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Abstract: In this paper, we introduce and study the class of demimetric mappings in CAT(0) spaces. We then
propose a modified proximal point algorithm for approximating a common solution of a finite family of mini-
mization problems and fixed point problems in CAT(0) spaces. Furthermore, we establish strong convergence
of the proposed algorithm to a common solution of a finite family of minimization problems and fixed point
problems for a finite family of demimetric mappings in complete CAT(0) spaces. A numerical example which
illustrates the applicability of our proposed algorithm is also given. Our results improve and extend some
recent results in the literature.
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1 Introduction
Let D be a nonempty subset of a metric space (X, d). A point x ∈ X is called a fixed point of a nonlinear
mapping T : D → X, if x = Tx. We denote by F(T) the set of fixed points of T. The mapping T is said to be:

(i) nonexpansive, if for all x, y ∈ D,
d(Tx, Ty) ≤ d(x, y),

(ii) quasi-nonexpansive, if F(T) ≠ ∅ and for y ∈ F(T), x ∈ D, we have

d(Tx, y) ≤ d(x, y),

(iii) k-strictly pseudocontractive, if there exists k ∈ [0, 1), such that

d2(Tx, Ty) ≤ d2(x, y) + k
[︀
d(x, Tx) + d(x, Ty)

]︀2 for all x, y ∈ D,

(iv) k-demicontractive, if F(T) ≠ ∅ and there exists k ∈ [0, 1), such that

d2(Tx, y) ≤ d2(x, y) + kd2(Tx, x) ∀ x ∈ D, y ∈ F(T),

(v) generalized hybrid, if there exist α, β ∈ R, such that

αd2(Tx, Ty) + (1 − α)d2(x, Ty) ≤ βd2(Tx, y) + (1 − β)d2(x, y) for all x, y ∈ D.
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Clearly, the class of nonexpansive mappings (with nonempty fixed points set) is contained in the class of
quasi-nonexpansivemappings,while the class of demicontractivemappings contains both the classes of non-
expansive and quasi-nonexpansive mappings. Moreover, there are several examples in the literature which
show that the above inclusions are proper (see for example, [1] and the references therein).

Takahashi [2] (see also [3]) recently introduced a new class of nonlinear mappings in a Hilbert space,
namely the class of demimetric mappings, which is defined as follows:
Let H be a real Hilbert space and D be a nonempty, closed and convex subset of H. A mapping T : D → H is
called k-demimetric, if F(T) ≠ ∅ and there exists k ∈ (−∞, 1), such that for any x ∈ D and y ∈ F(T), we have

⟨x − y, x − Tx⟩ ≥ 1 − k2 ‖x − Tx‖2. (1.1)

The class of k-demimetric mappings with k ∈ (−∞, 1) is a wide class of mappings known to cover the class of
k-demicontractive mappings with k ∈ [0, 1), generalized hybrid mappings, the metric projections and the re-
solvents of maximalmonotone operators in Hilbert spaces (see [3–5]). We note that the class of k−demimetric
and k−demicontractive mappings are both quasi-generalizations of the class of k−strictly pseudocontractive
mappings.

The approximation of fixed points of the above nonlinearmappings have been studied extensively by var-
ious authors in the settings of both Hilbert and Banach spaces (see [6–12]). The study has now been extended
to nonlinear spaces, precisely, CAT(0) spaces. The pioneer work in fixed point theory in CAT(0) spaces was
th work of Kirk [13]. After that Dhompongsa and Panyanak [14], Khan and Abass [15], Chan et al. [16], among
others, continued to obtain interesting results on fixed point theory in CAT(0) spaces. Recently, Berg and
Nikolaev [17] introduced an inner product-like notion in CAT(0) spaces called the quasilinearization map-
ping, which is defined as follows:
Let a pair (a, b) ∈ X×X, denoted by

−→
ab, be called a vector. The quasilinearizationmap ⟨., .⟩ : (X×X)×(X×X) →

R is defined by

⟨
−→
ab,

−→
cd⟩ = 1

2(d
2(a, d) + d2(b, c) − d2(a, c) − d2(b, d)), for all a, b, c, d ∈ X. (1.2)

It is not difficult to see that ⟨
−→
ab,

−→
ab⟩ = d2(a, b), ⟨

−→
ba,

−→
cd⟩ = −⟨

−→
ab,

−→
cd⟩, ⟨

−→
ab,

−→
cd⟩ = ⟨−→ae,

−→
cd⟩ + ⟨

−→
eb,

−→
cd⟩ and

⟨
−→
ab,

−→
cd⟩ = ⟨

−→
cd,

−→
ab⟩, for all a, b, c, d, e ∈ X. Furthermore, a geodesic space X is said to satisfy the Cauchy-

Schwarz inequality if
⟨
−→
ab,

−→
cd⟩ ≤ d(a, b)d(c, d),

for all a, b, c, d ∈ X. It is well known that a geodesically connected space is a CAT(0) space if and only if it
satisfies the Cauchy-Schwarz inequality [14].

Using the inner product-likenotion, Liu andChang [18] introduced the following class of demicontractive-
type mappings in CAT(0) spaces:
Let X be a CAT(0) space and D be a nonempty subset of X. A mapping T : D → X is called demicontractive in
the sense of [18], if F(T) ≠ ∅ and there exists a constant k ∈ (0, 1), such that

⟨
−−→
Txy,−→xy⟩ ≤ d2(x, y) − kd2(x, Tx), for all x ∈ D, y ∈ F(T). (1.3)

Equivalently, T : D → X is called demicontractive in the sense of [18], if F(T) ≠ ∅ and there exists a constant
k ∈ (0, 1), such that

d2(Tx, y) ≤ d2(x, y) + (1 − 2k)d2(x, Tx), for all x ∈ D, y ∈ F(T). (1.4)

Let X be a CAT(0) space. A mapping h : X → (−∞,∞] is said to be

(i) convex if
h(λx ⊕ (1 − λ)y) ≤ λh(x) + (1 − λ)h(y) for all x, y ∈ X, λ ∈ (0, 1),

(ii) proper, if D := {x ∈ X : h(x) < +∞}is nonempty, where D denotes the domain of h,
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(iii) lower semi-continuous at a point x ∈ D if

h(x) ≤ lim inf
n→∞

h(xn), (1.5)

for each sequence {xn} in D, such that limn→∞
xn = x,

(iv) lower semi-continuous on D if it is lower semi-continuous at any point in D.

