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Abstract: In this paper, we introduce the g-analogue of the Jakimovski-Leviatan type modified operators in-
troduced by Atakut with the help of the g-Appell polynomials. We obtain some approximation results via the
well-known Korovkin’s theorem for these operators. We also study convergence properties by using the mod-
ulus of continuity and the rate of convergence of the operators for functions belonging to the Lipschitz class.
Moreover, we study the rate of convergence in terms of modulus of continuity of these operators in a weighted
space.
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1 Introduction and Preliminaries

During the last two decades, applications of g-calculus have emerged as a new area in the field of approx-
imation theory. Lupas [1] was the first who introduced the g-analogue of the well known Bernstein polyno-
mials and investigated its approximating and shape-preserving properties. In 1997 Phillips [2] considered
another g-analogue of the classical Bernstein polynomials. Subsequently, many authors have introduced g-
generalizations of various operators and investigated several approximation properties (see, e.g., [3-13]).

Jakimovski and Leviatan [14] in 1969 introduced a new type of operators P, by using Appell polynomials
as follows. Let g(u) = >°7° anu", g(1) # 0 be an analytic function in the disk [u| < r (r > 1) and p;(x) =

Z{'(:o a,—% (k € N) be the Appell polynomials defined by the identity

gwe™ =" prlou. (11)
k=0

We consider the class of functions of exponential type which are defined on the semi-axis and satisfy the
property |f(x)| < ke% for some finite constants x, 9 > 0 and denote the set of such functions by E[0, o). In
[14], the authors considered the sequence of operators Py, with

e o k
Pulfin) = 5y D paont () 12

for f € E[0, o) and established several approximation properties of these operators.
If g(1) = 1 in (1.1) we get p(x) = %, and we recover the well-known classical Favard-Szasz operators defined
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by

Sn(f:x) = -"XZ(";‘,) ( ) (1.3)

Recently (see [15]), the g-Appell polynomials ]ak1movsk1-Lev1atan type operators have been defined by

acr. - Ea(=[nlgx) N Agg([nlgx) (@)
0 Thm 2 M \Tnlg) 14

where the g-Appell polynomials [16] are defined by means of generating function A4(t),

Aq(t) = ZAn,q[T]q!, Aq(l) # 0:
n=0
which is an analytic function in the disk |¢| < 7 (r > 1), and

An,q(X) = Z |: Z
k=0

An—k,qu (neN),
q

Aq(t)eq(tx) = ZAn’q( [ ] 1 (0 <qg-< 1)
n=0

Here and in the following, let C, R and N be the set of complex numbers, real numbers and positive
integers respectively, and let Ny := NU {0} and R* = [0, o).

Also for f € L1[0, o) the integral type Jakimovski-Leviatan operators given by Atakut (see [17]) are

defined as follows:
1

1-

Zpk(an(x))ﬂ / e f(odt, (15)

Lu(fi) = T'A+k+1)
0

(1)

where A > 0 and {an}, {bn} are increasing and unbounded sequences of positive numbers such that
limpoe k=0, f2=1+0(%).

Motivated by the above discussed work, we define g-generalization of operators (1.5) (see [17]).
We now present some basic definitions and notations of the g-calculus which are used in this paper.

Definition 1.1. For [g| < 1, the basic (or g-) number [A], is defined by

_ A
11 _2 AeC)
i, - (1.6)
n-1
qu=1+q+q2+...+qn71 (/1=YIEN).
k=0

Definition 1.2. For |g| < 1, the basic (or g-) the g-factorial [n] ! is defined by

1 (n=0)

! =% 1.7)
’H [k (neN).
=1

Definition 1.3. For |g| < 1, the generalized basic (or g-) binomial coefficient

2 } is defined by
q

_A.
[ A } ) (((Jqq()]) (") a®  @smneny. 1.8)
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Forg,v € C (|g| < 1), the basic (or g-) shifted factorial (A; q)v is defined by (see, e.g.,[18-20])

