
.

Proof. From the linearity property we have

L*n,q(t − x; x) = L*n,q(t; x) − xL*n,q(1; x)

L*n,q((t − x)2; x) = L*n,q(t2; x) − 2xL*n,q(t; x) + x2L*n,q(1; x).

It can be easily proved from Lemma 2.2.

Lemma 2.4. Let the operators S*n,q( · ; · ) be given by (2.3). Then for each x ≥ 0, q ∈ (0, 1), we have
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S*n,q(t − x; x) =
(

[n]q
[n]q + β

a[n]q
b[n]q

− 1
)
x +
(

[n]q
[n]q + β

)(
1
b[n]q

(
λ + 1 + g

′
q(1)
gq(1)

))

S*n,q((t − x)2; x) =
(
a[n]q
b[n]q

[n]q
[n]q + β

− 1
)2

x2

+ 2
b[n]q

[n]q
[n]q + β

{(a[n]q
b[n]q

[n]q
[n]q + β

− 1
)(

λ + 1 + g
′
q(1)
gq(1)

)
+

a[n]q
b[n]q

[n]q
[n]q + β

+ α
( a[n]q
[n]q + β

−
b[n]q
[n]q

)}
x

+ 1
b2[n]q

(
[n]q

[n]q + β

)2(
(λ + 1)(λ + 2) + 2(λ + 2) g

′
q(1)
gq(1)

+ g
′′
q (1)
gq(1)

)

+ 1
b[n]q

(
2[n]qα
[n]q + β

)(
λ + 1 + g

′
q(1)
gq(1)

)
+
(

α
[n]q + β

)2
.

3 Main Results
We obtain the Korovkin type and weighted Korovkin type approximation theorems for our operators de�ned
by (2.1).

Let CB(R+) be the set of all bounded and continuous functions on R+, which is a linear normed space
with

‖f‖CB = sup
x≥0
|f (x)|.

Let
Cζ [0,∞) :=

{
f ∈ C[0,∞) : |f (t)| ≤ M(1 + t)ζ for some M > 0

}
.

H :=
{
f ∈ C[0,∞) : f (x)

1 + x2 is convergent as x →∞
}
.

Theorem 3.1. Let q = qn satisfy 0 < qn < 1 with limn→∞ qn = 1 and S*n,q( · ; · ) be the operators de�ned by
(2.3). Then for any function f ∈ Cζ [0,∞) ∩ H, ζ ≥ 2 and x ∈ [0,∞)

lim
n→∞

S*n,qn (f ; x) = f (x)

uniformly on each compact subset of [0,∞).

Proof. The proof is based on Lemma 2.2 and well known Korovkin’s theorem regarding the convergence of a
sequence of linear positive operators. So it is enough to prove the conditions

lim
n→∞

S*n,qn ((t
j; x) = xj , j = 0, 1, 2, as n →∞

uniformly on [0,∞].
Clearly 1

[n]qn
→ 0, (n →∞) we have

lim
n→∞

S*n,qn (t; x) = x, lim
n→∞

S*n,qn (t
2; x) = x2.

This completes the proof.

Following Gadžiev [28, 29] (see also [30–32]) we recall the weighted spaces of the functions on R+, as well as
additional conditions under which the analogous theorem of Korovkin holds for such kind of functions.
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Let x → ϕ(x) be a continuous and strictly increasing function and ϱ(x) = 1 +ϕ2(x), limx→∞ ϱ(x) = ∞.
Let Bϱ(R+) be a set of functions de�ned on R+ and satisfying

|f (x)| ≤ Mf ϱ(x),

where Mf is a constant depending only on f . Its subset of continuous functions will be denoted by Cϱ(R+),
i.e., Cϱ(R+) = Bϱ(R+) ∩ C(R+). It is well known that a sequence of linear positive operators {Ln}n≥1 maps
Cϱ(R+) into Bϱ(R+) if and only if

|Ln(ϱ; x)| ≤ Kϱ(x),

where x ∈ R+ and K is a positive constant. Note that Bϱ(R+) is a normed space with the norm

‖f‖ϱ = sup
x≥0

|f (x)|
ϱ(x) .

