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Abstract: The purpose of this paper is to establish the rate of convergence in terms of the weighted modulus
of continuity and Lipschitz type maximal function for the g-Szasz-beta operators. We also study the rate of
A-statistical convergence. Lastly, we modify these operators using King type approach to obtain better ap-
proximation.
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1 Introduction

In the last decade, approximation of functions by linear methods of convergence has been extensively studied
by making use of the g-calculus. Lupas [1] introduced a g-analogue of the classical Bernstein polynomials and
established its approximation and shape preserving properties. Subsequently, Phillips [2] proposed another
generalization of Bernstein polynomials and obtained the rate of convergence and Voronovskaja type asymp-
totic theorem. After that many researchers started working in this direction and introduced the g-analogues of
several sequences of positive linear operators. We mention here some of the important papers in this direction
(cf.[3, 4] and [2, 5-7] etc.). Gupta, Srivastava and Sahai [8] discussed the rate of convergence in simultane-
ous approximation by Szasz beta operators. Recently, Gupta and Mahmudov [5] introduced the g-analogue
of Szasz -Mirakyan-beta type operators as follows: for every ne N and qe (0, 1),the positive linear operator
DY is defined by

oo oo/A
DIG(O.0 = 358,00 ¢V [ P2 (0F(0dgt,
k=0 0

where
g oy (Mlg0* o 1
S0k =000 9 B0
and
1 tk
Pz’k(t)=

Bg(n, k+1) (1 + )prhet”

for x € [0, o) and for every real valued continuous function f on [0, oo). They also studied a local approxi-
mation theorem, degree of approximation for a Lipschitz class and the rate of convergence of these operators
for a weighted space. Subsequently, Yiiksel and Dinlemez [9] gave an alternate form of these operators as
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follows: for 0 < g < 1and v > 0, let f € C,[0, o0) := {f € C[0, o) : |f(t)| < M(1 + t7), for some M > 0},

endowed with the norm ||f||y = sup 1|f JE?L , the gq-Szasz-Mirakjan-beta type operators are defined as
O<t<oo
oo oo/A
Bug(f, ) = 389,00 / b9 (OF(Ddgt, )

o 0 ’

where
. ~[nlgx
q - q
Sp ) = ([n]gx) G

and

P
By(k +1,n)(1 + )1’

bz’k(x) =

They obtained a Voronovskaja type approximation theorem in the space of continuous functions weighted
by p(x) = 1 + x2. For a detailed account of other significant research in this direction we refer to [10, 11]. For
the definitions and notations of g calculus one can consult [12].

In the present paper, we study the rate of convergence of the operators defined by (1) in the same weighted
space, the Voronovskaja type theorem for A-statistical convergence, the rate of A-statistical convergence in
terms of the modulus of continuity. Finally to obtain better approximation, a modification of these operators
is given and a local approximation theorem is derived using King type approach. The paper is organised as
follows: Section 2 is devoted to some definitions and auxiliary results and in section 3 we prove the main
results of the paper.

2 Preliminaries
For simplicity, we define F5(n)q = [}_o[n - ilg and F{(n)q = [];_o[n + ilg.

Lemmal. [9] Leten(t) = ™, m=0,1, 2, 3, 4. Then for every q € (0, 1), we have
1. Bn,q(e(), X) = 1.
_ [n] 1
Bn,q(ely X) = qua(anl)qX + ng(rlfl)q’

S L R S v 1 2]
Bn,q(e2;x) = q"’F{(nq—l)qX + q5F{(n—g)q + q3F1(nq—1)q’

