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Abstract: In this paper, we introduce and study the class of demimetric mappings in CAT(0) spaces. We then
propose a modified proximal point algorithm for approximating a common solution of a finite family of mini-
mization problems and fixed point problems in CAT(0) spaces. Furthermore, we establish strong convergence
of the proposed algorithm to a common solution of a finite family of minimization problems and fixed point
problems for a finite family of demimetric mappings in complete CAT(0) spaces. A numerical example which
illustrates the applicability of our proposed algorithm is also given. Our results improve and extend some
recent results in the literature.
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1 Introduction

Let D be a nonempty subset of a metric space (X, d). A point x € X is called a fixed point of a nonlinear
mapping T : D — X, if x = Tx. We denote by F(T) the set of fixed points of T. The mapping T is said to be:

(i) nonexpansive, if forall x,y € D,
d(Tx, Ty) < d(x,y),

(ii) quasi-nonexpansive, if F(T) # () and for y € F(T), x € D, we have
d(Tx,y) < d(x, y),
(iii) k-strictly pseudocontractive, if there exists k € [0, 1), such that
d*(Tx, Ty) < d*(x, y) + k[d(x, Tx) + d(x, Ty)}2 forall x,y € D,
(iv) k-demicontractive, if F(T) # ¢ and there exists k € [0, 1), such that
d*(Tx, y) < d?(x, y) + kd*(Tx,x)Vx €D, y € F(T),
(v) generalized hybrid, if there exist a, 8 € R, such that

ad®(Tx, Ty)+(1 - a)d?(x, Ty) < ﬁdZ(Tx, y)+(1 —ﬁ)dz(x, y)forallx,y € D.
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Clearly, the class of nonexpansive mappings (with nonempty fixed points set) is contained in the class of
quasi-nonexpansive mappings, while the class of demicontractive mappings contains both the classes of non-
expansive and quasi-nonexpansive mappings. Moreover, there are several examples in the literature which
show that the above inclusions are proper (see for example, [1] and the references therein).

Takahashi [2] (see also [3]) recently introduced a new class of nonlinear mappings in a Hilbert space,
namely the class of demimetric mappings, which is defined as follows:

Let H be a real Hilbert space and D be a nonempty, closed and convex subset of H. A mapping T : D — H is
called k-demimetric, if F(T) # () and there exists k € (-oo, 1), such that for any x € D and y € F(T), we have

1-k

x-y,x-Tx) = llx - Tx||>. (1.1
The class of k-demimetric mappings with k € (-oo, 1) is a wide class of mappings known to cover the class of
k-demicontractive mappings with k € [0, 1), generalized hybrid mappings, the metric projections and the re-
solvents of maximal monotone operators in Hilbert spaces (see [3-5]). We note that the class of k—demimetric
and k-demicontractive mappings are both quasi-generalizations of the class of k-strictly pseudocontractive
mappings.

The approximation of fixed points of the above nonlinear mappings have been studied extensively by var-
ious authors in the settings of both Hilbert and Banach spaces (see [6-12]). The study has now been extended
to nonlinear spaces, precisely, CAT(0) spaces. The pioneer work in fixed point theory in CAT(0) spaces was
th work of Kirk [13]. After that Dhompongsa and Panyanak [14], Khan and Abass [15], Chan et al. [16], among
others, continued to obtain interesting results on fixed point theory in CAT(0) spaces. Recently, Berg and
Nikolaev [17] introduced an inner product-like notion in CAT(0) spaces called the quasilinearization map-
ping, which is defined as follows:

Let a pair (a, b) € XxX, denoted by cﬁ be called a vector. The quasilinearization map (., .) : (XxX)x(XxX) —
R is defined by

(c@, (71) = %(dz(a, d) +d*(b, c) - d*(a, c) - d*(b, d)), foralla,b,c,d c X. (1.2

It is not diﬂ’rc_u)lt to see that (cﬁ, cﬁ> = d%(a, b), ba cd cﬁ cd), cﬁ cd) a_e>, c?l> + <e7, c_gl) and
(cﬁ, cd) = {cd,ab),forall a, b,c,d, e € X. Furthermore, a geodesic space X is said to satisfy the Cauchy-

Schwarz inequality if N
(ab, cd) < d(a, b)d(c, d),

forall a, b, c,d ¢ X. It is well known that a geodesically connected space is a CAT(0) space if and only if it
satisfies the Cauchy-Schwarz inequality [14].

Using the inner product-like notion, Liu and Chang [18] introduced the following class of demicontractive-
type mappings in CAT(0) spaces:
Let X be a CAT(0) space and D be a nonempty subset of X. A mapping T : D — X is called demicontractive in
the sense of [18], if F(T) # ¢ and there exists a constant k € (0, 1), such that

(Txy, XJ) < d*(x, y) - kd*(x, Tx), forallx € D,y € F(T). (13)

Equivalently, T : D — X is called demicontractive in the sense of [18], if F(T) # () and there exists a constant
k € (0, 1), such that

d*(Tx,y) < d*(x,y) + (1 - 2k)d*(x, Tx), forallx € D,y € F(T). (1.4)

Let X be a CAT(0) space. A mapping h : X — (—oo, oo] is said to be

(i) convex if
h(Ax @ (1 - A)y) < Ah(x) + (1 - A)h(y) forallx,y € X, A € (0, 1),

(i) proper, if D := {x € X : h(x) < +oo}is nonempty, where D denotes the domain of h,
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(iii) lower semi-continuous at a point x € D if
h(x) < liminf h(xy), (1.5)
n—oo

for each sequence {x,} in D, such that nle Xn =X,

(iv) lower semi-continuous on D if it is lower semi-continuous at any point in D.