Finally, let C0ϱ(R+) be a subset of Cϱ(R+) such that the limit

lim
n→∞

f (x)
ϱ(x) = Kf

exists and is �nite.

Let B[0, 1] be the space of all bounded functions on [0, 1] and C[0, 1] be the space of all functions f
continuous on [0, 1] equipped with norm

‖f‖∞ = sup
x∈[0,1]

|f (x)|, f ∈ C[0, 1].

The famous Korovkin’s theorem states as follows:

Theorem 3.2 (cf. [33]). Let {Ln}n≥1 be the sequence of linear positive operators acting from C[0, 1] into B[0, 1]
Then

lim
n→∞

‖Ln(tk; x) − xk‖∞ = 0 (k = 0, 1, 2).

if and only if for all f ∈ C[0, 1]
lim
n→∞

‖Ln(f (t); x) − f‖∞ = 0.

Theorem 3.3. Let {Ln}n≥1 be the sequence of linear positive operators acting fromCϱ(R+) into Bϱ(R+) satisfying
the conditions

lim
n→∞

‖Ln(φk(t); x) − φk(x)‖ϱ = 0 (k = 0, 1, 2)

then for any function f ∈ C0ϱ(R+),
lim
n→∞

‖Ln(f (t); x) − f‖ϱ = 0.

Proof. For the completeness, we give some sketch of the proof for the version which will be used in our next
result. Consider φ(x) = x, ϱ(x) = 1 + x2, and

‖Ln(tk; x) − xk‖ϱ = sup
x≥0

| Ln(tk; x) − xk |
1 + x2 .

Then for k = 0, 1, 2 it is easily proved that

lim
n→∞

‖Ln(tk; x) − xk‖ϱ = 0.

Hence by using Korovkin’s theorem, for any function f ∈ C0ϱ(R+), we get

lim
n→∞

‖Ln(f (t); x) − f‖ϱ = 0.



184 | Mohammad Mursaleen, Mohammad Nasiruzzaman, and Abdul Wa�

Theorem 3.4. Let q = qn satisfy 0 < qn < 1 with limn→∞ qn = 1 and S*n,qn ( · ; · ) be the operators de�ned by
(2.3) and ϱ(x) = 1 + x2. Then for f ∈ C0ϱ(R+) we have

lim
n→∞

‖S*n,qn (f ; x) − f‖ϱ = 0.

Proof. Using Theorem 3.3 for φ(x) = x and ϱ(x) = 1 + x2, we consider

‖S*n,qn (t
j; x) − xj‖ϱ = sup

x≥0

| S*n,qn (tj; x) − xj |
1 + x2 ,

for j = 0, 1, 2.
According to Lemma 2.2 for j = 0 it is obvious that | S*n,qn (1; x) − 1 |= 0, and therefore

lim
n→∞

‖S*n,qn (1; x) − 1‖ϱ = 0.

For j = 1

sup
x≥0

| S*n,qn (t; x) − t |
1 + x2 ≤

∣∣a[n]qn
b[n]qn

− 1
∣∣ sup
x≥0

x
1 + x2 + 1

b[n]qn

∣∣λ + 1 + g′qn (1)gqn (1)
∣∣ sup
x≥0

1
1 + x2 .

Therefore
lim
n→∞

‖S*n,qn (t; x) − x‖ϱ = 0.

For j = 2

sup
x≥0

| S*n,qn (t2; x) − x2 |
1 + x2 ≤

∣∣a2[n]qn
b2[n]qn

− 1
∣∣ sup
x≥0

x2
1 + x2 +

2a[n]qn
b2[n]qn

∣∣λ + 2 + g′qn (1)gqn (1)
∣∣ sup
x≥0

x
1 + x2

+ 1
b2[n]qn

∣∣(λ + 1)(λ + 2) + 2(λ + 2) g′′qn (1)gqn (1)
+ g
′
qn (1)
gqn (1)

∣∣ sup
x≥0

1
1 + x2 .