2.
3
4. Bpgles, x) =
5

[ 3, (SlerqRR)inl; | (2004dg+a’R1Inly . [21,03],
quFg(n—l),,X q'1F;,(n-1)4x? q°F;(n-1), X q°F;(n-1);’
[nl; ([71g+4[514+q* 21D, (5141614 +q213 1614 +q7[2]3 414 +q* [21)nl;
Bn,q(€4, X) = qZOF;(:_Dq 4 qi;lwl:gf_l)qq anB + a1%%*q qq17q;§q(n_1q)q a4 12 anZ
N ([212[4141514+4°[214[514+4° [2]4[31,)[n]q x + 12aBlal5lg
qtF;(n-1), q1OF;(n-1)4°
Consequently,
([nlg - g*In - 1lg)x + q
B t—-x); = ,n>1
n,q((£ = x); ) -1l n
and
[nlg 2[n] 2 [2]5[nlq 2
Bng((t-x%x) = < 1 +1- T )x*+ 1 - x
4 q°[n - 1]4[n - 2]4 q*[n-1]4 @°ln-1lgln-2]q qln-1]q

N [2]4
@’ln-1lgln-2]g°

= n,q(x), (say).

n>2
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Now let us consider the following Lipschitz-type space [13]:

lt-x|"
(t+x)?
where M is a positive constant and O < r < 1. Erencein [14] obtained the rate of convergence of the generalized

Baskakov operators for functions belonging to the space Lipl*w(r). We also study such a kind of result for the
operators defined in (1).

Lipy(r) = {fe €10, 09) : [F(6) - f()| < M £20 and x € (0, ,x,)}

Lemma 2. Forall x = 0 andn > 2, we have

Bn,q(|t = x[5X) < \/¥n,q(x).

Proof. We may write Bn,q(|t — x|;X) = Y100 ST, (0) [5° bl (B)]t - x|dgt.
Applying the Cauchy-Schwarz inequality we obtain

Bug((t - x|;x) < Zs k(x)(/ b k(t)(t—x)qut)i(/Owbﬁ,k(t)dqt>i

Again, applying the Cauchy-Schwarz inequality and Lemma 1 we find that

N

Bng(t-x|;x) < (qu k(x)/ bl (t)dq ) <Zk 0SE00 [ bl (Ot -x2dg )

\/Bn,q((t -x)%;x) = \/’Yn,q(x)-

This completes the proof. O

3 Main Results
3.1 Direct Results

Theorem 1. Let O < r < 1 and f € Lipy(r). Then for all x > 0 and n > 2, we have

[Bn,qg(f32) - F() < M(%(X)) g
where yn,q(x) is defined as in Lemma 1.

Proof. By our definition for fe Lipj*w(l), using Lemma 2 we have

|Bn,q(f; x) = f(X)]

IN

Z Sp0) /O ) b (O (O) - f(0)|dgt

st [ b0 e

k=0

IN

IN

o zs £ [ 8,0l xidat



DE GRUYTER OPEN Rate of convergence of Szasz-beta operators based on g-integers =—— 133

Applying Holder inequality two times with p = = and q = 5= we obtain

M [« = r
Brglf 0~ F00] < (X);{ZSZ,N)( | va00e-x )qu> ([ e (r)dq)}

{(ZS k(x)/ b9 (Ot - x\r)l’dq) (ZSz’k(x)/mbﬁ’k(t)dqt)E}
k=0 0

() (Bnq(|t X| X))%(Bn,q(kx))%

_ M(Wn,q(x))£
X

which completes the proof. O

In order to establish the weighted approximation properties of the operators (1), we define the space C5 [0, o)
as follows:

C2[0,00) = {f € C2[0, 00) : liMy—seo 1'f fX,Z‘z < oo}

For some other important papers in this area please see [15, 16].

Theorem 2. Let O < gn < 1 and A > 0. Then for each f € C4[0, =0), the sequence Bn,q,(f; X) converges to f
uniformly on [0, A] if and only if lim g, = 1.
n—oo

Proof. The proof of the theorem follows along the lines of the proof of Theorem 1 in [17]. Hence the details
are omitted. O

Theorem 3. Let 0 < gn < 1 and gn — 1, as n — oo, Then for each f € C5[0, o) and a > 0, we have

llm sup ‘B”yqn(f;x);—{(x)‘ -
P xelo,00) (1 +x2)