The Moreau-Yosida resolvent of a proper convex and lower semi-continuous function h for any λ > 0, is
defined as follows:

Jλhx = argmin
u∈X

[︂
h(u) + 1

2λ d
2(u, x)

]︂
for all x ∈ X. Jost [19] showed that the mapping Jλh is well-defined and nonexpansive for all λ > 0.

The minimization problem deals with finding minimizers of a convex functional, that is, the problem of
finding a point x ∈ X, such that

h(x) = min
u∈X

h(u). (1.6)

The set of solutions (minimizers) that satisfy (1.6) is denoted by argminu∈X h(u). We note from [19] that
F(Jλh) = argminu∈X h(u).

The Proximal Point Algorithm (PPA) is a vital tool for solving problem (1.6). PPA was first introduced for
Hilbert spaces by Martinet [20] in 1970 and Rockafellar [21] in 1976. After that several authors have also used
PPA to obtain convergence results in Hilbert and Banach spaces (see [22]-[28]). The PPA in CAT(0) spaces
started with the work of Bačák [29] in 2013. He introduced the following PPA for solving (1.6) in a CAT(0)
space:

xn+1 = argmin
u∈X

[︂
h(u)⊕ 1

2λn
d2(y, xn)

]︂
, (1.7)

for n ∈ N, where λn > 0, such that
∑︀∞

n=1 λn = ∞. Bačák [29] obtained a ∆-convergence result of (1.7) to a
minimizer of h. In 2015, Chlomajiak et al. [30] considered the following iterative algorithm for finding a mini-
mizer of a proper convex and lower semicontinuous function and common fixed points of two nonexpansive
mappings in complete CAT(0) spaces:⎧⎪⎪⎨⎪⎪⎩

zn = argminu∈X
[︁
h(u)⊕ 1

2λn d
2(u, xn)

]︁
,

yn = βnxn ⊕ (1 − βn)T1zn ,
xn+1 = αnT1xn ⊕ (1 − αn)T2yn for all n ≥ 1,

(1.8)

where 0 < a ≤ αn , βn ≤ b < 1 for all n ≥ 1 and λn ≥ λ > 0 for all n ≥ 1. They showed that the sequence {xn}
∆-converges to an element of Γ := argminu∈X h(u) ∩ F(T1) ∩ F(T2), provided Γ is nonempty.

Very recently, Lerkchaiyaphum and Phuengrattana [31] proposed the following modified PPA in CAT(0)
spaces for finding a common minimizer of a finite family of proper convex and lower semicontinuous func-
tions, anda commonfixedpoint of afinite family of nonexpansivemappings in aCAT(0) space.Moreprecisely,
they proved the following theorem:

Theorem 1.1. Let D be a nonempty closed convex subset of a complete CAT(0) space X. Let {hi}Ni=1 be a finite
family of proper, convex and lower semicontinuous functions of D into (−∞,∞] and {Ti}Ni=1 be a finite family of
nonexpansive mappings of D into itself. Suppose that F = ∩Ni=1 argminu∈D hi(u) ∩ ∩Ni=1F(Ti) is nonempty. For
x1 ∈ D, let {xn} be a sequence in D defined by⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

y(i)n = argminu∈X
[︁
hi(u)⊕ 1

2λ(i)n
d2(u, xn)

]︁
,

zn = β(0)n xn ⊕ β(1)n y(1)n ⊕ β(2)n y(2)n ⊕ · · ·⊕ β(N)n y(N)n ,
wn = 𝛾(0)n zn ⊕ 𝛾(1)n T1z(1)n ⊕ 𝛾(2)n T2z(2)n ⊕ · · ·⊕ 𝛾(N)n TNz(N)n ,
xn+1 = αnxn ⊕ (1 − αn)wn for all n ≥ 1,

(1.9)
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where {αn}, {β(i)n }, {𝛾(i)n } are sequences in [0, 1], such that 0 < a ≤ αn , β(i)n , 𝛾(i)n ≤ b < 1,
∑︀N

i=0 β
(i)
n = 1 and∑︀N

i=0 𝛾
(i)
n = 1 for all n ≥ 1, and {λ(i)n } is a sequence such that λ(i)n ≤ λ(i) > 0 for all n ≥ 1, i = 1, 2, · · · , N. Then,

{xn} ∆−converges to an element of F.

Inspired by the works of Takahashi [3], Lerkchaiyaphum and Phuengrattana [31], we introduce the class
of k-demimetricmappings in the framework of CAT(0) spaces and prove a strong convergence theorem for a
common solution of a finite family of minimization problems and fixed point problems involving this class of
mappings in complete CAT(0) spaces. Our results improve and extend the work of Takahashi [3], Chlomajiak
et al. [30], Lerkchaiyaphum and Phuengrattana [31].

2 Preliminaries
Let (X, d) be a metric space, x, y ∈ X and I = [0, d(x, y)]. A curve c (or simply a geodesic path) joining x to
y is an isometry c : I → X, such that c(0) = x, c(d(x, y)) = y and d(c(t), c(t′) = |t − t′| for all t, t′ ∈ I. The
image of a geodesic path is called the geodesic segment, which is denoted by [x, y] whenever it is unique. We
say a metric space X is a geodesic space if for every pair of points x, y ∈ X, there is a minimal geodesic from
x to y. A geodesic triangle ∆(x1, x2, x3) in a geodesic metric space (X, d) consists of three vertices (points in
X) with unparameterized geodesic segments between each pair of vertices. For any geodesic triangle there is
comparison (Alexandrov) triangle ∆̄ ⊂ R2, such that d(xi , xj) = dR2 (x̄i , x̄j), for i, j ∈ {1, 2, 3}.

A geodesic space X is a CAT(0) space if the distance between an arbitrary pair of points on a geodesic
triangle ∆ does not exceed the distance between its corresponding pair of points on its comparison triangle
∆̄. If ∆ and ∆̄ are geodesic and comparison triangles in X respectively, then ∆ is said to satisfy the CAT(0)
inequality for all points x, y of ∆ and x̄, ȳ of ∆̄ if

d(x, y) = dR2 (x̄, ȳ). (2.1)

Let x, y, z be points in X and y0 be the midpoint of the segment [y, z], then the CAT(0) inequality implies

d2(x, y0) ≤
1
2d

2(x, y) + 1
2d

2(x, z) − 1
4d(y, z). (2.2)

For more properties of CAT(0) spaces, see [32–34] and the references therein.
Let {xn} be a bounded sequence in X and r(., {xn}) : X → [0,∞) be a continuous mapping defined by

r(x, {xn}) = lim sup
n→∞

d(x, xn). The asymptotic radius of {xn} is given by r({xn}) := inf{r(x, {xn}) : x ∈ X}

while the asymptotic center of {xn} is the set A({xn}) = {x ∈ X : r(x, {xn}) = r({xn})}. It is known that in a
Hadamard space X, A({xn}) consists of exactly one point. A sequence {xn} in X is said to be ∆-convergent to
a point x ∈ X if A({xnk}) = {x} for every subsequence {xnk} of {xn}. In this case, we write ∆- limn→∞

xn = x (see
[35, 36]).