Hence we have
lim
n→∞

‖S*n,qn (t
2; x) − x2‖ϱ = 0.

4 Rate of Convergence
Here we calculate the rate of convergence of operators (2.1) by means of modulus of continuity and Lipschitz
type functions.

Let f ∈ CB[0,∞] be the space of all bounded and continuous functions on [0,∞) and x ≥ 0. Then for
δ > 0, the modulus of continuity of f denoted by ω(f , δ) gives the maximum oscillation of f in any interval of
length not exceeding δ > 0 and it is given by

ω(f , δ) = sup
|t−x|≤δ

|f (t) − f (x) |, t ∈ [0,∞). (4.1)

It is known that limδ→0+ ω(f , δ) = 0 for f ∈ CB[0,∞) and for any δ > 0 one has

|f (t) − f (x)| ≤
(
|t − x|
δ + 1

)
ω(f , δ). (4.2)

In the sequel we use the following notations:

δxn,q =
√
S*n,q

(
(t − x)2; x

)
, (4.3)

where by using the Lemma 2.4, we have
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δxn,q =



(
a[n]q
b[n]q

[n]q
[n]q + β

− 1
)2

x2

+ 2
b[n]q

[n]q
[n]q + β

((
a[n]q
b[n]q

[n]q
[n]q + β

− 1
)(

λ + 1 + g
′
q(1)
gq(1)

))
x

+ 2
b[n]q

[n]q
[n]q + β

(
a[n]q
b[n]q

[n]q
[n]q + β

+ α
( a[n]q
[n]q + β

−
b[n]q
[n]q

))
x

+ 1
b2[n]q

(
[n]q

[n]q + β

)2(
(λ + 1)(λ + 2) + 2(λ + 2) g

′
q(1)
gq(1)

+ g
′′
q (1)
gq(1)

)

+ 1
b[n]q

(
2[n]qα
[n]q + β

)(
λ + 1 + g

′
q(1)
gq(1)

)
+
(

α
[n]q + β

)2
;

for 0 < q < 1, 0 < α < β, α, β ∈ R

(an
bn
− 1
)2
x2 + 2

bn

((an
bn
− 1
)(

λ + 1 + g
′(1)
g(1)

)
+ anbn

)
x

+ 1
b2n

(
(λ + 1)(λ + 2) + 2(λ + 2) g

′(1)
g(1) +

g′′(1)
g(1)

)
; for q = 1, α = β = 0.

Here when q = 1, α = β = 0, then δxn,q is reduced to δxn =
√
L*n
(
(t − x)2; x

)
.

Theorem 4.1. Let S*n,q( · ; · ) be the operators de�ned by (2.3). Then for f ∈ CB[0,∞), q ∈ (0, 1) and n ∈ N
we have

|S*n,q(f ; x) − f (x)| ≤ 2ω
(
f ; δxn,q

)
, (4.4)

where δxn,q is de�ned in (4.3).

Proof. For our sequence of positive linear operators {S*n,q(.; .)} we have

S*n,q(f ; x) − f (x) = S*n,q(f ; x) − f (x)S*n,q(1; x)
= S*n,q

(
f (t) − f (x); x

)
≤ S*n,q

(
| f (t) − f (x) |; x

)
,

since S*n,q(1; x) = 1. Using (4.1) and (4.2) we get

|S*n,q(f ; x) − f (x)| ≤ S*n,q
(
1 + | t − x |δ ; x

)
ω(f ; δ)

=
(
1 + 1

δ S
*
n,q(| t − x |; x)

)
ω(f ; δ).