Proof. Let xy € [0, oo) be arbitrary but fixed. Then
Bng, (F5) - fOO] \Bn ;0 -fOII | |Bn a.(f3 X) - f(x)|

sup

xelo,e) (1 +x2)1H¢ - X<X0 (1 +x2)t* X>Xo (1 +x2)t*
|Bn,g, (1 + ;%) [f ()|
<||B - + su - +su
|| n,qn(f) fHC[O,Xo] ||fH2 x>XI;) (1 + X2)1+a X>XP0) (1 + X2)1+“
= L+ +13,say. 2
Since |f(x)| < ||f||2(1 + x?), we have sup,oxO% < (1H+f)11%2)“
Let € > 0 be arbitrary. We can choose x to be so large that
Ifll2 €
<€, ©)
(1+x3)* 6
In view of Theorem 2, there exists a n; € N such that
|Bn,g, (1 + % X a +x%)|Ifll2 L€
1]l L+ x2)Ta L) +3, vnzmn.
Hence
|Bn,g (1+t2;X)| [1f1]2 €
su = < + =, Vn=2=n;j. 4
Hf2|| X>XIE)) (1 + X2)1+a (1 + X(Z))a 3 1 ( )
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Thus, combining (3) and (4)

IZ+I3<%+§+2=§,Vnzn1 (5)

Using Theorem 2, we can see that the first term of the inequality (2) implies that

€
[1Bn.q.(F) = fllcio.xo) < 3 Y1 2 12 6)

Let ng = max(n, n,). Then, combining (2), (5) and (6) we get the desired result.
For f € C5[0, o), the weighted modulus of continuity is defined as

_ [fGc+ h) - FO)l
Q,(f, 6) = sxgc?ofﬁﬁa T O

Lemma3. [18] Iff € C5[0, o), then

1.  Q,(f, 8) is a monotone increasing function of 8,
2. lim5H0+Qz(f, 6) =0;

3. forany A € [0, 0), Q>(f,A8) < (1 + M)Q,(f, 6).

Theorem 4. Iff € C5[0, o), then for sufficiently large n we have
|Bng, (f3 ) - fO] < K(1 + x> M5 (f, 6n),  x € [0, 00),

where A = 1, 6n = max{an, Bn, Vn, }» &n, Bn, yn being

( [nlz, 1 2[nlq, ) < [212,[nlg, B 2 )
g§ln—1lg,[n - 2lq, galn-1lg, )’ \gpln-1lg,[n-2lg,  gqnln-1lg,

and
[Z]Qn
galn - 1]g,[n - 2]g,

respectively and K is a positive constant independent of f and n.

Proof. From the definition of Q,(f, §) and Lemma 3, we have

[t - x]|

f0-F0) = @Gerie=x) (115 )60

IN

|t - x|

< (1+Qx+ t)z)(l + T)Qz(f, 5)

N

801+ 250 ) 0,019,

where ¢x(t) = 1+ (2x+t)? and x(t) = |t - x|. Thus, from the definition (1) |Bn,q, (f; X) - f(x)| < (Bn,q,, (Px; )+

EMQ%EE)QAﬂsﬂ

Now, applying the Cauchy -Schwarz inequality to the second term on the right hand side of the above
inequality we get:

|Bn, g, (f3 x) = f(X)] < (Bn,qn(¢x; x) + 671"\/Bn’q"(¢’2‘; X)\/BH;Qn(l/})Z(; X)) Q>(f, 6n). @



DE GRUYTER OPEN Rate of convergence of Szdsz-beta operators based on g-integers =— 135

From Lemma 1

LBn,qn(1+t2;x) = 1 + 1 <

[n]3,%° + gnl21, [n]g, x + ga[2lq,
1+x2 1+x2 1+x2

g§ln - 1]g,[n - 2]q,

I S ( [nl, ) X2

o 1+x g4ln - 1lg,[n-2lg, ) 1 +x?

( [Z]czz,. [nlgq, ) x_ . [2]4, 1
qnln-1]g,[n-2lg, ) 1+x2  gi[n-1lg,[n-2]g, 1+x2

1+ Cl, (8)

IN

for sufficiently large n, where C; is a positive constant.