The Moreau-Yosida resolvent of a proper convex and lower semi-continuous function h for any A > 0, is
defined as follows:

Janx = argmln h(u)+—d2(u X)

for all x € X. Jost [19] showed that the mapping J; is well-defined and nonexpansive for all A > 0.
The minimization problem deals with finding minimizers of a convex functional, that is, the problem of
finding a point x € X, such that

h(x) = min h(u). (1.6)
ueX

The set of solutions (minimizers) that satisfy (1.6) is denoted by arg min,cx h(u). We note from [19] that
F(Jap) = arg min,cx h(u).

The Proximal Point Algorithm (PPA) is a vital tool for solving problem (1.6). PPA was first introduced for
Hilbert spaces by Martinet [20] in 1970 and Rockafellar [21] in 1976. After that several authors have also used
PPA to obtain convergence results in Hilbert and Banach spaces (see [22]-[28]). The PPA in CAT(0) spaces
started with the work of Bac¢ak [29] in 2013. He introduced the following PPA for solving (1.6) in a CAT(0)
space:

Xne1 = argmin |h(u) ® —dz(y, xn)|, 1.7)
ueX

for n € N, where A, > 0, such that }"°; An = eo. Bacak [29] obtained a A-convergence result of (1.7) to a
minimizer of h. In 2015, Chlomajiak et al. [30] considered the following iterative algorithm for finding a mini-
mizer of a proper convex and lower semicontinuous function and common fixed points of two nonexpansive
mappings in complete CAT(0) spaces:

zn = argmingex (W) & 5 d2(u, xn)|
Yn = Bnxn ® (1~ Bn)T12n, (1.8)
Xn+1 = AnT1Xn & (1 - (Xn)szn foralln=>1,

where0 < a < an,Bn<b <1foralln=1and A, = A > 0forall n = 1. They showed that the sequence {xn}
A-converges to an element of I := arg min,cx h(u) N F(T1) N F(T3), provided I' is nonempty.

Very recently, Lerkchaiyaphum and Phuengrattana [31] proposed the following modified PPA in CAT(0)
spaces for finding a common minimizer of a finite family of proper convex and lower semicontinuous func-
tions, and a common fixed point of a finite family of nonexpansive mappings in a CAT(0) space. More precisely,
they proved the following theorem:

Theorem 1.1. Let D be a nonempty closed convex subset of a complete CAT(0) space X. Let {h,-}?i1 be a finite
family of proper, convex and lower semicontinuous functions of D into (oo, oo] and {T i}ﬁl be a finite family of
nonexpansive mappings of D into itself. Suppose that F = ﬂf‘il arg minycp h;(u) N ﬁfilF (T;) is nonempty. For
x1 € D, let {xn} be a sequence in D defined by

v = argminyey | hiw) & S d?(u, xn))

o= B PO 5 ) - AT .
Wn = 10zn @ /W T12P @ /P TozP @ - @ AW Tz,

Xns1 = 0nXn @ (1 — an)wn foralln=1,
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where {an}, {Bg,")}, {wﬁ,")} are sequences in [0, 1], such that 0 < a < an,ﬁ;"),%&i) <b<1, Zf\io Bg) = 1and
Zﬁo y,({) =1foralln =1, and {Aﬁ{)} is a sequence such that A%’) <A > Oforalln=1,i=1,2,---,N. Then,
{xn} A—converges to an element of F.

Inspired by the works of Takahashi [3], Lerkchaiyaphum and Phuengrattana [31], we introduce the class
of k-demimetric mappings in the framework of CAT(0) spaces and prove a strong convergence theorem for a
common solution of a finite family of minimization problems and fixed point problems involving this class of
mappings in complete CAT(0) spaces. Our results improve and extend the work of Takahashi [3], Chlomajiak
et al. [30], Lerkchaiyaphum and Phuengrattana [31].

2 Preliminaries

Let (X, d) be a metric space, x,y € X and I = [0, d(x, y)]. A curve c (or simply a geodesic path) joining x to
y is an isometry ¢ : I — X, such that ¢(0) = x, c(d(x, y)) = y and d(c(t), c(t') = |t — t'| for all t, ¢’ € I. The
image of a geodesic path is called the geodesic segment, which is denoted by [x, y] whenever it is unique. We
say a metric space X is a geodesic space if for every pair of points x, y € X, there is a minimal geodesic from
x to y. A geodesic triangle A(xy, x;, x3) in a geodesic metric space (X, d) consists of three vertices (points in
X) with unparameterized geodesic segments between each pair of vertices. For any geodesic triangle there is
comparison (Alexandrov) triangle A ¢ R?, such that d(x;, xj) = dg:(X;, X;), for i, j € {1, 2, 3}.