Definition 2.1. Let D be a nonempty closed and convex subset of a complete CAT(0) space X. A mapping
T : D → D is said to be ∆-demiclosed, if for any bounded sequence {xn} in X, such that ∆- lim

n→∞
xn = x and

lim
n→∞

d(xn , Txn) = 0, then x = Tx.

Definition 2.2. Let D be a nonempty closed and convex subset of a CAT(0) space X. The metric projection is
a mapping PD : X → D which assigns to each x ∈ X, the unique point PDx in D, such that

d(x, PDx) = inf{d(x, y) : y ∈ D}.

Recall that a mapping T is firmly nonexpansive (see [37]), if

d2(Tx, Ty) ≤ ⟨
−−−→
TxTy,−→xy⟩ for all x, y ∈ X. (2.3)
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It follows from the Cauchy-Schwartz inequality that firmly nonexpansive mappings are nonexpansive. Metric
projection mapping is an example of a firmly nonexpansive mapping (see [37, Corollary 3.8]). The notion of
firmly nonexpansive mappings was first introduced in nonlinear settings in [38]. We also remark here that
(2.3) corresponds to property (P2) (Definition 2.7) of [39].

We give some known and useful results which will be needed in the proof of our main theorem. In the
sequel, we denote strong and ∆-convergence by ” → ” and ” ⇀ ”, respectively.

Lemma 2.3. [14] Let X be a CAT(0) space, then for each x, y ∈ X and t ∈ [0, 1], there exists a unique point
z ∈ [x, y], such that

d(z, x) = (1 − t)d(x, y) and d(z, y) = td(x, y). (2.4)

In this case, we write z = tx ⊕ (1 − t)y.

Lemma 2.4. [19] Let (X, d) be a complete CAT(0) space and h : X → (−∞,∞] be proper, convex and lower
semi-continuous. Then the following identity holds:

Jλhx = Jµh
(︂
λ − µ
λ Jλhx ⊕

µ
λ x

)︂
,

for all x ∈ X and λ ≥ µ > 0.

Lemma 2.5. [14, 40] Let X be a CAT(0) space. Then for all x, y, z ∈ X and all t ∈ [0, 1], we have

1. d(tx ⊕ (1 − t)y, z) ≤ td(x, z) + (1 − t)d(y, z),
2. d2(tx ⊕ (1 − t)y, z) ≤ td2(x, z) + (1 − t)d2(y, z) − t(1 − t)d2(x, y),
3. d2(z, tx ⊕ (1 − t)y) ≤ t2d2(z, x) + (1 − t)2d2(z, y) + 2t(1 − t)⟨−→zx,−→zy⟩.

Lemma 2.6. [41] Let X be a complete CAT(0) space. For any t ∈ [0, 1] and u, v ∈ X, let ut = tu⊕ (1− t)v. Then,
for all x, y ∈ X, we have

⟨−→utx,−→uy⟩ ≤ t⟨−→ux,−→uy⟩ + (1 − t)⟨−→vx,−→uy⟩.

Lemma 2.7. [42] Let X be a CAT(0) space and z ∈ X. Let x1, · · · , xN ∈ X and 𝛾1, · · · , 𝛾N be real numbers in
[0, 1], such that

∑︀N
i=1 𝛾i = 1. Then the following inequality holds:

N∑︁
i=1

⊕𝛾id2(xi , z) ≤
N∑︁
i=1

𝛾id2(xi , z) −
N∑︁

i,j=1,i≠j
𝛾i𝛾jd2(xi , xj).

Lemma 2.8. [43] Every bounded sequence in a complete CAT(0) space has a ∆-convergent subsequence.

Lemma 2.9. [44] Let X be a complete CAT(0) space, {xn} be a bounded sequence in X and x ∈ X. Then {xn}
∆-converges to x if and only if lim sup

n→∞
⟨−−→xnx,−→yx⟩ ≤ 0 for all y ∈ X.

Lemma 2.10. [45] Let X be a complete CAT(0) space and T : X → X be a nonexpansive mapping. Then T is
∆-demiclosed.

Lemma 2.11. [46] Let X be a complete CAT(0) space and h : X → (−∞,∞] be a proper, convex and lower
semi-continuous mapping. Then, for all x, y ∈ X and λ > 0, we have

1
2λ d

2(Jλhx, y) −
1
2λ d

2(x, y) + 1
2λ d

2(x, Jλhx) + h(Jλhx) ≤ h(y). (2.5)

Lemma 2.12. [47] Let {an} be a sequence of non-negative real numbers satisfying

an+1 ≤ (1 − αn)an + αnδn + 𝛾n , n ≥ 0,
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where {αn}, {δn} and {𝛾n} satisfy the following conditions:
(i) {αn} ⊂ [0, 1], Σ∞n=0αn = ∞,
(ii) lim supn→∞ δn ≤ 0,
(iii) 𝛾n ≥ 0(n ≥ 0), Σ∞n=0𝛾n < ∞.
Then limn→∞ an = 0.

Lemma 2.13. [48] Let {an} be a sequence of real numbers, such that there exists a subsequence {nj} of {n}
with anj < anj+1 for all j ∈ N. Then there exists a nondecreasing sequence {mk} ⊂ N, such that mk → ∞ and
the following properties are satisfied by all (sufficiently large) numbers k ∈ N:

amk ≤ amk+1 and ak ≤ amk+1.

In fact, mk = max{i ≤ k : ai < ai+1}.

3 Main results
We first give the definition of a k-demimetric mapping in a CAT(0) space. We begin with the following facts
which led to our definition.

If T is a k-demicontractive mapping with k ∈ [0, 1), then

d2(Tx, y) ≤ d2(x, y) + kd2(x, Tx) for all x ∈ X, y ∈ F(T). (3.1)

Also, by definition of quasilinearization mapping (see (1.2)), we obtain that

2⟨−→xy,
−−→
xTx⟩ = d2(x, y) + d2(Tx, x) − d2(Tx, y).