S}

o -1 (1502

LI\ T (g <1; A2n, veQ), (1.9)
j=0
so that
1 (n=0)
(A; Q)n = n-1 X
I (1 —/\q’) (neN)
j=0
and
A Qoo = H (1 —/lqi) (lgl < 1; A=z n). (1.10)
j=0
Definition 1.4. For |g| < 1, the basic (or g-) exponential function e4(z) of the first kind is defined by
eq(2) -=§: & 1 (1.11)
T g0 B '
Definition 1.5. For |g| < 1, the basic (or g-) exponential function E4(z) of the second kind is defined by
o k
Nz
Es2) =3 q0 = (-2} @)ew. (112)
1 g T @ 1
Remark 2. It is easily seen by applying the definitions (1.11) and (1.12) that
lim{eq((1-¢)z)} =€ = im{E4((1 - g@)z)}and  eq(z) - Eq(-2) = 1. (1.13)
qg—1 qg—1
Definition 1.6. For O < |g| < 1, the g- analog of the derivative, denoted by Dy, is defined by (see, e.g., [21])
f0) - f(gx)
Dgf(x) = ——-""2, x#0. 1.14
of 0= TG0, x (1.14)

If f/(0) exists, then Dqf(0) = f'(0). As g tends to 17, the g-derivative reduces to the usual derivative. Clearly,
if f is differentiable, then

. _f)-flgx) _dfx)
qlgrllfqu(X) T o (Q-gx  dx’ x#0.

(1.15)
It is easy to check the g-analog of Leibniz’s rule
Dqlf(x)g(x)] = f(gx)Dgg(x) + g(x)D4f (x). (1.16)
Proposition. ([21]) For0 < |g| < 1andn € N,
Dy(1 +x)g = [n]q(1 + qx)g"1 (1.17)
and
D, { a +1X)Z } - J[r”)](‘)lgﬂ . (1.18)

Definition 1.7. For O < |g| < 1, g-analog of integration, is defined by (see, e.g., [22])

1 oo
[ foodex= -3 fiaa, (119)
o i=0
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which reduces to fol f(x)dx in the case of g — 17. More generally, the g-Jackson integral from O to a € R can
be defined by (see, e.g., [23, 24])

[ fo0dgx -ai-0)Y" flaghe' (1.20)
0

i=0
provided the sum converges absolutely. The g-Jackson integral on a general interval [a, b] may be defined by
(see, e.g., [23, 24])

b b a

/ fOdgx = / .f(X)qu— / .f(X)qu- (1.21)

a 0 0

The g-Jackson integral and g-derivative are related by the fundamental theorem of quantum calculus which
can be restated as follows, (see, e.g., ([24], p. 73)).

Definition 1.8. For |g| < 1, the basic (or g-) Gamma function I'4(z) is defined by

U )P )
Iy(2): @ ) 1-9 (gl < 1; z€ ©), (1.22)
so that
(}grrg{Fq(Z)} =I(2)

in terms of the familiar (Euler’s) Gamma function I'(z).

Here the two representations are based on the following remarkable function (see [25, p. 15])

_ gttt CH D= (A9

K0 - A7 o e (e B (1.23)
where .
Iq(a)} = / x“Eq(g(1 - @x)dgx  (a>0) (1.24)
0
and
e
(@} = K(4; ) / K leg(-(1 - @dgx (@ > 0). (1.25)
0

Remark 3. In terms of the basic (or g-) Gamma function I';(z) defined by (1.22), the generalized basic (or g-)

binomial coefficient { t } in (1.8) can by extended to the following form:
q

A _ Fq(/“l'l)
% q_ TFgA-v+1Iy(v+1)

(q/l—v+1’ qv+1; q>
) (g, g™1) = (Ig] < 1; A,ve Q). (1.26)

2 Construction of Operators and Auxiliary results

Appell polynomials were introduced by Appell in 1880 (see [26]). In 1967, Al-Salam [27] introduced the family
of g-Appell polynomials {An,q(x)}eg, and studied some of their properties.



DE GRUYTER OPEN Approximation by g-analogue of modified Jakimovski-Leviatan-Stancu type operators = 179

In this paper, we define g-generalization of Jakimovski-Leviatan operators defined by (1.5) as follows:

x 1 nd
Lnq(f3x) = Wa[n]q(x)) gpk,q(a[n]q(x))Qn(t), 21
where )
b/\+k+1 T Aok
Qn(t) = 1 Eq(—bnqt)t f(t)dqt

TgA+k+1)
0

forx € [0, =), gn € (0, 1] and with the same notations {apy,, tand {by,, }givenincreasingand unbounded
sequences of positive numbers such that

a
lim L -0, M _q, o( L ) 2.2)

n—eo [n]q b[n]q [n]qn

It is easy to verify that if gn — 1, these operators turn into the classical one.
Here we also introduce g-analogue of modified Jakimovski-Leviatan-Stancu type operators and obtain better
approximation results. Let a, 8 € R such that O < a < B. Then for x € [0, 00), ¢ € (0, 1],

SRV S - a,p
S0 = T eqtayy, 000 2 P (D 0 23)
where 3
(t) bft’:jlt:*-l 1 E ( b t)t/ka [n]qt+a d t
TG keD) J P 1 [nlg+p )"

If we take a = B = 0 in (2.3), then the operators S n,q(f ; x) reduce to operators defined by (2.1).