A geodesic space X is a CAT(0) space if the distance between an arbitrary pair of points on a geodesic
triangle A does not exceed the distance between its corresponding pair of points on its comparison triangle
A.If A and A are geodesic and comparison triangles in X respectively, then A is said to satisfy the CAT(0)
inequality for all points x, y of A and x, y of A if

d(X’ Y) = dRZ()_(a )_/)- (2-1)

Let x, y, z be points in X and y, be the midpoint of the segment [y, z], then the CAT(0) inequality implies
2 1, 1, 1
d“(x, yo) < 5d (x,y)+ fd (x,2) - Zd(y,z). (2.2)

For more properties of CAT(0) spaces, see [32-34] and the references therein.

Let {xn} be a bounded sequence in X and r(., {xn}) : X — [0, o) be a continuous mapping defined by
r(x, {xn}) = limsupd(x, x»). The asymptotic radius of {xn} is given by r({xn}) := inf{r(x, {xn}) : x € X}
while the asyrr?&otic center of {x,} is the set A({xn}) = {x € X : r(x, {xn}) = r({xn})}. It is known that in a
Hadamard space X, A({x»}) consists of exactly one point. A sequence {x,} in X is said to be A-convergent to
a point x € X if A({xn, }) = {x} for every subsequence {xy,} of {x»}. In this case, we write A-nli_>n:° Xn = x (see

35, 36]).

Definition 2.1. Let D be a nonempty closed and convex subset of a complete CAT(0) space X. A mapping
T : D — D is said to be A-demiclosed, if for any bounded sequence {x,} in X, such that A-HILm Xn = x and

lim d(xn, Txn) = O, then x = Tx.
n—oo

Definition 2.2. Let D be a nonempty closed and convex subset of a CAT(0) space X. The metric projection is
amapping Pp : X — D which assigns to each x € X, the unique point Ppx in D, such that

d(x, Ppx) = inf{d(x,y) : y € D}.
Recall that a mapping T is firmly nonexpansive (see [37]), if

d*(Tx, Ty) < (TxTy, )(_f/) forall x,y € X. (2.3)
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It follows from the Cauchy-Schwartz inequality that firmly nonexpansive mappings are nonexpansive. Metric
projection mapping is an example of a firmly nonexpansive mapping (see [37, Corollary 3.8]). The notion of
firmly nonexpansive mappings was first introduced in nonlinear settings in [38]. We also remark here that
(2.3) corresponds to property (P,) (Definition 2.7) of [39].

We give some known and useful results which will be needed in the proof of our main theorem. In the
sequel, we denote strong and A-convergence by ” — ” and ” — ”, respectively.

Lemma 2.3. [14] Let X be a CAT(0) space, then for each x,y € X and t € [0, 1], there exists a unique point
z € [x, yl, such that

d(z,x) =(1-06d(x,y)and d(z,y) = td(x, y). 2.4)
In this case, we write z = tx & (1 - t)y.

Lemma 2.4. [19] Let (X, d) be a complete CAT(0) space and h : X — (—oo, oo] be proper, convex and lower
semi-continuous. Then the following identity holds:

A—
Janx = Jun <—Ay],1hx@ %X>,
forallx e XandA = pu > 0.

Lemma 2.5. [14, 40] Let X be a CAT(0) space. Then for all x,y,z € X and all t € [0, 1], we have

1L ditxed (1 -1ty,2z) <tdx,z) + (1 - )d(y, 2),
2. d*(tx® (1 -y, 2) < td*(x,2) + (1 - Hd?(y, 2) - t(1 - O)d*(x, y),
3. d%(z, tx & (1 - t)y) < t2d%(z, x) + (1 - )2d2(z, y) + 2t(1 - )(ZX, Z})).

Lemma 2.6. [41] Let X be a complete CAT(0) space. Forany t € [0, 1] and u, v € X, let u; = tu® (1 - t)v. Then,
forallx,y € X, we have

(uk, uy) < tux, uy) + (1 - )(vk, uy).

Lemma 2.7. [42] Let X be a CAT(0) space and z ¢ X. Let x1, -+ ,xy € X and 1, - , vy be real numbers in
[0, 1], such that Zﬁ 1 7i = 1. Then the following inequality holds:

N N N
Y od (6, 2) < Y wd (i, 2) - Y vimd (g, X).
i=1 i=1 i,j=1,i#

Lemma 2.8. [43] Every bounded sequence in a complete CAT(0) space has a A-convergent subsequence.

Lemma 2.9. [44] Let X be a complete CAT(0) space, {xn} be a bounded sequence in X and x € X. Then {xn}
A-converges to x if and only if lim sup(xnX, W) <0 forally € X.
n—oo

Lemma 2.10. [45] Let X be a complete CAT(0) space and T : X — X be a nonexpansive mapping. Then T is
A-demiclosed.

Lemma 2.11. [46] Let X be a complete CAT(0) space and h : X — (-oo, o] be a proper, convex and lower
semi-continuous mapping. Then, for all x,y € X and A > 0, we have

1 1 1
ﬂdz(]/\hx: y) - ﬂdz(x, y)+ ﬂdz(x,]/\hx) +h(x) < h(y). (2.5)

Lemma 2.12. [47] Let {an} be a sequence of non-negative real numbers satisfying

ans1 < (1 - an)an + anbn +m, n=0,
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where {an}, {6n} and {yn} satisfy the following conditions:
() {an} C[0,1], E32pan = oo,

(i) limsup,,_, ., 6n < 0,

(iii) yn 2 0(n 2 0), Z52gyn < oo.