That is,
d2(Tx, y) = d2(x, y) + d2(Tx, x) − 2⟨

−−→
xTx,−→xy⟩,

which implies from (3.1) that

⟨−→xy,
−−→
xTx⟩ ≥ 1 − k2 d2(x, Tx). (3.2)

Motivated by (3.2) above, we define the demimetric mapping in a CAT(0) space as follows:

Definition 3.1. Let X be a CAT(0) space and D be a nonempty closed and convex subset of X. A mapping
T : D → X is said to be k-demimetric if F(T) ≠ ∅ and there exists k ∈ (−∞, 1), such that

⟨−→xy,
−−→
xTx⟩ ≥ 1 − k2 d2(x, Tx) for all x ∈ X, y ∈ F(T). (3.3)

Clearly, the class of k-demimetric mappings with k ∈ (−∞, 1) contains the class of k-demicontractive map-
pings with k ∈ [0, 1).

Remark 3.2. If T is a generalized hybrid mapping with F(T) ≠ ∅, then for x ∈ D and y ∈ F(T) we obtain that

αd2(Tx, y) + (1 − α)d2(x, y) ≤ βd2(Tx, y) + (1 − β)d2(x, y),

which implies that

d2(Tx, y) ≤ d2(x, y). (3.4)

Now, from (3.4) and the definition of quasilinearization, we obtain that

2⟨−→xy,
−−→
xTx⟩ = d2(x, Tx) + d2(x, y) − d2(y, Tx) ≥ d2(x, Tx) + d2(x, y) − d2(x, y),
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which implies that

⟨−→xy,
−−→
xTx⟩ ≥ 1 − 02 d2(x, Tx). (3.5)

Also, T is firmly nonexpansive if

d2(Tx, Ty) ≤ ⟨−→xy,
−−−→
TxTy⟩ for all x, y ∈ D.

If F(T) ≠ ∅, then for all x ∈ D and y ∈ F(T), we have that

d2(Tx, y) ≤ ⟨−→xy,
−−→
Txy⟩.

Therefore, the following implications hold:

⟨
−−→
Txy,

−−→
Txy⟩ ≤ ⟨

−−→
Txy,−→xy⟩

⇒ ⟨
−−→
yTx,

−−→
yTx⟩ + ⟨

−−→
yTx,−→xy⟩ ≤ 0

⇒ ⟨
−−→
yTx,−→yx⟩ + ⟨yTx,

−−→
xTx⟩ + ⟨

−−→
yTx,−→xy⟩ ≤ 0

⇒ ⟨
−−→
Txy,−→xy⟩ + ⟨

−−→
yTx,−→xy⟩ + ⟨−→yx,

−−→
xTx⟩ + ⟨

−−→
xTx,

−−→
xTx⟩ ≤ 0

⇒ ⟨
−−−→
TxTx,−→xy⟩ + d2(x, Tx) ≤ ⟨−→xy,

−−→
xTx⟩,

⇒ ⟨−→xy,
−−→
xTx⟩ + ⟨−→xy,

−−−→
TxTx⟩ ≥ d2(x, Tx),

which implies that

⟨−→xy,
−−→
xTx⟩ ≥ 1 − (−1)2 d2(x, Tx). (3.6)

Thus, (3.6) and (3.5) show that generalized hybridmappingswith nonempty fixed point sets and firmly nonex-
pansivemappingswith nonempty fixedpoint sets are 0 and -1 demimetricmappings respectively. Sincemetric
projection mappings are an example of firmly nonexpansive mappings, then they are demimetric mappings.

Example 3.3. Let T : [0, 1] → [0, 1] be defined by Tx = x − xj , j ≥ 1. Then T is k-demimetric with k = −1.

Proof. Clearly, F(T) = {0}. Now, for all x ∈ [0, 1] and j ≥ 1, we obtain that

⟨x − 0, x − Tx⟩ = ⟨x, xj⟩

= 1
2
[︀
|x|2 + |xj|2 − |x − xj|2

]︀
= 1
2
[︀
|x|2 + |xj|2 − |x|2 + 2|x||xj|2 − |xj|2

]︀
≥ 12

[︀
2|xj||xj|

]︀
= |xj|2.

That is,

⟨x − 0, x − Tx⟩ ≥ 1 − (−1)
2 |xj|2.

Hence, we have that ⟨x − 0, x − Tx⟩ ≥ 1−(−1)
2 |x − Tx|2.

We now study some fixed point properties of k-demimetric mappings in CAT(0) spaces.

Proposition 3.4. Let X be a complete CAT(0) space and T : X → X be a k-demimetric mapping with k ∈
(−∞, 1), such that F(T) is nonempty. Then F(T) is closed and convex.
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Proof. We first show that F(T) is closed. Let {xn} be a sequence in F(T), such that {xn} converges to x*. Then
from Definition 3.5, we have that

⟨
−−→
x*xn ,

−−−→
x*Tx*⟩ ≥ 1 − k2 d2(x*, Tx*),

which implies by the Cauchy-Schwarz inequality that

d(x*, xn)d(x*, Tx*) ≥
1 − k
2 d2(x*, Tx*). (3.7)

Taking limits on both sides of (3.7), we obtain that 1−k
2 d2(x*, Tx*) ≤ 0. By the condition on k, we obtain that

d(x*, Tx*) = 0. Thus, x* ∈ F(T). Therefore, F(T) is closed.
Next, we show that F(T) is convex. For this, let x, y ∈ F(T). Then it suffices to show that (tx ⊕ (1 − t)y) ∈

F(T), for t ∈ [0, 1]. Set z = tx ⊕ (1 − t)y, t ∈ [0, 1]. Then by Definition 3.1, we obtain from Lemma 2.6 that

d2(z, Tz) = ⟨
−−→
zTz,

−−→
zTz⟩

= ⟨
−−−−−−−−−−−−→
(tx ⊕ (1 − t)y)Tz,

−−→
zTz⟩

≤ t⟨
−−→
xTz,

−−→
zTz⟩ + (1 − t)⟨

−−→
yTz,

−−→
zTz⟩

= t
[︀
⟨−→xz,

−−→
zTz⟩ + ⟨

−−→
zTz,

−−→
zTz⟩

]︀
+ (1 − t)

[︀
⟨−→yz,

−−→
zTz⟩ + ⟨

−−→
zTz,

−−→
zTz⟩

]︀
≤ t(k − 1)2 d2(z, Tz) + td2(z, Tz) + (1 − t)(k − 1)

2 d2(z, Tz) + (1 − t)d2(z, Tz)

= k − 12 d2(z, Tz) + d2(z, Tz),

which implies that k−12 d2(z, Tz) ≥ 0. By the condition on k, we obtain that d2(z, Tz) ≤ 0. Hence, z = Tz and
this yields the desired conclusion.