Lemma 2.1. Let L:,,q( -3 ) be the operators given by (2.1). Then for all x € [0, 00), q € (0, 1) and eachn € N,
we have the following identities:

(1) Lyg(1;x) =1
% . _ (n g,(1)
() Lpqg(t;x) = (be) X+ T (/\ +1+ gq(l))

2
* 2y _ (9 2, 2ap 8,(1) g,(1) | g/ (1)
(B) Ly q(t55x) = (b[an) x? + bfn]qq (}t +2+ gZ(l)) X+ 5 ((A +DA+2)+ 200+ 2) 55 + ))

Proof. Using (1.1), it can be easily seen that

ZPk,q(a[n]qX) = gq(l)eqa[n]qX, (2.4)
k=0
> KPrg (@, 2) = (84(1) + @iy, 84(DX) eqapn, X, 255)
k=0
Z ksz,q(a[n]qx) = (g;’(l) + 2a[n]qg;(1)x +8q(1) + a[zn]ng(l)xz) eqa[y, X- (2.6)
k=0
(1) Forf=1
A+k+1 ﬁ
* eq(- a[n]q(x)) [lg Lk
Ln,q(l; X) = W Z Pk q(a[n]q (X))m Eq(—b[n]qqt)t dqt
0
_ eq(_a[”]q( X)) i A+k
= qu(l)eq(a[n] (X))m /Eq( —gt)t" " dqt



180 —— Mohammad Mursaleen, Mohammad Nasiruzzaman, and Abdul Wafi DE GRUYTER OPEN

(2) Forf =t
A+k+1 qu
Lyg(t;x) = szk q(a[n]q(x))% Eq(-byy, g0t dgt
0
_egl-ap, () & 1 b .
B szk q(a[n]q(x))m/Eq( qt)t d t
el 0, ke I ot i
T a2 e Ry | R
A+ Deg(-ap, x) & e(anq( $9)
g 2 Pl 00 %Zkqu(a[n] )
(A + Deg(-apy, () eq(-ap; 00) /
- b[n]ng([l)]q 8q(Deq(ap,,x) + ZM% (gq(l) + a[n]ng(l)x) eq(ap,,x)
- ], gé](l))
b[n]ux+b[n]q (A w q(l) '
(3) Forf = t?

1
A+k+1 1-q

b
[nlq A+k+2
E Py, q(a[n]q(X))m Eq(—b[n]qqt)t dqt
0

eq(- a[n]q(x))
8q¢(1)

L:l,q(tzix)

eq(-agy, () & b

= W Zpk q(a[n]q(X))m /Eq(—qt)t/“k*qut

1

_egl-ap, (X)) & A+k+DA+k+2) [
- 7g & Zqu( (n], %)) bzn T+ k+3)

Eq( qt)t/\+k+2d t
0

A+ 1)(/1 + 2)€q( g, () Zp (apy, ()
_ k,q\%n],

] gq(l)
20+ 3 n .
s )eq;qg)] Wy Z kPy q(a[n] (x)) + 651(61[[];((1))) Z kZPk q(a[n] (x)
[n]q [n]q

A+1)A+2) (2A+3 (1)
_ +b)2( + )+(b2+ )(§2(1)+an]qx)

[nlq [nlg

1 <gé,’(1) . gq(1) . <2g2,(1)
]

+1) ap x +a? xz),
b2 \8q(1) gq(1) gq(1) ) [nlq [nlg

[nq

O

Lemma 2.2. Let Sy 4(-; -) be the operators given by (2.3). Then for all x € [0, %), q € (0,1) andeachn € N,

we have the following identities:

S:l,q(1§ x) =1;

* oo _ ( [n] ) 1 [n] g,(1) a
Snq(t;X) = ([n]qzﬂ) (me) X By ([nlqiﬂ) (A 1+ %) * Wl
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2
[n]q) Anl, | 2
( [nlq + B (b[n]q> ¥
Za[n n]q ) 1 [n]q ( gi](l)) a
(b[n]q> [nlg + B (b[n]q il + B\ 2 gq)) Tl + B ) ¥