Then limp—00 an = 0.

Lemma 2.13. [48] Let {an} be a sequence of real numbers, such that there exists a subsequence {n;} of {n}
with an; < an;.1 forallj € N. Then there exists a nondecreasing sequence {m;} C N, such that m; — oo and
the following properties are satisfied by all (sufficiently large) numbers k ¢ N:

Amy < Amy+1 and Ay < A1

In fact, my =max{i < k: a; < aj}-

3 Main results

We first give the definition of a k-demimetric mapping in a CAT(0) space. We begin with the following facts
which led to our definition.
If T is a k-demicontractive mapping with k € [0, 1), then

d*(Tx,y) < d*(x,y) + kd*(x, Tx) forallx € X,y € F(T). (3.1)
Also, by definition of quasilinearization mapping (see (1.2)), we obtain that
Z(X_f/, m) = d*(x,y) + d*(Tx, x) - d*(Tx, y).

That is, R
d*(Tx, y) = d*(x, y) + d*(Tx, x) - 2(xTx, xy),
which implies from (3.1) that

1-k
2

(P, XTX) = —~d2(x, Tx). (.2)

Motivated by (3.2) above, we define the demimetric mapping in a CAT(0) space as follows:

Definition 3.1. Let X be a CAT(0) space and D be a nonempty closed and convex subset of X. A mapping
T : D — X is said to be k-demimetric if F(T) # () and there exists k € (-oo, 1), such that

1-k
2

(x—f/, Eb > d*(x, Tx) forallx € X,y € F(T). (3.3)

Clearly, the class of k-demimetric mappings with k € (-oo, 1) contains the class of k-demicontractive map-
pings with k € [0, 1).

Remark 3.2. 1f T is a generalized hybrid mapping with F(T) # 0, then for x € D and y € F(T) we obtain that
ad*(Tx, y) + (1 - @d*(x, y) < Bd*(Tx, y) + (1 - Pd*(x, y),
which implies that
d*(Tx, y) < d*(x, y). (34)
Now, from (3.4) and the definition of quasilinearization, we obtain that

2<x_)>/, m> = d*(x, Tx) + d*(x, y) - dz(y, Tx) > d%(x, Tx) + d*(x, y) - d*(x, ¥),
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which implies that

(¥, ﬁ’q > 1%Odz(x, Tx). (3.5)

Also, T is firmly nonexpansive if
d*(Tx, Ty) < (x_f/, m> forallx,y € D.
If F(T) # 0, then for all x € D and y € F(T), we have that
d(Tx, y) < (%, Ty).
Therefore, the following implications hold:

(Txy, m < Wf,fw
_> %
(yTx yTx) (yTx, xy)<0
yTx )/7{ + (yTx, EQ (y—T;c x_f/><0
Txy, xy) (yTx xy ﬁ xTx) + <xTx, m) <0
TxTx, x_))/> +d%(x, Tx) < (xy, xTx),

=
=
= X—f/, ﬁ@ + (x—f/, TxTx) = d?(x, Tx),

=
(
(
(

which implies that

xy, xTx) = d*(x, Tx). (3.6)

Thus, (3.6) and (3.5) show that generalized hybrid mappings with nonempty fixed point sets and firmly nonex-
pansive mappings with nonempty fixed point sets are O and -1 demimetric mappings respectively. Since metric
projection mappings are an example of firmly nonexpansive mappings, then they are demimetric mappings.

Example 3.3. Let T : [0, 1] — [0, 1] be defined by Tx = x - x/, j > 1. Then T is k-demimetric with k = —1.
Proof. Clearly, F(T) = {0}. Now, for all x € [0, 1] and j = 1, we obtain that

(x-0,x-Tx) = (x,xj>

21 + 2 = x - 2]

= 5[\"\ + )7 = x|+ 2x] 2 = )]
-1 > 2] = P,
That is,
(X-0,x-Tx) = 1‘5‘1)| |
Hence, we have that (x - 0, x — Tx) = =01 |x - Tx|2. O

We now study some fixed point properties of k-demimetric mappings in CAT(0) spaces.

Proposition 3.4. Let X be a complete CAT(0) space and T : X — X be a k-demimetric mapping with k <
(-o0, 1), such that F(T) is nonempty. Then F(T) is closed and convex.
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Proof. We first show that F(T) is closed. Let {x»} be a sequence in F(T), such that {x,} converges to x". Then
from Definition 3.5, we have that

' t 1 k

(X Xn, X'TX) = o, TX),
which implies by the Cauchy-Schwarz inequality that
d(x", x)d(, Tx) = dz(x ). 3.7

Taking limits on both sides of (3.7), we obtain that 1%"dz(x*, Tx") < 0. By the condition on k, we obtain that
d(x", Tx") = 0. Thus, x" € F(T). Therefore, F(T) is closed.
Next, we show that F(T) is convex. For this, let x, y € F(T). Then it suffices to show that (tx ® (1 - t)y) €
F(T), fort € [0,1].Setz = tx ® (1 - t)y, t € [0, 1]. Then by Definition 3.1, we obtain from Lemma 2.6 that
d*(z, T2) = (zT%, 2T7)
—

={{tx® (1 -ty)Tz, Z->TZ>

< t(xTz, 2T2) + (1 - t)(y Tz, 2T7)