The following Lemma is a cardinal property of all kinds of mappings derived from strictly pseudocon-
tractions. The Lemma first appeared in the setting of Hilbert spaces [[49], Theorem 2]. We state the lemma for
k−demimetric mappings in a CAT(0) space setting and give the proof for completeness.

Lemma 3.5. Let X be a CAT(0) space and T : X → X be a k-demimetric mapping with k ∈ (−∞, λ] and
λ ∈ (0, 1), such that F(T) is nonempty. Suppose that Tλx = λx ⊕ (1 − λ)Tx. Then Tλ is quasi-nonexpansive and
F(Tλ) = F(T).

Proof. Let x ∈ X and z ∈ F(T). Then, from Definition 3.1 and Lemma 2.6 we obtain that

⟨−→zx,
−−−→
xTλx⟩ = ⟨−→zx,

−−−−−−−−−−−−→
x(λx ⊕ (1 − λ)Tx)⟩

= ⟨
−−−−−−−−−−−−→
(λx ⊕ (1 − λ)Tx)x,−→xz⟩

≤ λ⟨−→xx,−→xz⟩ + (1 − λ)⟨
−−→
Txx,−→xz⟩

= (1 − λ)⟨−→xz,
−−→
Txx⟩

≤ (1 − λ)
2(k − 1)

2(1 − λ) d2(x, Tx). (3.8)

Now, from Lemma 2.3, we obtain that d2(x, Tλx) = (1 − λ)2d2(x, Tx). Substituting this in (3.8), we obtain

⟨−→zx,
−−−→
xTλx⟩ ≤

k − 1
2(1 − λ)d

2(x, Tλx),

which implies that

⟨−→xz,
−−−→
xTλx⟩ ≥

1 − k
2(1 − λ)d

2(x, Tλx)

≥ 12d
2(x, Tλx).
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Thus, by (1.2), we obtain that

d2(x, Tλx) + d2(z, x) − d2(z, Tλx) ≥ d2(x, Tλx).

That is,
d2(z, Tλx) ≤ d2(z, x).

Hence, Tλ is quasi-nonexpansive.
We next show that F(Tλ) = F(T). Let x ∈ F(Tλ), then x = Tλx. So,

d(x, Tx) = d(λx ⊕ (1 − λ)Tx, Tx)
≤ λd(x, Tx),

which implies that (1 − λ)d(x, Tx) ≤ 0. Since λ < 1, we obtain that d(x, Tx) ≤ 0.
Therefore, x ∈ F(T), and thus F(Tλ) ⊆ F(T).

Conversely, let x ∈ F(T), then x = Tx. By Lemma 2.5, we obtain

d(x, Tλx) = d(Tx, λx ⊕ (1 − λ)Tx)
≤ λd(Tx, x) + (1 − λ)d(Tx, Tx)
= 0,

which implies that d(x, Tλx) = 0. Thus, x ∈ F(Tλ) and therefore F(T) ⊆ F(Tλ). Hence, we obtain the desired
result.

Theorem 3.6. Let D be a nonempty closed and convex subset of a complete CAT(0) space X, and hi : X →
(−∞,∞], i = 1, · · · , N be a finite family of proper, convex and lower semi-continuous functions. Let Ti : D → D,
i = 1, · · · , N be a finite family of ki-demimetric mappings with ki ∈ (−∞, λ] and λ ∈ (0, 1). Suppose that
Γ = (∩Ni=1argminu∈Xhi(u)) ∩ (∩Ni=1F(Ti)) is nonempty and {xn} is a sequence generated for arbitrary x1, u ∈ X
by ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

vn = (1 − tn)xn ⊕ tnu,
yn = Jrnh1 ∘ Jrnh2 ∘ · · · ∘ JrnhN vn ,
zn = PD

(︀
β(0)n vn ⊕ β(1)n yn ⊕ · · ·⊕ β(N)n yn

)︀
,

wn = 𝛾(0)n zn ⊕ 𝛾(1)n T1λzn ⊕ 𝛾(1)n T2λzn · · ·⊕ 𝛾(N)n TNλzn ,
xn+1 = αnvn ⊕ (1 − αn)wn for all n ≥ 1,

(3.9)

where Ti λx = λx⊕ (1 − λ)Tix, such that Ti λ are ∆-demiclosed for each i = 1, 2, . . . , N. Suppose that {tn}, {αn},
{β(i)n } and {𝛾(i)n } are sequences in [0,1], such that the following conditions are satisfied:

C1 : 0 < a ≤ αn , β(i)n , 𝛾(i)n ≤ b < 1,
∑︀N

i=0 β
(i)
n = 1 and

∑︀N
i=0 𝛾

(i)
n = 1 for all n ≥ 1,

C2 : lim
n→∞

tn = 0,
∑︀∞

n=1 tn = ∞,
C3 : {rn} is a sequence of real numbers, such that rn ≥ r > 0 for all n ≥ 1.

Then, the sequence {xn} converges strongly to a point in Γ .

Proof. Let p ∈ Γ, from Lemma 3.5, we obtain that p = Ti λp. Also, we have that p = Jrnhip, i = 1, 2, · · · , N .
Thus, we obtain from (3.9), Lemma 2.7 and Lemma 3.5 that

d(wn , p) = d(𝛾(0)n zn ⊕ 𝛾(1)n T1λzn ⊕ · · ·⊕ 𝛾(N)n TNλzn , p)

≤ 𝛾(0)n d(zn , p) +
N∑︁
i=1

𝛾(i)n d(Ti λzn , p)

≤ 𝛾(0)n d(zn , p) +
N∑︁
i=1

𝛾(i)n d(zn , p)

= d(zn , p). (3.10)
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From (3.9) and (3.10), we obtain

d(zn , p) ≤ d(β(0)n vn ⊕ β(1)n yn ⊕ · · ·⊕ β(N)n yn , p)

≤ β(0)n d(vn , p) +
N∑︁
i=1

β(i)n d(yn , p)

≤ β(0)n d(vn , p) +
N∑︁
i=1

β(i)n d(Jrnh1 ∘ Jrnh2 · · · ∘ JrnhN vn , p)

≤ β(0)n d(vn , p) +
N∑︁
i=1

β(i)n d(vn , p)

= d(vn , p). (3.11)

From (3.9), (3.10) and (3.11), we have that

d(xn+1, p) = d(αnvn ⊕ (1 − αn)wn , p)
≤ αnd(vn , p) + (1 − αn)d(wn , p)
≤ αnd(vn , p) + (1 − αn)d(zn , p)
≤ αnd(vn , p) + (1 − αn)d(vn , p)
= d(vn , p) (3.12)
= d((1 − tn)xn ⊕ tn , p)
≤ (1 − tn)d(xn , p) + tnd(u, p)
≤ max{d(xn , p), d(u, p)},

which implies by induction that

d(xn+1, p) ≤ max{d(x1, p), d(u, p)}, for all n ≥ 1.