[n]q ( gq(l) f;’(l)>
+ b[] ([n]q+ﬁ> A+1D)A+2)+2(A+2) 2g(D) gq(l)

1 2[n]qa)( gi;ﬂ)) ( a )2
’ b[n]q ([n]II"’ﬁ A+1+gq(1) " [n]q*’ﬁ ’

Proof. From (2.3) and Lemma 2.1, we have

3° S:l,q(t2§ x)

+

« oyl
Sn,q(t; x) [l + BLn ¢ x)+[ ]q BLn ¢(1;x),

(i) = [“]q)Z*Z. _2nlga ;- (0‘)2* .
S""I(t 5X) ([n]q +B Ln,q(t 3X) + ([n]q +B)2 Ln,q(t»x) + [n]q B Ln,q(l,x).
Hence it can be easily proved.

It is also interesting to find Ly, ,((t - x); x) and Sy, 4((t - x)/; x) forj = 1, 2.

Lemma 2.3. Let the operators L;,q( -3 +) be given by (2.1). Then for each x = 0, q < (0, 1), we have

* ) 1 gé,(l))
Ly g(t-x;x) = 71 |x+ </I+1+
" (b[n]q ) by, 8q(1)
a 2 a (1) a
Mo 1) x4 2 e g (/\+1+gq )+ ) &
b[n]q by, \ \ P, g(1)) by,

gq(l) ”(1)>
(()l+ DA+2)+2(A+2) 2,() gq(l)

L o((t - 0?5 x)

+

2
b[n]

Proof. From the linearity property we have
Lnq(t = x3%) = Ly g(t; %) = xLp ¢(15 %)
Ly g((t = )%5%) = Ly g(¢%5%) = 2xLy, 4 (t; X) + X* Ly, (15 ).
It can be easily proved from Lemma 2.2.

Lemma 2.4. Let the operators S;,q(- ; +) be given by (2.3). Then for each x = 0, q < (0, 1), we have
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Sy (t-x3%) = [nlg_ 9, _ 1] x+ ( [nlq ) 1 </t+ 1+ g&(l))
4 [nlg + B by, [nlg+B) \ b, gq(1)
Qpy, [n] ’
[n]q n q 2
-1] x
(b[n]q [n]g +B >
2 [nlq { A, [nlq ( gﬁ,(l)>
+ 1 -1)(A+1+
bpy, [nlg + B\ \ by, [nlg + B gq(1)
apy,  [ng ( ), b[n]q) }
+ +a - X
by, [nlg + B [nlg+B Inlq

1 ([ Inl )2 ( gy(1) g:;(l))
+ ([n]q+ﬁ (}l+1)(}l+2)+2(/1+2)gq(1) + 20D

1 Z[n]q(x>( gg(1)) ( a )2
" b, (["]q+ﬁ A+1+gq(1) "\l,+8) -

Sn.q((t = %)% x)

3 Main Results

We obtain the Korovkin type and weighted Korovkin type approximation theorems for our operators defined
by (2.1).
Let Cg(R") be the set of all bounded and continuous functions on R*, which is a linear normed space
with
Ifllc, = sup [f(0)].
x=0

Let
Cl0,00) := {f € C[0,00) : [f(8)] < M(1 + £)¢ for some M > 0}.

H:= {f € C[0, o0) : 1f£)22 is convergent as x — oo}.

Theorem 3.1. Let g = gn satisfy 0 < gn < 1 with limp—e gn = 1 and Sy 4(+; -) be the operators defined by
(2.3). Then for any function f € C¢[0,00) N H, { > 2 and x € [0, o)

lim S 4,(f3 ) = f()
n—oo
uniformly on each compact subset of [0, o).