— t[(%%, 2T2) + (zT%, 2T2)] + (1 - )[(V2, 2T2) + (272, 2T7)]

. t(k -1) (1-8k-1)

- 2

d’(z, Tz) + td*(z, Tz) + d*(z, T2) + (1 - H)d*(z, Tz2)

k 1dz(z T2) + d*(z, Tz),

which implies that %dz(z, Tz) = 0. By the condition on k, we obtain that d?(z, Tz) < 0. Hence, z = Tz and
this yields the desired conclusion. O

The following Lemma is a cardinal property of all kinds of mappings derived from strictly pseudocon-
tractions. The Lemma first appeared in the setting of Hilbert spaces [[49], Theorem 2]. We state the lemma for
k—demimetric mappings in a CAT(0) space setting and give the proof for completeness.

Lemma3.5. Let X be a CAT(0) space and T : X — X be a k-demimetric mapping with k € (oo, A] and
A € (0, 1), such that F(T) is nonempty. Suppose that T)x = Ax ® (1 - A)Tx. Then T, is quasi-nonexpansive and
F(T,) = F(T).

Proof. Letx € X and z € F(T). Then, from Definition 3.1 and Lemma 2.6 we obtain that

(7%, XTyx) = (2%, x(Ax & (1 - A)TY)
———
= {(Ax @ (1 - ) Tx)x, )@)
< A(iXk, 32) + (1 = )(Txx, X2)
- (1 - V(¥ Txx)

L A-M(k-1)

2
< Wd (x, Tx). (3.8)

Now, from Lemma 2.3, we obtain that d*(x, T)x) = (1 — A)?>d?(x, Tx). Substituting this in (3.8), we obtain

= 2
(z?,xTA)Q 2(1 }l)d (x, Tyx),
which implies that
2
x? xTyx) 2 2(1 A)d (x, T)x)

> Ed (x, Tyx).
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Thus, by (1.2), we obtain that
d*(x, T\x) + d?*(z, x) - d*(z, Tyx) = d*(x, Tyx).
That is,
d’(z, Tyx) < d*(z, x).

Hence, T, is quasi-nonexpansive.
We next show that F(T)) = F(T). Let x € F(T}), then x = T)x. So,

d(x, Tx) = d(Ax ® (1 - ) Tx, Tx)
< Ad(x, Tx),

which implies that (1 - A)d(x, Tx) < 0. Since A < 1, we obtain that d(x, Tx) < O.
Therefore, x € F(T), and thus F(T;) C F(T).
Conversely, let x € F(T), then x = Tx. By Lemma 2.5, we obtain

d(x, T)x) = d(Tx, Ax & (1 - ))Tx)
< Ad(Tx, x) + (1 - D)d(Tx, Tx)
=0,

which implies that d(x, T;x) = 0. Thus, x € F(T,) and therefore F(T) C F(T,). Hence, we obtain the desired
result. O

Theorem 3.6. Let D be a nonempty closed and convex subset of a complete CAT(0) space X, and h; : X —
(-oo,00],i=1,---, N bea finite family of proper, convex and lower semi-continuous functions. Let T; : D — D,
i =1,---,N be a finite family of k;-demimetric mappings with k; € (-oo,A] and A € (0, 1). Suppose that
I = (nY,argmin,cxh;(w) N (NN, F(T;)) is nonempty and {x»} is a sequence generated for arbitrary x1, u € X
by

Vn = (1 - tn)xn ® tau,

y)’l =]rnh1 o]rnhz Orer O]?'nhNVn’

zn = Pp (ﬁg,o)Vn @ ﬁﬁl)yn DD ﬁ%N)J/n), (3.9)

(0) (1)

Wn=""2n® v T1aZn ® 7511) Topzn--- @ ’YﬁlN) Tnpzn,

Xn+1 = AnVn ® (1 — an)wn foralln =1,

where T;x = Ax & (1 - A)T;x, such that T;, are A-demiclosed for eachi =1, 2, ..., N. Suppose that {t,}, {an},
{55;)} and {yﬁ,’)} are sequences in [0,1], such that the following conditions are satisfied:

Cl: 0<ac an,ﬁg),'yﬁ,’j <b<1, Zﬁoﬁ(n") = 1and2ﬁ0~/,(f) =1foralln=1,

C2: hm tn = 0, 2:10:1 tn = 0o,

n—oo
C3 : {rn}is a sequence of real numbers, such thatrn, zr >0 foralln = 1.

Then, the sequence {xn} converges strongly to a pointinI.