Hence d(xn , p) is bounded, and so are {vn}, {zn}, {wn} and {yn}.
Now from (3.9), (3.10), (3.11), Lemma 2.5 and Lemma 2.7, we have

d2(xn+1, p) = d2(αnvn ⊕ (1 − αn)wn , p)
≤αnd2(vn , p) + (1 − αn)d2(wn , p) − α(1 − αn)d2(vn , wn)

≤αnd2(vn , p) + (1 − αn)[𝛾(0)n d2(zn , p) +
N∑︁
i=1

𝛾(i)n d2(Ti λzn , p) −
N∑︁
i=1

𝛾(0)n 𝛾(i)n d2(zn , Ti λzn)

−
N∑︁

i=1,i≠j
𝛾(i)n 𝛾

(j)
n d2(Ti λzn , Tj λzn)] − αn(1 − αn)d

2(vn , wn)

≤αnd2(vn , p) + (1 − αn)[𝛾(0)n d2(zn , p) +
N∑︁
i=1

𝛾(i)n d2(zn , p) −
N∑︁
i=1

𝛾(0)n 𝛾(i)n d2(zn , Ti λzn)

−
N∑︁

i=1,i≠j
𝛾(i)n 𝛾

(j)
n d2(Ti λi zn , Tj λzn)] − αn(1 − αn)d

2(vn , wn)

≤αnd2(vn , p) + (1 − αn)[d2(zn , p) −
N∑︁
i=1

𝛾(0)n 𝛾(i)n d2(zn , Ti λzn)] − αn(1 − αn)d
2(vn , wn)

≤αnd2(vn , p) + (1 − αn)[β(0)n d2(vn , p) +
N∑︁
i=1

β(i)n d2(yn , p) −
N∑︁
i=1

β(0)n β(i)n d2(vn , yn)

−
N∑︁

i=1,i≠j
β(i)n β(j)n d2(y(i)n , y(j)n )] − αn(1 − αn)

N∑︁
i=1

𝛾(0)n 𝛾(i)n d2(zn , Ti λzn) − αn(1 − αn)d
2(vn , wn)
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d2(vn , p) − (1 − αn)
N∑︁
i=1

β(0)n β(i)n d2(vn , yn) − (1 − αn)
N∑︁

i=1,i≠j
β(i)n β(j)n d2(y(i)n , y(j)n )

− (1 − αn)
N∑︁
i=1

𝛾(0)n 𝛾(i)n d2(zn , Ti λzn) − αn(1 − αn)d
2(vn , wn)

≤(1 − tn)d2(xn , p) + tnd2(u, p) − tn(1 − tn)d2(u, xn) − (1 − αn)
N∑︁
i=1

β(0)n β(i)n d2(vn , yn)

− (1 − αn)
N∑︁
i=1

𝛾(0)n 𝛾(i)n d2(zn , Ti λzn) − αn(1 − αn)d
2(vn , wn) (3.13)

≤(1 − tn)d2(xn , p) + tnd2(u, p) − tn(1 − tn)d2(u, xn) − αn(1 − αn)d2(vn , wn).

From (3.5) and condition C2, we obtain that

d(vn , xn) ≤ tnd(u, xn) → 0, as n →∞. (3.14)

Now we divide the rest of the proof into two cases:
Case 1: Assume that {d2(xn , p)} is a monotonically non-increasing sequence. Clearly, {d2(xn , p)} is conver-
gent and

d2(xn , p) − d2(xn+1, p) → 0, as n →∞.

So from (3.13), we have

αn(1 − α)d2(vn , wn) ≤ (1 − tn)d2(xn , p) + tnd2(u, p) − d2(xn+1, p)
= tn[d2(u, p) − d2(xn , p)] + d2(xn , p) − d2(xn+1, p),

which implies by condition C2 that

lim
n→∞

d(vn , wn) = 0. (3.15)

Similarly,

(1 − αn)
N∑︁
i=1

𝛾(0)n 𝛾(i)n d2(zn , Tλzn) ≤ tn[d2(u, p) − d(xn , p)] + d2(xn , p) − d2(xn+1, p) → 0, as n →∞.

Hence, by condition C2, we obtain that

(1 − αn)
N∑︁
i=1

𝛾(0)n 𝛾(i)n d2(zn , Ti λzn) → 0,

and thus,

lim
n→∞

d(zn , Ti λzn) = 0, i = 1, 2, · · ·, N . (3.16)

In a similar way, from (3.11) we obtain that

lim
n→∞

d(vn , yn) = lim
n→∞

d(Jrnh1 ∘ · · · ∘ JrnhN vn , vn) = 0. (3.17)

Let c(i)n = Jrnhi c
(i+1)
n , i = 1, 2, · · · , N, where c(N+1)n = vn for all n ≥ 1. Then, c(1)n = yn . By Lemma 2.11, we

obtain
1
2rn

d2(c(i)n , p) −
1
2rn

d2(c(i+1)n , p) + 1
2rn

d2(c(i+1)n , c(i)n ) + h(c(i)n ) ≤ h(p).

Since h(p) ≤ h(c(i)n ), we obtain

d2(c(i)n , c(i+1)n ) ≤ d2(c(i+1)n , p) − d2(c(i)n , p). (3.18)
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Now, taking the sum from i = 1 to i = N in (3.18), from (3.17) we obtain that
N∑︁
i=1

d2(c(i)n , c(i+1)n ) ≤ d2(c(N+1)n , p) − d2(c(1)n , p)

= d2(vn , p) − d2(yn , p)
≤ d2(yn , vn) + 2d(yn , vn)d(vn , p) → 0, as n →∞,

which implies that

lim
n→∞

d(c(i)n , c(i+1)n ) = 0, i = 1, 2, · · · , N . (3.19)

Thus, for each i = 1, 2, · · · , N, we obtain by applying the triangle inequality that lim
n→0

d(c(i)n , c(N+1)n ) = 0. That
is,

lim
n→∞

d(c(i)n , vn) = 0, i = 1, 2, · · · , N . (3.20)