Proof. The proof is based on Lemma 2.2 and well known Korovkin’s theorem regarding the convergence of a
sequence of linear positive operators. So it is enough to prove the conditions

lim Sy, (F5x) =X, j=0,1,2, asn— oo
n—oo

uniformly on [0, oo].
Clearly ﬁ — 0, (n — oo) we have
lim Sp g (6X) =x, Lm Sy 4 (¢%5%) = x*.
n—oo n—oo
This completes the proof. O

Following Gadziev [28, 29] (see also [30-32]) we recall the weighted spaces of the functions on R*, as well as
additional conditions under which the analogous theorem of Korovkin holds for such kind of functions.
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Let x — ¢(x) be a continuous and strictly increasing function and p(x) = 1 + ¢(x), limy—_eo o(x) = oo.
Let Bp(R*) be a set of functions defined on R* and satisfying

If6I| < Myo(x),

where My is a constant depending only on f . Its subset of continuous functions will be denoted by C,(R"),
i.e., Co(R*) = Bp(R*) N C(R*). It is well known that a sequence of linear positive operators {L,}n»1 maps
Co(R*) into Bp(R*) if and only if

|Ln(g; X)| < Ko(x),

where x € R* and K is a positive constant. Note that Bo(R") is a normed space with the norm

— eyn SOOI
Iflle = sup 000 "

Finally, let CB(]R*) be a subset of Cp(R*) such that the limit
fx)

A0

exists and is finite.

Let B[O, 1] be the space of all bounded functions on [0, 1] and C[0, 1] be the space of all functions f
continuous on [0, 1] equipped with norm

flles = Sup]lf(x)l, feclo,1].

x€[0,1

The famous Korovkin’s theorem states as follows:

Theorem 3.2 (cf. [33]). Let {Ln}ns1 be the sequence of linear positive operators acting from C[0, 1] into B[O, 1]
Then

lim || L(t5; x) - x| = 0 (k = 0, 1, 2).

n—oo

ifand only if for all f € CJ[0, 1]
Jim, [[La(F(03) = e = O.

Theorem 3.3. Let {Ln}ns1 be the sequence of linear positive operators acting from Co(R*) into Bo(R*) satisfying
the conditions
Jim (| La(@“ (00 - 9“0l = 0 (k = 0,1, 2)

then for any function f € Cy(R"),
Jim || Ln(f(6); ) - f]lo = O

Proof. For the completeness, we give some sketch of the proof for the version which will be used in our next
result. Consider ¢(x) = x, p(x) =1+ x?, and

| Ln(t*; x) - x* |

L tk;x -xX, = su
L0520 = Xl = sup ==

Then for k = 0, 1, 2 it is easily proved that
lim ||La(t%; x) - x¥||p = 0.
n—oo

Hence by using Korovkin’s theorem, for any function f € C8(]R+), we get

Jim [[La(f(6); X) = flle = O-
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Theorem 3.4. Let q = qn satisfy 0 < qn < 1 with limp—c gn = 1 and S:,,qn(- ; +) be the operators defined by
(23) and g(x) = 1 + x*. Then for f € CH(R") we have

Tim (S5, (/3 ) ~ fllg = 0

Proof. Using Theorem 3.3 for ¢(x) = x and p(x) = 1 + x?, we consider

| Sngn (P50 =X |
1+x2

>

1Sn,4.(¢'5 %) = ¥||g = sup
x>0

forj=0,1,2.
According to Lemma 2.2 for j = 0 it is obvious that | S;,qn(l ;x) — 1 |= 0, and therefore

Jim [[Sn,q,(1;%) = 1fle = O

Forj=1
| Sna, (0~ t]_ A, 1 g4, (1) 1
su 2 n—1fs + A+1+ 22 su
XE(F,) 1+ x2 | b[n]qn ’ x>O 1+x2 b g, } 84.(1) | 0 1+x2°
Therefore
1im [/S7,q,(t ) = x[g = 0
Forj=2
* a>
| Shy g, (t250) = x| Afn), fp) gq,(1) X
>4n < n_q an ]+ 2 qn
x=0 1+x? = ’b[n] ‘sxl:(?1+ 2 b[n] ¥ (1)‘S w0 1+x2
qn q
gq,(1) gq"(l) 1
+ A+1DA+2)+2(A+2) su .
bfn]q | (D " gD T2

Hence we have
. * 2 2
lim_ 1S, g, (%5 X) = x7[lo = O

4 Rate of Convergence

Here we calculate the rate of convergence of operators (2.1) by means of modulus of continuity and Lipschitz
type functions.