Now, applying Cauchy-Schwarz inequality we conclude that

S*n,q(| t − x |; x) ≤ S*n,q(1; x)
1
2 S*n,q

(
(t − x)2; x

) 1
2

so that
| S*n,q(f ; x) − f (x) |≤

(
1 + 1

δ S
*
n,q
(
(t − x)2; x

) 1
2
)
ω(f ; δ). (4.5)

Finally, putting δ = δxn,q =
√
S*n,q

(
(t − x)2; x

)
we get the assertion

Remark 4.2. Choosing δ = 1
[n]q+β in (4.5) we obtain the following estimate

|S*n,q(f ; x) − f (x)| ≤
(
1 + ([n]q + β)δxn,q

)
ω
(
f ; 1
[n]q + β

)
, (4.6)

where δxn,q is de�ned in (4.3).
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Remark 4.3. For q = 1 and α = β = 0 the corresponding estimate for the sequence of positive linear operators
{S*n,q} de�ned by (2.3) is reduced to {L*n}, which can take the form as

|L*n(f ; x) − f (x)| ≤ 2ω
(
f ; δxn

)
, (4.7)

where δxn =
√
L*n
(
(t − x)2; x

)
).

Now we give the rate of convergence of the operators L*n,q(f ; x) de�ned in (2.1) in terms of the elements of the
usual Lipschitz class LipM(ν). Let f ∈ CB[0,∞), M > 0 and 0 < ν ≤ 1. The class LipM(ν) is de�ned as

LipM(ν) =
{
f : |f (ζ1) − f (ζ2)| ≤ M|ζ1 − ζ2|ν (ζ1, ζ2 ∈ [0,∞))

}
. (4.8)

Theorem 4.4. Let S*n,q( · ; · ) be the operators de�ned by (2.3). Then for each f ∈ LipM(ν), (M > 0, 0 < ν ≤ 1)
and q ∈ (0, 1) satisfying (4.8) we have

|S*n,q(f ; x) − f (x)| ≤ M
(
δxn,q

)ν/2
where δxn,q is de�ned in (4.3).

Proof. We prove it by using (4.8) and Hölder’s inequality. First, as in the proof of Theorem 4.1, we have

|S*n,q(f ; x) − f (x)| ≤ |S*n,q(f (t) − f (x); x) |
≤ S*n,q

(
|f (t) − f (x)|; x

)
≤ MS*n,q

(
|t − x|ν; x

)
.

Therefore

|S*n,q(f ; x) − f (x)| ≤ M 1
gq(1)eq(a[n]q (x))

∞∑
k=0

Pk,q(a[n]q (x))
bλ+k+1[n]q

Γq(λ + k + 1)

1
1−q∫
0

Eq(−b[n]qqt)t
λ+k|t − x|νdqt

= M 1
gq(1)eq(a[n]q (x))

( ∞∑
k=0

Pk,q(a[n]q (x))
bλ+k+1[n]q

Γq(λ + k + 1)

) 2−ν
2

×
(
Pk,q(a[n]q (x))

bλ+k+1[n]q
Γq(λ + k + 1)

) ν
2

1
1−q∫
0

Eq(−b[n]qqt)t
λ+k|t − x|νdqt

≤ M

 1
gq(1)eq(a[n]q (x))

∞∑
k=0

Pk,q(a[n]q (x))
bλ+k+1[n]q

Γq(λ + k + 1)

1
1−q∫
0

Eq(−b[n]qqt)t
λ+kdqt


2−ν
2

×

 1
gq(1)eq(a[n]q (x))

∞∑
k=0

Pk,q(a[n]q (x))
bλ+k+1[n]q

Γq(λ + k + 1)

1
1−q∫
0

Eq(−b[n]qqt)t
λ+k|t − x|2dqt


ν
2

= M
(
S*n,q(t − x)2; x

) ν
2 .

This completes the proof.

Let
C2B(R+) =

{
g ∈ CB(R+) : g′, g′′ ∈ CB(R+)

}
, (4.9)

with the norm
‖g‖C2B(R+) = ‖g‖CB(R+) + ‖g

′‖CB(R+) + ‖g
′′‖CB(R+), (4.10)

also
‖g‖CB(R+) = sup

x∈R+
| g(x)|. (4.11)
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Theorem 4.5. Let S*n,q( · ; · ) be the operator de�ned in (2.3). Then for any g ∈ C2B(R+), x ≥ 0 and q ∈ (0, 1),
we have

|S*n,q(f ; x) − f (x)| ≤
1
2 δ

x
n,q(2 + δxn,q)‖g‖C2B(R+),

where δxn,q is de�ned in (4.3).