Since rn ≥ r > 0 for all n ≥ 1, fromLemma 2.5, Lemma 2.4, (3.19) and the nonexpansivity of Jrhi , i = 1, 2, · · · , N
we obtain that

d(c(i+1)n , Jrhi c
(i+1)
n ) ≤ d(c(i+1)n , Jrnhi c

(i+1)
n ) + d(Jrnhi c

(i+1)
n , Jrhi c

(i+1)
n )

= d(c(i+1)n , c(i)n ) + d
(︁
Jrhi

(︁ rn − r
rn

Jrnhi c
(i+1)
n ⊕ r

rn
c(i+1)

)︁
, Jrhi c

(i+1)
n

)︁
≤ d(c(i+1)n , c(i)n ) + d

(︁ rn − r
rn

Jrnhi c
(i+1)
n ⊕ r

rn
c(i+1)n , c(i+1)n

)︁
≤
(︁
2 − r

rn

)︁
d(c(i+1)n , c(i)n ) → 0, as n →∞, i = 1, 2, · · · , N . (3.21)

By (3.19), (3.20) and (3.21), we obtain that

d(Jrhi vn , vn) ≤ d(Jrhi vn , Jrhi c
(i+1)
n ) + d(Jrhi c

(i+1)
n , c(i+1)n ) + d(c(i+1)n , c(i)n ) + d(c(i)n , vn)

≤ d(vn , c(i)n ) + d(c(i)n , c(i+1)n ) + d(Jrhi c
(i+1)
n , c(i+1)n ) + d(c(i+1)n , c(i)n ) + d(c(i)n , vn)

= 2d(vn , c(i)n ) + 2d(c(i)n , c(i+1)n ) + d(Jrhi c
(i+1)
n , c(i+1)n ) → 0, as n →∞.

That is,

lim
n→∞

d(Jrhi vn , vn) = 0, i = 1, 2, · · · , N . (3.22)

Let an = β(0)n vn ⊕ β(1)n yn ⊕ β(2)n yn · · ·⊕ β(N)n yn. Then,

d(an , xn) = β(0)n d(vn , xn) +
N∑︁
i=1

β(i)n d(yn , xn)

≤ β(0)n d(vn , xn) +
N∑︁
i=1

β(i)n d(yn , vn) +
N∑︁
i=1

β(i)n d(vn , xn),

which implies from (3.14) and (3.17) that

lim
n→∞

d(an , xn) = 0. (3.23)

We know that PD is firmly nonexpansive. Thus, from (3.10), (3.11) and (3.15) we obtain that

d2(zn , an) ≤ d2(an , p) − d2(zn , p)
≤ d2(vn , p) − d2(zn , p)
≤ d2(vn , p) − d2(wn , p)
≤ d2(vn , wn) + 2d(vn , wn)d(wn , p) → 0, as n →∞. (3.24)
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From (3.23) and (3.24), we obtain that

lim
n→∞

d(zn , xn) = 0. (3.25)

Using a similar method as in [50], [51] and [52], and the fact that {xn} is bounded, it follows from Lemma
2.8 that there exists a subsequence {xnk} of {xn}, such that ∆ − lim

k→∞
xnk = z. It follows from (3.25) that there

exists a subsequence {znk} of {zn}, such that ∆ − lim
k→∞

znk = z. By a similar argument, we have that ∆ −
lim
k→∞

vnk = z. Since Tiλ is ∆-demiclosed for each i = 1, 2, · · · , N, it follows from (3.16) and Lemma 3.5 that

z ∈ ∩Ni=1F(Tiλ ) = ∩Ni=1F(Ti). Also, since Jrhi is nonexpansive, for each i = 1, 2, · · · , N, we obtain from (3.22)
and Lemma 2.10 that z ∈ ∩Ni=1F(Jrhi ) =

(︁
∩Ni=1argminy∈Xhi(y)

)︁
. Hence, z ∈ Γ .

Furthermore, for an arbitrary u ∈ X, by Lemma 2.9 we have that

lim sup
n→∞

⟨−→zu,−→zxn⟩ ≤ 0, (3.26)

which implies by condition C1 that

lim sup
n→∞

(︁
tnd2(z, u) + 2(1 − tn)⟨−→zu,−→zxn⟩

)︁
≤ 0. (3.27)

We now show that {xn} converges strongly to z. By (3.12) and Lemma 2.5, we obtain

d2(xn+1, z) ≤ d2(vn , z)
≤ (1 − tn)2d2(z, xn) + t2nd2(z, u) + 2tn(1 − tn)⟨−→zu,−→zxn⟩

≤ (1 − tn)d2(z, xn) + tn
(︁
tnd2(z, u) + 2(1 − tn)⟨−→zu,−→zxn⟩

)︁
. (3.28)

Hence, by (3.27) and Lemma 2.12, we conclude that {xn} converges strongly to z.
Case 2: Suppose that {d2(xn , p)} is not monotonically non-increasing. Then, there exists a subsequence
{d2(p, xni )} of {d2(p, xn)}, such that d2(p, xni ) < d2(p, xni+1) for all i ∈ N. Thus, by Lemma 2.13, there exists
a non-decreasing sequence {mk} ⊂ N, such that mk →∞, and

d2(p, xmk ) ≤ d2(p, xmk+1) and d
2(p, xk) ≤ d2(p, xmk+1) for all k ∈ N. (3.29)

Thus, by (3.12), (3.29) and Lemma 2.5, we obtain

0 ≤ lim
k→∞

(︁
d2(p, xmk+1) − d

2(p, xmk )
)︁

≤ lim sup
n→∞

(︁
d2(p, xn+1) − d2(p, xn)

)︁
≤ lim sup

n→∞

(︁
d2(p, zn) − d2(p, xn)

)︁
≤ lim sup

n→∞

(︁
(1 − tn)d2(p, xn) + tnd2(p, u) − d2(p, xn)

)︁
= lim sup

n→∞

[︁
tn
(︁
d2(p, u) − d2(p, xn)

)︁]︁
= 0,

which implies that

lim
k→∞

(︁
d2(p, xmk+1) − d

2(p, xmk )
)︁
= 0. (3.30)

Following the arguments as in Case 1, we can show that

lim
k→∞

(︁
tmkd

2(z, u) + 2(1 − tmk )⟨
−→zu,−−→zxmk ⟩

)︁
≤ 0. (3.31)

Also, by (3.28), we have

d2(z, xmk+1) ≤ (1 − tmk )d2(z, xmk ) + tmk

(︁
tmkd

2(z, u) + 2(1 − tmk )⟨
−→zu,−−→zxmk ⟩

)︁
.



290 | Kazeem O. Aremu et al.