Let f € Cg[0, o] be the space of all bounded and continuous functions on [0, o) and x > 0. Then for
6 > 0, the modulus of continuity of f denoted by w(f, 6) gives the maximum oscillation of f in any interval of
length not exceeding 6 > 0 and it is given by

w(f,8) = sup [f()-f(X) ], t€][0,00). (4.1)

|t-x|<6

It is known that limg_,, w(f, §) = 0 for f € Cp[0, o0) and for any 6 > O one has

t-
10 -feol= (5 1) w0, 4
In the sequel we use the following notations:
Bhig = /Sna (=02 ), “3)

where by using the Lemma 2.4, we have
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2

Ay, [nlg 2
(b[n]q [nlq + B 1) *

2 [n]q A, [nlg ( gi,(l)>
i, [n]q+ﬁ<<b[n]q [l + B 1) M em) )"

2 [n]g [ 9m, [nlq ( A, b,
b[n]q[n]q+ﬂ< By, Inlg+ "~ \[nlg+5 ~ Tnlg ))"
. g | z;(l))
b2, \Inlq+pB

[n]q gq(l) gq(l)

1 2[n]qa>< gi;(l)) ( a )2_
+b[n]q <["]q+ﬁ A+1+gq(1) * [nlg+B) "’

for 0<g<1,0<a<pP, a,feR

(Z—:—l)x+b2n(<g—:—l)</1+1+g((11))) >x

i( [nlg ) ((/1+1)(/\+2)+2(/1 +2)

X
5n,q =

1 &)

Here when g = 1, a = B = 0, then 6% 4 is reduced to &5 = /L, ((t - x)?; x).

Theorem 4.1. Let S:,,q(- ; +) be the operators defined by (2.3). Then for f € Cp[0, o0),

we have
Sh.q(f3 ) = F00] < 20 (£ 8%.4)
where 67, 4 is defined in (4.3).

Proof. For our sequence of positive linear operators {Sp,4(.; .)} we have

Sng(F3) =) = Suglf3x) = f()Sn,q(15%)
Snq (F(O - f(); %)
Snq (I F(O-f() ;%)

Snaq (1+ | t:sx I;x) w(f; 6)

IN

since Sy 4(1; x) = 1. Using (4.1) and (4.2) we get

IN

[Sn,q(F320) = F

Now, applying Cauchy-Schwarz inequality we conclude that

1

Snaall €= X152 = S3g(13207 36 (€205 %)

so that

1140539~ F00 1= (1+ 3 (0= 05x) ) 0l

Finally, putting 6 = &5 4 = 1/Sn,q ((t - X); x) We get the assertion

Remark 4.2. Choosing § = in (4.5) we obtain the following estimate

[]+/3

1S g(Fs )~ £GO] < (1+ ([nlg + PSL.q) w (f; #> ,

[n]g + B
where 6% 4 is defined in (4.3).

((/\+1)(/1+2)+2(/1+2)g(1) H(l)); forg=1, a=5=0.

(1 N %s;,qq t—x I;x)) w(f; 5).

qg<c(0,1)andn € N

(4.4)

(4.5)

(4.6)
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Remark 4.3. For g = 1 and a = 8 = 0 the corresponding estimate for the sequence of positive linear operators
{Sh,q} defined by (2.3) is reduced to {Ly}, which can take the form as

Ln(f5 %) = (0] < 2w (f; 6%) , 4.7)
where 6% = /Ly, ((t - x)%;x)).

Now we give the rate of convergence of the operators L;,q(f ; X) defined in (2.1) in terms of the elements of the
usual Lipschitz class Lip(v). Let f € Cp[0, o0), M > 0 and O < v < 1. The class Lipy(v) is defined as

Lipu(v) = {f : [f(§1) - f(§2)] = M[{1 = &o]" (61, $2 € [0, 00))}. (4.8)

Theorem 4.4. Let S;,,q(-; -) be the operators defined by (2.3). Then for each f € Lipy(v), (M >0, 0<v<1)
and q < (0, 1) satisfying (4.8) we have

1Snq(F32) = F0O)| < M (8%,4)""

where 67, 4 is defined in (4.3).

Proof. We prove it by using (4.8) and H6lder’s inequality. First, as in the proof of Theorem 4.1, we have

|Sn,q(F3 %) = F)| Sn,q(F(6) = F(); %) |
Snq (If () = FO); %)
MSyq (It -x]";x).