From (8) there exists a positive constant K; such that By,g,(¢x; X) < K1(1 + x?), for sufficiently large n,
K; being 1 + C;.

Proceeding similarly, ﬁBn,qn (1+t%x) <1+ Cy, for sufficiently large n, where C; is a positive constant.
So, there exists a positive constant K, such that y/Bn,q,($2; x) < K»(1 + x?) where x € [0, o) and n is large
enough. Also, we get

2. _ [n]zn _ 2[n]CIn 2
Bra () = {qﬁ[n - 1]g,[n-2]g, . m}x

. { ( ,lnlg, 2 )X . D, }
gnln-1lg,[n-2lg, gqnln-1lg, gnln - 1]g,[n - 2]g,

= anX? + BnX + Yn.

Hence from (7) we have
1
Br.g.(f3 X) = f()] < (1 +x%) (K1 + 5K vV anx? + Bnx + %)Qz(f, 8n).
n

If we take 6% = max{an, fn, vn}, then we get

Brg, () - O] < (14 XK+ Kav/x 4 x+ DO, 62),
<K3(1+ X2+A).Qz(f, 6n),

for sufficiently large n and x € [0, o). Hence, the proof is completed. O

Let Cp[0, o) denote the space of bounded and uniformly continuous functions endowed with the norm ||f]| =

sup [f(x)].
x€[0,00)
For f € Cg[0, o), the Lipschitz-type maximal function of order n introduced by Lenze [19] is defined as
~ t)-flx
wfl(f’ X) = Supt#x,te[o,w)w’ X e [O’ °°)
€= X1
and
n € (0, 1].

Theorem 5. Let f ¢ Cg[0, o). Then, for all x € [0, oo) we have
[Bn.q(f3) = f0O] < @(F, X)(n,g(0)*
Proof. From the above definition of Lipschitz-type maximal function of order n we have
|Bn,q(f3 %) = f()| < @n(f, X)Bn,q(|t - x| X).
Applying Hélder's inequality with p = % and % =1- 1—1,, we get
|Bng(f; ) = F)] < @(f, )Bn,g((t - 0%320? < @(f, X)(ym g ().

Thus, the proof is completed. O
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Let 0 < a < 1 and let D be a subset of the interval [0, oo). Then by Lip(D, a), we denote the space of all
functions satisfying the condition

fy) - fx)| < Mly - x|%,for y €D and x € [0, c0), )
where D denotes the closure of D in [0, co).
Theorem 6. Let D be a subset of [0, o), q € (0,1) and a € (0, 1]. Then, for every n € N, x € [0, o) and
f € Cgl0, =) Lipy(D, a), we have

|Bn,g(f3 %) = FOO] < M{(yn,q())*? + 2(d(x, D))"},
where M is a positive constant; d(x, D) is the distance between x and D defined as d(x, D); = inf{|y-x| : y € D};
and yn,q is as defined in Lemma 1.
Proof. Let D denote the closure of D in [0, o) and x € [0, o) be fixed. Then, there exists a point x, € D such
that |x — xo| = d(x, D). Using the triangle inequality we get
If(y) = fO| < [f(y) - f(xo) + [f(X) = f(x0)].

Hence it follows from (9) that

| Bn,q(f; X) = f(X)]

IN

Bn,g(If(y) = f(X); x)
< Bng(If(¥) = f(xo)ls %) + [f () = f(x0)])
< M{Bngq(ly - xo|*;x) + (d(x, D))*}
= M{Bngq(ly - x|“;2) + 2(d(x, D))"}.
Using the Cauchy-Bunyakowsky-Schwarz inequality for positive linear operators we find that
[Bu,q(F; %) = F00] < M{Bng((y )% 0% + 2(d(x, D))"}

This completes the proof. O

3.2 A-Statistical Convergence

Let A = (a,;) be a non- negative infinite summability matrix. For a given sequence x := (xn), the A-transform
of x denoted by Ax : (Ax)n is defined as