Proof. Letp € I', from Lemma 3.5, we obtain that p = T;,p. Also, we have thatp = J, yp,i1=1,2,---,N.
Thus, we obtain from (3.9), Lemma 2.7 and Lemma 3.5 that

dwn, p) = Ay Vzn & AP T1azn @ - & A Ty 20, p)

N
<y d(zn, p)+ > W d(Tipzn, p)
i=1

N
<yd(zn, p) + Y W d(zn, p)

i=1
= d(zn, p). (3.10)
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From (3.9) and (3.10), we obtain

d(zn, p) < dBLVn @ BPyn & -+ & BNyn, p)
N

< pPd(vn,p)+ Y B d(yn, p)
i=1
N -
< BVd(vn, p) + Zﬁg)d(]r,,hl o Jrihy *** © JruhyVns D)

i=1
N

< B d(vn, p)+ > B d(vn, p)

i=1
- dn. ). 61
From (3.9), (3.10) and (3.11), we have that

d(Xp41,p) = d(@nvn & (1 - &n)wn, p)
< and(vn, p) + (1 - an)d(wn, p)
< and(vn, p) + (1 — an)d(zn, p)
< and(vn, p) + (1 - an)d(vn, p)
= d(vn, p) 3.12)
=d((1 - tn)xn @ tn, p)
< (1 - tn)d(xn, p) + tnd(u, p)
< max{d(xn, p), d(u, p)},

which implies by induction that

d(xp+1, p) < max{d(xy, p), d(u, p)}, foralln=1.
Hence d(xy, p) is bounded, and so are {vn}, {zn}, {wn} and {yn}.
Now from (3.9), (3.10), (3.11), Lemma 2.5 and Lemma 2.7, we have
d*(Xns1, p) = d*(@nVn ® (1 = Qn)Wn, p)
<and’(Vn, p) + (1 - an)d*(Wn, p) - a(1 - an)d*(Vn, wn)

N N
<and*(vii, p) + (1 - a) W d*(zn, p) + Y WA (Tipzn, p) = Y W d*(zn, Tizn)
i1 i1

N
-3 AP (Tipzn, Ty zn)l - an(1 - an)d? (v, Wn)
i=1,i#j

N N
<and’(vii, p) + (1~ an)ly d*(zn, p) + 0 d> (20, p) = Y W d* (zn, Tipzn)
i=1 i=1

N
= N AW (Tip 20, Tjzn)] - an(1 = an)d? (Va, Wn)
i=1,14j

N
<and’(vn, p) + (1 - an)ld*(zn, ) = Y W d*(zn, Tipzn)] - an(1 - an)d’ (v, wn)
i=1

N N
<and’(va, p) + (1 - an)[Bd*(va, ) + > B (yn, p) - > BBV d* (Vi yn)

i=1 i=1

N N
- Z ﬁg)ﬁg)dz(yg), yg))] —an(l - an) Z 7&0)’72)d2(zm Tipzn) — an(1 - an)dz(vn, Wn)

i=1,i# i=1
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N N
d*(vn,p) - (- an) Y OBV vn, yn) - (1 -an) S pOBP /Y, yD)

i=1 i=1,i#
- (1 [24 )Z ’7(0) (i)dz(Zn, TiAZn) - an(l - an)dz(Vn, Wn)
N -
<(1 - ta)d? (n, ) + tnd (1, p) = ta(1 = tn)d? (u, Xn) = (1 = @n) > BBV (v, yn)
i=1
-(1-an Z’Y(O) Da?(zy, Tipzn) - an(1 - an)d*(Vn, wn) (3.13)

<(1- tn)d (Xn, p) + tndz(u,P) —ta(1- tn)dz(u, Xn) — an(1 - an)dz(vn, Wn).
From (3.5) and condition C2, we obtain that
d(vn, xn) < thd(u, xn) - 0, asn — oo. (3.14)

Now we divide the rest of the proof into two cases:
Case 1: Assume that {d?(x», p)} is a monotonically non-increasing sequence. Clearly, {d?(xn, p)} is conver-
gent and
d*(xn, p) - d*(Xns1,p) = 0, asn — oo.

So from (3.13), we have

an(1 - Q)d*(Vn, wn) < (1 = tn)d? (xn, p) + tad” (U, p) - d*(Xns1, D)
= tnld*(u, p) - d*(xn, p)] + d*(xn, p) — d*(Xn+1, D),

which implies by condition C2 that
lim d(vn, wn) = 0. (3.15)
n—oo

Similarly,
1-a )Zv(o) Vd*(zn, Trzn) < tnld® (u, p) = dOn, p)] + d*(xn, P) = d* (i1, P) — 0, asn — oo,
Hence, by condition C2, we obtain that
1-a )Zv“” Vd*(zn, Tipzn) — 0,

and thus,
lim d(zn, Tipzn) =0, i=1,2,--,N. (3.16)
n—oo

In a similar way, from (3.11) we obtain that

Jim d(vn,yn) = Jim dUyn, © 0 Jy,nyVn, V) = 0. (3.17)
Let ¢ = J, e, i=1,2,---, N, where ¢ = v, forall n = 1. Then, ¢!’ = yp. By Lemma 2.1, we

obtain
dz(c(” p) - dz(c““),pn d%“*“ )+ h(c?) < h(p).

Since h(p) < h(cE,")), we obtain

d(cfl, i) = (e, p) - (e, ). (3.18)
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Now, taking the sum from i = 1 to i = N in (3.18), from (3.17) we obtain that
ZdZ(C(l) (l+1)) < dZ(C(N+1) p) _ dZ(Cgll) p)
= d*(vn, p) - d*(yn, p)
< d*(yn, vn) + 2d(yn, va)d(vn, p) — 0, asn — oo,
which implies that
lim d(c?, V) =0, i=1,2,---,N. (3.19)
n—oo
Thus, foreachi =1, 2,---, N, we obtain by applying the triangle inequality that hm d(c(’) N +1)) = 0. That
is,
lim d(c?,vn)=0,i=1,2,---,N. (3.20)
n—oo