IN

IN

IN

Therefore
1 L) f1+]k+1 rl'l
* . _ e _ mlg _ +kig v
[Snq(f; %) - f)| < gq(l)eq(a[n]q(x))kX;Pk,q(a[nlq(x))qu o | B bi, gDt - X["dqt
= 0

2-v
2

_ 1 = by,
Mg eg(ay, 0) (g Pralam, O a5

1
v o135

fl+]k+1 2
n +k v
X (Pk’q(a[n]q(X))Fq(/\-l-qk-i-l)> / Eq(—b[n]qqt)tA |t—X| dqt

0

1 2-v
1 2
A+k+1 -9

hnd b

1 [n]q _ +k

gaDieq @y, 00 2 e @ O e | Fat-bua, a0t
= 0

IN

v
1 2
-

A+k+1
1

oo q
[n] +k 2
X —EP ap) (X)) =——-=2—— [ Eq;(-b Ot - x2dgt

8q(Leq(ap,, () +— i ))Fq(/l+k+1) ) (b, 4O~ X" dq

= M (S;,q(t - x)z;x)% .

This completes the proof. O

Let
C3R") = {g e Cp(R): g, g" € CyRM}, 4.9)
with the norm
||g||cg(R+) =1gllc,me + Hg/HCB(R") + HgHHCB(]R*)’ (4.10)
also
18]l csmey = sup [ 8] (4.11)
XER*
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Theorem 4.5. Let Sy, 4(-; -) be the operator defined in (2.3). Then for any g € C3(R*), x=0andq € (0, 1),
we have 1
|S:z,q(f; x) = f)] < E‘ﬁ,q(z + 5;,q)“g“C§(R+)’

where 67, 4 is defined in (4.3).

Proof. Letg e C,23 (R*). Then by using the generalized mean value theorem in the Taylor series expansion we
have

(t-x)?

8O =g +g' Mt -x)+g" (W) 5

where 1) is between x and ¢, from which it follows
1
1g(6) - g(x)| < Myt - x| + §Mz(t -x)%,
where by using the result of (4.10) and (4.11) we have
M, = sup g'(0)| = 11 ll ¢y < I8l c3 @)
xXER*
M; = sup [g"(0)] = 18" llcy) < I8llcz s
xXER*

again from 4.10, thus we have

190 - 80 < (|t—x| ; %(r—x)z) I8l caceer

since
|Sh,q(8: X) — 80| = [Sn,q(g(t) - g(x); X)| < Snq(18(6) - 8|5 X),
and also 1
St (= x1:0) = Snq ((E-20%5%) " = 81
we get
* * 1 *
‘Sn,q(g; x)-gx)| = (Sn,q(|t - Xx[;5x) + Esn,q((t - X)Z;X)> ngcé[o,w)
1

< 55;(1,(1(2 + 5ﬁ,q)\|g|\c§[o,oo)-

This completes the proof. O

The Peetre’s K-functional is defined by

s _ 1" . 2
K26,8) = inf {(If = 8llcymer + 018 cyme) 8 € W} (412)
where
W? = {ge Cp(R"): g, 8" € Cy(R)}. (4.13)

There exits a positive constant C > 0 such that K»(f, 6) < Cw-(f, 81/ 2). & > 0, where the second order
modulus of continuity is given by

w>(f, 51/2) = sup sup |f(x+2h)-2f(x+h)+ f(x)|. (4.14)
0<h<61/2 xeR*

Theorem 4.6. Let S:,,q(. ; .) be the operators defined in (2.3). Then for x > 0, q € (0,1), n € Nand
f € Cg(R*) we have

SnaaFs ) = £0O1 = 20 { w3 (f3 /A4 ) + min(, 43,y }

8, (248, )
I

where M is a positive constant, Ay, 4 = is given in (4.3) and w;(f; 6) is the second order modulus of

continuity of the function f defined in (4.14).



188 —— Mohammad Mursaleen, Mohammad Nasiruzzaman, and Abdul Wafi DE GRUYTER OPEN

Proof. We prove this by using our previous result

1Sn.q(f =85 ) | + | Sn.q(g; x) — 800 | +[f(0) - 0|

1)
Z’q (2 + 6n,9)llgll 2 ey

[Sn,qg(F30) = F0)

IN

IN

2[If - 8llcym) +
X
n

)
2 <|\f—g||CB(R+) + 4’q(2 + 5§,q)||3||cg(u§+))

IN

By taking infimum overall g € C%(R*) and by using (4.12), we get

n,q(2 + 5’,2,4))

1Shq (30 = FG)] = 2K, (f; .

Now for an absolute constant M > 0 in [34] we use the relation

K> (f; 8) < M{w,(f; V8) + min(1, 8)|f| }.

This completes the proof. O
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