(A0 = anx,

k=1

provided the series converges for each n. A is said to be regular if limn(Ax), = L whenever limn(x), = L. Then
x = (x)n is said to be A-statistically convergent to Li.e. st4 ~limn(x)n = Lifforevery € > 0, limnZy.|x,-L|senk =
0. If we replace A by C1, then A is a Cesaro matrix of order 1 and A-statistical convergence is reduced to statis-
tical convergence. Similarly, if A=I, the identity matrix, then A-statistical convergence is called ordinary con-
vergence. Kolk [20] proved that statistical convergence is better than ordinary convergence. Many researchers
have made significant contributions in this area. We refer the reader to some of the important papers in this
direction (cf. [17],[21-23] and [7, 24-27] etc.). Let gn € (0, 1) be a sequence such that

sty — limpgn=1, sty—-limpgqn=A, (A<1) (10)
1
and sty - limp—— =0.
A n [I’l]q"
Theorem 7. Let A = (a,;) be a non negative regular summability matrix and (qn) be a sequence in (0, 1)
satisfying (10). Let the operators Bn,q,,n € N, be defined as in (1). Then for each function f € C,[0, o), we
have
sta = limn||Bn,q,(f; ) = fllp = O,

where p(x) = 1+ x***,1> 0
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Proof. By Bohman Korovkin type theorem ([28],Theorem 3, p.191) it is sufficient to prove that
Sty — limy||Bn,g,(e;;.) —eil|2 =0,

where e;(x) = x!,i =0, 1, 2. From Lemma 1, st — limn||Bn,q,(€0; .) - €ol|2 = 0 holds.
Again, using Lemma 1, we have

X [n]q 1 1
B L) - < n et
H n,CIn(e].’ ) ele < SupXE[O,oo){ 1 +X2 [n — 1]qnq% ‘ + 1+ X2 qn[n — 1]qn }
[n]qn ~1l+ 1
[n-1lg.qq gnln - 1]g,

For each € > 0, let us define the following sets:

G:

{k : [|Big, (€15.) —e1]| 2 e},
[klq €
Gi: = k| —2%_ _|-1>=
' {‘ ‘qilk—nqk "2
1 €
Gy: = k:——-—227,
’ { qilk -1l 2}
which yields G C G1 | G, in view of (11) and therefore for all n € N we have

Zank < Z Ank + Z Apk-

keG keGy keG,

Hence sty — limpn||Bn,q,(e2;.) — €2||2 = 0. Proceeding similarly,

Bngs(€23.) - €212 [nlg, ‘ RB0e, [,

‘ g§ln—1lg,[n-2lg,

Now, let us define the following sets:

M: = {k= [[Br,q, (€25 .) = ea]] ze},
.= . [k]lzlk _ ' o E}
Myz = {k ' ‘Qk[k— g, [k - 2]q, 1= 3
(213, [K]q, € }
o = k: > —
M { a;lk - 1g[k-2]lg, ~ 3
oo Sk Pa E}
M; : {k. =5}

then we obtain M C M |J M, |J M3, which implies that

Zﬂnkﬁ Z Ang + Z Ank + Z Apk-

keG keM; keM, keM;

q?l[n - 1]411 [n - z]qn q?l[n - 1]Qn '

-_— 137

(1)

Hence, taking the limit as n — oo we get st — limn||Bn,g,(e2; .) — €2]|2 = 0. This completes the proof of

the theorem.