Sincery 2 r > Oforalln = 1, from Lemma 2.5, Lemma 2.4, (3.19) and the nonexpansivity of J,;,,,i=1,2,--- , N
we obtain that

d(c(l+1)’]r (l+1)) < d(C(Hl)’]rnh C(l+1))+ d(]rnh Cg‘zHl),]rh C(i+1))
d(c(1+1) (1)) +d (]r " ( C(1+1) EB (1+1)) ’]rhngH))

< d(C(Hl) C(l)) i d( ]rn " (1+1) @ (1+1) £:'+1))

< ( 7) d(c D, (‘)) 5 0,asn—soo, i=1,2,+-+,N. (.21)
By (3.19), (3.20) and (3.21), we obtain that

dUyn, Vs Vi) < AU, Vs T, €5D) + d(T €570, 8 0) 4 d(cSY, D) + d(cD, v)
< d(vn, <)+ d(c?, V) + d(T,, cEY, V) 4 a(c Y, Dy + d(c?, vn)
=2d(vn, ) + 2d(c?, cﬂ“)) +d(J,, c(”l) 5,”1)) — 0, asn — oo.

That is,

nh_}m d(]rhin[, Vr[) = 0, i= 1, 2, e ,N. (3.22)

Let an = BPVn ® BLyn & BPYn -+ ® BNy Then,

N
d(an, xn) = Bﬁo)d(vn, Xn) + Zﬂg)d()’n, Xn)

i=1

N N
< B A, xn) + > BV Ay, vi) + Y BV, xn),
i=1 i=1
which implies from (3.14) and (3.17) that
hm d(an, Xn) = O. (3.23)
n—oo

We know that Pp, is firmly nonexpansive. Thus, from (3.10), (3.11) and (3.15) we obtain that

d*(zn, an) < d*(an, p) - d*(zn, p)
< d*(vn, p) - d*(zn, )
< d*(vn, p) - d*(wn, p)
< d*(vn, wn) + 2d(vVn, wn)d(wn, p) — 0, as n — oo. (3.24)
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From (3.23) and (3.24), we obtain that
lim d(zn,xn) = O. (3.25)
n—oo

Using a similar method as in [50], [51] and [52], and the fact that {x,} is bounded, it follows from Lemma
2.8 that there exists a subsequence {xp, } of {xn}, such that A - I}Lngo Xn, = z. It follows from (3.25) that there
exists a subsequence {zn, } of {zn}, such that A - kli)n:o Zn, = z. By a similar argument, we have that A -
I}Lrgo Vn, = z. Since T;, is A-demiclosed for each i = 1,2,---, N, it follows from (3.16) and Lemma 3.5 that
zZ € ﬂﬁlF (T;) = mf\ilF(Ti). Also, since ], is nonexpansive, for eachi = 1, 2,--- , N, we obtain from (3.22)
and Lemma 2.10 that z € N, F(J,5,) = (ﬂf\ilargminyexh,-(y)) .Hence,z € T.

Furthermore, for an arbitrary u € X, by Lemma 2.9 we have that

lim sup(ﬁi, Z—Xn>> <0, (3.26)
n—oo
which implies by condition C1 that
lim sup (tndz(z, u)+2(1- tn)<Z_>u, zﬁ)) <0. (3.27)

n—oo
We now show that {x,} converges strongly to z. By (3.12) and Lemma 2.5, we obtain
dz(Xn+1 ,2) < dZ(Vn, z)
(1 - tn)?d>(z, xn) + t2d%(z, u) + 2tn(1 - tn)(ZU, ZX7)

(1 - ta)d*(z, Xn) + tn (tndz(z, u) +2(1 - tn)(Z4, zTn’>) . (3.28)

IN

IN

Hence, by (3.27) and Lemma 2.12, we conclude that {x,} converges strongly to z.

Case 2: Suppose that {dz(xn, p)} is not monotonically non-increasing. Then, there exists a subsequence
{d*(p, xn,)} of {d*(p, xn)}, such that d*(p, xn,) < d*(p, Xn,+1) for all i € N. Thus, by Lemma 2.13, there exists
a non-decreasing sequence {m;} C N, such that m; — oo, and

d*(p, xm,) < d*(p, Xmy+1) and d*(p, x;) < d*(p, Xpny+1) forall k € N. (3.29)

Thus, by (3.12), (3.29) and Lemma 2.5, we obtain

0 < lim (@@, xmu1) - d*(@, xm,))
k— o0
< limsup (dz(p, Xna1) — d*(p, xn))
n—oo
< limsup (dz(p, zn) - d*(p, Xn))
n—oo
< limsup ((1 — tn)d*(p, xn) + tad” (p, u) - d*(p, Xn))
n—oo
= limsup [tn (dz(p, u) - dz(p,xn))} =0,
n—oo
which implies that
lim (dz(p, Xms1) — d2(p, xmk)) - 0. (3.30)
k— o0

Following the arguments as in Case 1, we can show that
klim (tmkdz(z, u) + 2(1 — tm,) (20, zxmk>) <0. (3.31)
—>o0