Proof. Let g ∈ C2B(R+). Then by using the generalized mean value theorem in the Taylor series expansion we
have

g(t) = g(x) + g′(x)(t − x) + g′′(ψ) (t − x)
2

2 ,

where ψ is between x and t, from which it follows

|g(t) − g(x)| ≤ M1|t − x| +
1
2M2(t − x)2,

where by using the result of (4.10) and (4.11) we have

M1 = sup
x∈R+

|g′(x)| = ‖g′‖CB(R+) ≤ ‖g‖C2B(R+),

M2 = sup
x∈R+

|g′′(x)| = ‖g′′‖CB(R+) ≤ ‖g‖C2B(R+),

again from 4.10, thus we have

|g(t) − g(x)| ≤
(
|t − x| + 1

2(t − x)
2
)
‖g‖C2B(R+),

since
|S*n,q(g, x) − g(x)| = |S*n,q(g(t) − g(x); x)| ≤ S*n,q(|g(t) − g(x)|; x),

and also
S*n,q (|t − x|; x) ≤ S*n,q

(
(t − x)2; x

) 1
2 = δxn,q

we get

|S*n,q(g; x) − g(x)| ≤
(
S*n,q(|t − x|; x) +

1
2 S

*
n,q((t − x)2; x)

)
‖g‖C2B [0,∞)

≤ 1
2 δ

x
n,q(2 + δxn,q)‖g‖C2B [0,∞).

This completes the proof.

The Peetre’s K-functional is de�ned by

K2(f , δ) = inf
C2B(R+)

{(
‖f − g‖CB(R+) + δ‖g

′′‖C2B(R+)

)
: g ∈W2

}
, (4.12)

where
W2 =

{
g ∈ CB(R+) : g′, g′′ ∈ CB(R+)

}
. (4.13)

There exits a positive constant C > 0 such that K2(f , δ) ≤ Cω2(f , δ1/2), δ > 0, where the second order
modulus of continuity is given by

ω2(f , δ1/2) = sup
0<h<δ1/2

sup
x∈R+

|f (x + 2h) − 2f (x + h) + f (x)|. (4.14)

Theorem 4.6. Let S*n,q(. ; .) be the operators de�ned in (2.3). Then for x ≥ 0, q ∈ (0, 1), n ∈ N and
f ∈ CB(R+) we have

|S*n,q(f ; x) − f (x)| ≤ 2M
{
ω2
(
f ;
√
∆xn,q

)
+ min(1, ∆xn,q)‖f‖CB(R+)

}
,

where M is a positive constant, ∆xn,q = δxn,q(2+δ
x
n,q)

4 is given in (4.3) and ω2(f ; δ) is the second order modulus of
continuity of the function f de�ned in (4.14).
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Proof. We prove this by using our previous result

|S*n,q(f ; x) − f (x)| ≤ |S*n,q(f − g; x) | + | S*n,q(g; x) − g(x) | +|f (x) − g(x)|

≤ 2‖f − g‖CB(R+) +
δxn,q
2 (2 + δxn,q)‖g‖C2B(R+)

≤ 2
(
‖f − g‖CB(R+) +

δxn,q
4 (2 + δxn,q)‖g‖C2B(R+)

)

By taking in�mum over all g ∈ C2B(R+) and by using (4.12), we get

|S*n,q(f ; x) − f (x)| ≤ 2K2
(
f ; δ

x
n,q(2 + δxn,q)

4

)
.

Now for an absolute constant M > 0 in [34] we use the relation

K2(f ; δ) ≤ M{ω2(f ;
√
δ) + min(1, δ)‖f‖}.

This completes the proof.
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