O

Theorem 8. Let A = (a;,,) be a nonnegative regular summability matrix, and let (qn) be a sequence from (0, 1)
satisfying (10). Assume that D is a compact set in [0, o). Then for every f € Cgl0, oo) (| Lippy(D, a) with M > O

and a € (0, 1], we have

Stp = limn||Bn,q,(f) - f||p = O.
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Proof. Let x € D be fixed. Then from Theorem 6, for each x € D

BrauFi0~f00] = MEnaC0) < | bl Ly 2l |
q°[n - 1]4[n-2]4 q*[ln-1]q
[2131nl, 121, )“’2 12
g°[n-1lqln - 24 g’ln-1lgln-2lq )
Since D is compact, the number x := sup x is finite. Hence, taking supremum over x € D on both sides of
xeD
(12), we obtain that
[nl3 2[nlg |,
B - < +1-
B~ Ollo = M (| e+ 1 et |48
[212[nlq X 1214 )a/Z
a°[n-1]qln - 2lq g’[n-1]g[n-2l4
) (‘ Mg . 2l
g®n - 1]q[n - 2]q g’[n-1]q
2
[212[nl, [21q )“/ (42"
q°[n-1]4ln - 2]4 @3[n-1]4ln-2]4
= LM(yn,q(1)*?,
where L = (1 + x3)? which yields for every € > 0,
€ 2/a
n€N=HBn,qn(f)—f||92€§{nern,q(l)z(m) }
and hence
Z ajy < Z aj, =0,
1:]|Bng, (F)-flp2€ Ny, q(1)2(757)2/
thus we get the required result. O

Now we will prove a Voronovskaja-type theorem for operators By 4 by taking a sequence (gn) satisfying (10).

Lemma 4. Let A = (aj,) be a nonnegative regular summability matrix, and let (qn) be a sequence from (0, 1)
satisfying (10). Then

Sty nle [n]g.Bn,g.,((t=x;x)) = (2-Dx+1,
Sty nle [nlg,Bn,q,((t - x)%x) = (2-0x%+2x,

sty nanlo[n]éan,qn((t -x)% %) (A% = 124+ 12)x* + (24 - 120 + 12X,

uniformly with respect to x € [0, b], (b > 0), where A = sty - lim qn.

Proof. From Lemma 1

[n]Zn] —[n]qn>X+ [nlg,
qn

lim [nlg,Bn,q,(t —Xx) = | 5—— an-1l.°
nﬂm[ lg.Bn,q.( ) (q%[n—l gnln - 1lg,

and

3 2
[lg, Br,q, ((t - x)%; ) ( [nlg, +[nlg, - 2[n]‘1n>x2

gsln - 1]g,[n - 2]g, giln - 1lg,

( [2]2,,["](21,1 _ 2[7’l]q,l )X+ [2]q,.[n]q,l
gnln-1lg,[n-2lg, qnln-1lg, galn - 1lg,[n-2lg,”
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Then, using (10) we get
sty = lim [n]g, Bn,q,((t = x); ) = (2 = )x +1,
and
Sty — nan;[n]ann,qn ((t=x)%x) =2 -)x% +2x
uniformly with respect to x € [0, b]. Again using Lemma 1, we obtain

[, o, G G
q7°F5[n - 1]g, aw’Fyn-1lg,  giFsln-1lg,  q§F;ln-1lg,

(([7]qn +gnl5lg, + gal213,)Inlg,  4((5lq, + gnl2]3,)Inl3,

Bng,(t-0%x) = <

+[ng, -

g’ F3[n - 1]gn gitF;[n-1lg,

-t S,

gnFyln-1lg, qpFiln-1lq,

<([5]qn [6]g, + qnl213,[61q, + gnl213,[41g, + gnl2]g,)Inls,

qlll7F}:[n - 1]%:
4(1213,[41g, + qn[2lg)Inlg, . 6[213, [nlg, > )
X
ngi[n - 1lq, qnFiln - 1]g,
(([4]% [2]2,, [S]qn + q%l[z]fh [S]C]n + q?l[z]Qn [B]Qn)[n]?ln
qul4F§ [n - 1]51n
~ 4[2]‘1"[3]‘“["]‘21")“ [214,[314,[4]4,[n]3,
q4F;5[n-1lq, qiF5n-1lg,

Hence using (10) we get
Sty — limnﬁw[n]éan,qn((t - )% %) = BA%2 = 124 + 12)x* + (24 - 120)x° + 12x2,

uniformly with respect to x € [0, b]. O

Theorem 9. (Voronovskaja-type theorem) Let A = (aj,) be a nonnegative regular summability matrix, and let
(qn) be a sequence from (0, 1) satisfying (10). Then for every f € C5[0, oo) such that

f'.f" € 30, o),

we have

f(x)
2 bl

sty - nlgngo[n]qn (Bn,g,(f3 ) = f(0) = (2 = Dx + Df () + (2 - )x* +2x)
uniformly with respect to x € [0, b], b > 0.