Also, by (3.28), we have

(2, Xm1) < (1= tm)d (2, Xm) + b, (tm @ (2 0) + 21 = ) X)) ) -
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Since d*(z, Xm,) < d*(z, Xm,+1), we Obtain
d*(z, Xm,) < (tmkdz(z, u)+2(1- tmk)<z_z>1,zxmk)) .
Thus, by (3.31), we get

lim d*(z, xm,) = O. (3.32)
k—oo

It then follows from (3.29), (3.30) and (3.32) that klim d*(z, x;) = 0. Therefore, we conclude from both cases
—o0
that {xn} convergestoz € I'. O

By setting N = 1 in Theorem 3.6, we obtain the following result:

Corollary 3.7. Let D be a nonempty closed and convex subset of a complete CAT(0) space X, and h : X —
(~o0, oo] be a proper, convex and lower semi-continuous function. Let T : D — D be a k-demimetric mapping
with k € (-0, A] and A € (0, 1). Suppose that I' = ((argmin,cxh(u)) N F(T)) is nonempty and for arbitrary
X1, U € X the sequence {xn} is defined by

Vn = (1 - tn)xn @ tau,
)/n =]rnhVn,
zZn=Pp (ﬁ%o)vn @ﬁ%)yn)’

(0)

Wn =Y 2Zn ® 'Y)(’ll)TAZn’

Xn+1 = AnVn ® (1 — an)wy foralln =1,

where T, is as defined in Lemma 3.5, such that T) is A-demiclosed. Suppose that {tn}, {an}, {Bn} and {n} are
sequences in [0,1], such that the following conditions are satisfied:

Cl: 0<ac an,ﬂg),wﬁf) <b<1, 2,.1:0[%5{) =1 and ZLOW@ =1forallnz=1,
C2: nh_)ngo tn = 0, Z:;l tn = 0o,
C3: {rn} is a sequence of real numbers such thatr, 21 > 0.

Then, the sequence {xn} converges strongly to a pointinI.

By setting T; to be a k-demicontractive mapping for eachi = 1, 2,..., N in Theorem 3.6, we obtain the
following result:

Corollary 3.8. Let D be a nonempty closed and convex subset of a complete CAT(0) space X, and h; : X —
(-o0,00],i=1,---, N be a finite family of proper convex and lower semi-continuous functions. Let T; : X — X,
i=1,---,N be a finite family of k;-demicontactive mappings with k; € (oo, A] and A € (0, 1). Suppose that
I = (ﬂﬁlargminuexhi(u)) N (ﬁf\ilF(Ti)) is nonempty and {xn} is a sequence generated for arbitrary x1,u € X
by

Vn = (1= tn)xn @ thu,

Yn = ]r,lhl ojrnhz O OJthNV"’

zn=Pp(Bvn & B yn @ - @ BNyn), (3.33)

0)

Wn =020 ® 1P T1azn ® 1P Toazn -+ ® AN Tpzn,

Xns1 = &nVn @ (1 — an)wy forallnz=1,
where T;;x = Ax ® (1 - ) T;x, such that T;, are A-demiclosed foreachi=1,2,...,N. Suppose that {tn}, {an},
{ﬁ%‘)} and {'y,(})} are sequences in [0,1], such that the following conditions are satisfied:
Cl: 0<acs an,ﬁg),yﬁp <b<1, Zﬁoﬁg) = 1and2f\iofyﬁp =1forallnz=1,
C2: lim th=0,> ;7 tn = oo,

n—oo
C3 : {rn} is a sequence of real numbers such thatrn >r > O foralln = 1.

Then, the sequence {xn} converges strongly to a pointinI.
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4 Numerical example

In this section, we give a numerical example to illustrate Theorem 3.6.
Let X = R, endowed with the usual metric and D = [0, 1]. Then,

0, if x <O,
Pp(x)=<x, ifxeD,
1, ifx>1

is a metric projection onto D.For N = 2, define T; : D — D, by T;x = x-x!,i=1,2.Then, Tis(-1)-demimetric
(see Example 3.3). Now, define h; : R — (oo, o] by h;(x) = %|Bi(x) - b;|%, where B;(x) = 2ix and b; = 0,
i =1, 2. Since B; is continuous and linear for each i = 1, 2, then we have that h; is proper, convex and lower
semicontinuous mapping. Let r, = 1 forall n = 1, then

. 1
Jin,(x) = Proxh;x = arg min (h;(y) + 5|y - x|2)
yeD 2

= (I1+BIB) " (x+ B by).

0 1 2 0 1 2
Take tn = ﬁ’ﬁ%) = 4nn+1u851) = 4nn++11’ﬁ£1) = g W = So7> W = e W = sne7 and an = gilly, then
conditions C1 and C2 of Theorem 3.6 are satisfied. Therefore, for x;, u € R, after applying our algorithm (3.9)
becomes

vn = (1 - tn)xn + thu,

Y=Y (]1(2)(Vn)),

Zn = Pp (B + B yn + B yn),
Wn = 1 zn + 1P T1pzn + 42 Tapzn,

Xns1 = Anvn + (1 — an)wy, foralln > 1.
Case 1: Take x; = 0.5 and u = 0.5.

Case 2: Takex; =0.5and u = 1.
Case 3: Take x; = 1and u = 0.5.

——Ix

i Xall

Error

1 2 3 4 5 6 7 8 9
Iteration number (n)

Figure 1: Errors vs number of iterations for Case 1.
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Figure 2: Errors vs number of iterations for Case 2.
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Figure 3: Errors vs number of iterations for Case 3.
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