Since d2(z, xmk ) ≤ d2(z, xmk+1), we obtain

d2(z, xmk ) ≤
(︁
tmkd

2(z, u) + 2(1 − tmk )⟨
−→zu,−−→zxmk ⟩

)︁
.

Thus, by (3.31), we get

lim
k→∞

d2(z, xmk ) = 0. (3.32)

It then follows from (3.29), (3.30) and (3.32) that lim
k→∞

d2(z, xk) = 0. Therefore, we conclude from both cases
that {xn} converges to z ∈ Γ.

By setting N = 1 in Theorem 3.6, we obtain the following result:

Corollary 3.7. Let D be a nonempty closed and convex subset of a complete CAT(0) space X, and h : X →
(−∞,∞] be a proper, convex and lower semi-continuous function. Let T : D → D be a k-demimetric mapping
with k ∈ (−∞, λ] and λ ∈ (0, 1). Suppose that Γ = ((argminu∈Xh(u)) ∩ F(T)) is nonempty and for arbitrary
x1, u ∈ X the sequence {xn} is defined by⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

vn = (1 − tn)xn ⊕ tnu,
yn = Jrnhvn ,
zn = PD

(︀
β(0)n vn ⊕ β(1)n yn

)︀
,

wn = 𝛾(0)n zn ⊕ 𝛾(1)n Tλzn ,
xn+1 = αnvn ⊕ (1 − αn)wn for all n ≥ 1,

where Tλ is as defined in Lemma 3.5, such that Tλ is ∆-demiclosed. Suppose that {tn}, {αn}, {βn} and {𝛾n} are
sequences in [0,1], such that the following conditions are satisfied:

C1 : 0 < a ≤ αn , β(i)n , 𝛾(i)n ≤ b < 1,
∑︀1

i=0 β
(i)
n = 1 and

∑︀1
i=0 𝛾

(i)
n = 1 for all n ≥ 1,

C2 : lim
n→∞

tn = 0,
∑︀∞

n=1 tn = ∞,
C3 : {rn} is a sequence of real numbers such that rn ≥ r > 0.

Then, the sequence {xn} converges strongly to a point in Γ .

By setting Ti to be a k-demicontractive mapping for each i = 1, 2, . . . , N in Theorem 3.6, we obtain the
following result:

Corollary 3.8. Let D be a nonempty closed and convex subset of a complete CAT(0) space X, and hi : X →
(−∞,∞], i = 1, · · · , N be a finite family of proper convex and lower semi-continuous functions. Let Ti : X → X,
i = 1, · · · , N be a finite family of ki-demicontactive mappings with ki ∈ (−∞, λ] and λ ∈ (0, 1). Suppose that
Γ = (∩Ni=1argminu∈Xhi(u)) ∩ (∩Ni=1F(Ti)) is nonempty and {xn} is a sequence generated for arbitrary x1, u ∈ X
by ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

vn = (1 − tn)xn ⊕ tnu,
yn = Jrnh1 ∘ Jrnh2 ∘ · · · ∘ JrnhN vn ,
zn = PD

(︀
β(0)n vn ⊕ β(1)n yn ⊕ · · ·⊕ β(N)n yn

)︀
,

wn = 𝛾(0)n zn ⊕ 𝛾(1)n T1λzn ⊕ 𝛾(1)n T2λzn · · ·⊕ 𝛾(N)n TNλzn ,
xn+1 = αnvn ⊕ (1 − αn)wn for all n ≥ 1,

(3.33)

where Ti λx = λx⊕ (1 − λ)Tix, such that Ti λ are ∆-demiclosed for each i = 1, 2, . . . , N. Suppose that {tn}, {αn},
{β(i)n } and {𝛾(i)n } are sequences in [0,1], such that the following conditions are satisfied:

C1 : 0 < a ≤ αn , β(i)n , 𝛾(i)n ≤ b < 1,
∑︀N

i=0 β
(i)
n = 1 and

∑︀N
i=0 𝛾

(i)
n = 1 for all n ≥ 1,

C2 : lim
n→∞

tn = 0,
∑︀∞

n=1 tn = ∞,
C3 : {rn} is a sequence of real numbers such that rn ≥ r > 0 for all n ≥ 1.

Then, the sequence {xn} converges strongly to a point in Γ .
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4 Numerical example
In this section, we give a numerical example to illustrate Theorem 3.6.
Let X = R, endowed with the usual metric and D = [0, 1]. Then,

PD(x) =

⎧⎪⎪⎨⎪⎪⎩
0, if x < 0,
x, if x ∈ D,
1, if x > 1

is ametric projection ontoD. ForN = 2, define Ti : D → D, by Tix = x−xi, i = 1, 2. Then, T is (−1)−demimetric
(see Example 3.3). Now, define hi : R → (−∞,∞] by hi(x) = 1

2 |Bi(x) − bi|
2, where Bi(x) = 2ix and bi = 0,

i = 1, 2. Since Bi is continuous and linear for each i = 1, 2, then we have that hi is proper, convex and lower
semicontinuous mapping. Let rn = 1 for all n ≥ 1, then

J1hi (x) = Proxhix = argmin
y∈D

(︀
hi(y) +

1
2 |y − x|

2)︀
=
(︀
I + BTi Bi

)︀−1(︀x + BTi bi)︀.
Take tn = 1

2n+1 , β
(0)
n = n

4n+1 , β
(1)
n = n+1

4n+1 , β
(2)
n = 2n

4n+1 , 𝛾
(0)
n = 3n

5n+7 , 𝛾
(1)
n = n+7

5n+7 , 𝛾
(2)
n = n

5n+7 and αn =
4n

6n+1 , then
conditions C1 and C2 of Theorem 3.6 are satisfied. Therefore, for x1, u ∈ R, after applying our algorithm (3.9)
becomes ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

vn = (1 − tn)xn + tnu,
yn = J1(1)

(︀
J1(2)(vn)

)︀
,

zn = PD
(︀
β(0)n vn + β(1)n yn + β(2)n yn

)︀
,

wn = 𝛾(0)n zn + 𝛾(1)n T1λzn + 𝛾(2)n T2λzn ,
xn+1 = αnvn + (1 − αn)wn for all n ≥ 1.

Case 1: Take x1 = 0.5 and u = 0.5.
Case 2: Take x1 = 0.5 and u = 1.
Case 3: Take x1 = 1 and u = 0.5.

1 2 3 4 5 6 7 8 9

Iteration number (n)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

E
rr

or
 

||x
n+1

-x
n
||

Figure 1: Errors vs number of iterations for Case 1.
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Figure 2: Errors vs number of iterations for Case 2.
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Figure 3: Errors vs number of iterations for Case 3.
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