Proof. Letf,f’,f" € C5[0, o). For each x € [0, b], let us define a function 1 (y) := ¥(y, x) by

FO-FO)-(-0f (-1 (-xf" ()
b - G T
0 if y=x.

Then, by our hypothesis we have 1(x, x) = 0 and the function (., x) belongs to C5[0, o). We may write

2
) =) + (v - 0f () + wf”()c) +( -0y, x).
Now,

(g, (Brgn 20 ~F0) = F/00lmla,Br.an (6 =020 + 0 g, B, (6~ 020

+[n]g,Bng. (t = )2 (y, X); X). (13)
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If we apply the Cauchy-Schwarz inequality for the last term on the right-hand side of the last equality, we get

(g, | Bn,g, (t = )23 %)| < (N2, Br,g, ((t = X)*; X)) Byq, (P23 X)) 2 (14)

Let n(y, x) := Y2(y, x). Then n(x, x) = 0 and n(.x) € C3[0, o). Then, it follows from the proof of Theorem 6
that

Sty - nli_{l;lo Bn,qn(lpz;x) =Sty - nangan,qn(n(y, x);x)) =n(x,x) =0, (15)
uniformly with respect to x € [0, b](b > 0). Now, by (14), (15) and Lemma 4, we obtain that
sta = lim [nlg, Bn.q, (¢ - X)*; %) = 0,

uniformly with respect to x € [0, b]. Combining the equations (13) - (15) and Lemma 4, we get

(2 = Dx% + 20f" (x)
3 ,

sta = lim [n]g, (Bn,q,(f; ) = f(x)) = (2 = Dx + 1)f'(x) +

uniformly with respect to x € [0, b]. This completes the proof. O

3.3 Rate of A-statistical Approximation

Let A = (a;,) be a nonnegative regular summability matrix and let (b;) be a positive non-increasing sequence.
Following [29], we say that a sequence x = (xn) is A-statistically convergent to the number L with the rate of
o(b;) if for every € > 0, lim; bi]_ 2 xa|se Qjn < oo then X is A-statistically bounded with the rate of O(bn) and it
is denoted by xn = sty — O(bn), as n — oo.

The sequence x = (xn) is A-statistically convergent to L with the rate of 0,(bn), denoted by x, - L =
stp—ou(bn),(@sn — oo), if forevery € > 0,lim; Xy, _1|scp, = O. Finally, the sequence x = (x») is A-statistically
bounded with rate of Ou(bn) provided that there is a positive number M such that lim; Xy, . |>mp, @jn = 0. In
this case we write x, = st4 — Oyu(bn), as n — oo.

Theorem 10. Let A = (aj,) be a nonegative regular summability matrix and (bn(x)), be a non-increasing se-
quence. If the sequence of positive linear operators Bn,q is defined by (1) and

w(f; 6n,x) = sty — o(bn(x)) with Onx = A/ Bn,q((t -x)%;x)
then

Bn,g(f;x) = f(x) = sta — o(bn(x)),
where w(f, 6n(x)) is the usual modulus of continuity. Similar results hold when small "0" is replaced by large "O".

Proof. Since Bn,q(eg, x) = eo(x) and from Cauchy-Schwarz inequality for linear positive operators we have

|Bng(F; ) - F()| < | B.g(eo, %) + ﬁ(Bn,q((el —x2), 02 | w(f, Bn).

Choosing 6n,x = v/(Bn,q((e1 — x2), x)), we get
|Bn’q(f’ X) —f(X)| < 2w(f, 671,)()'
This implies that
1 1
) 2 nhgg 2 e
n:|Bn,q(f,)-f(x)|2€ n:2w(f;6n,x)2€/2

Hence the proof follows. O



DE GRUYTER OPEN Rate of convergence of Szasz-beta operators based on g-integers =— 141

Replacing ”0” by ”0,” one can get the following result.

Theorem 11. Let A = (aj,),(bn(x)) and Bn,q be the same as in Theorem 10. Assume that the operators Bn,q
satisfy the condition

w(f; 5n,x) =Sty - Oy(bn(X)) with 6n,x = \/ Bn,q((el -x)%; x),

Then, for all functions f € C;[0, o)
Bn,q(f; %) = f(x) = sty — ou(bn(x)).

Similar conclusions hold when small ”0,,” is replaced by large ”0,,”.

3.4 Better estimates

It is well known that the classical Bernstein polynomials preserve constant as well as linear functions. To
make the convergence faster, King [30] proposed an approach to modify the Bernstein polynomials, so that
the sequence preserves test functions e and e,, where e;(t) = t/, i = 0, 1, 2. As the operator Bn,q(f; x) defined
in (1) reproduces only constant functions, this motivated us to propose the modification of this operator, so
that it can preserve constant as well as linear functions.

For f € Cg[0, o), let us consider the following K-functional:

Ky(f, 8) = inf {|If - gl| + 611g"[}, (16)
gew?
where § > 0 and W? = {g € Cp[0, o) : g’ € Cg[0, oo)}. From [31], there exists an absolute constant C > O
such that
I<2(f’ 5) < sz(f, \/S)a (17)
where

w,(f,V6) = sup sup |f(x +2h) = 2f(x + h) + f(x)|
0<h=+/6 x€[0,00)

is the second order modulus of smoothness of f. The modification of the operators given in (1) is defined as

~ i oo/A
Bug(fi0) = 3 8%,(40) / B¢ (OF (Ot
k=0 0

ac _ 1 q’[n-1] _ 1
where ri(x) = (x q[n—l]q) o 4 forx eIy = [7{1["71](1 , oo) andn > 1.

Lemma 5. Foreach x € Iy, by a simple computation, we have

1
Bng(1;x) =1
2.
Bn,q(t;x) = x
3.
n-1lg o, -2+[2]3 1-[212 +ql2]q

=
Br,q(t";x) = qZ[n—z]qX qB[n_z]qX q*ln-1lgln-2]g"

Consequently for each x € In, we have the following equalities:

En,q(t -x;x) = O.
Bro((t-x%x) = Jﬁ;ﬂgﬂ_> 2 (—2+DE) 1-[215 +ql2]q
Bn,q((t = x)%; %) (qZ[n i 1)x% + -2, + 70 1l 2l

&n(x), (say). (18)
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Theorem 12. Let f € Cp[0, o) and x € I. Then, there exists a positive constant C such that

|Bn,g(f; X) = f(0)] < Cw(f, /& (X)),

where &x(x) is given by (18).

Proof. Letg € W?,x € Inand t € [0, o). By Taylor‘s expansion we have

t
80 - 00+ (-8’0 + [ (t-w)g (.
X
Applying En,q on both sides and using Lemma 4, we get

_ . . t
Brg(8:) ~ 00 = Bug(t - X);0g'(0) + Bug ( [ - u)g”(u)du;X> .

Obviously, we have

t
/ (¢~ wg"(dul < (¢~ 028"

Therefore

[Brg(3) - 800 < Bug((€ = )% 118" 1| = £ (0]I8" I

Since |Bn,q(f; x)| < ||f]], we get

|Br,g(f3) = f()] < |B,g(f - &3] + |(f — ©)(0)| + [Br,q(gs ) - g)| = 2|If - gl + £a(0)lIg” -

Finally, taking the infimum over all g € W? on the right side of above inequality and using (16)-(17) we

obtain

Bn,g(f; ) = F00)] < Cwa(f, \/E X,

which completes the proof of the theorem. O
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