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Abstract: In this article, we consider the class of noncyclic Meir-Keeler contractions and study the existence
and convergence of best proximity pairs for such mappings in the setting of complete CAT(0) spaces. We
also discuss asymptotic pointwise noncyclic Meir-Keeler contractions in the framework of uniformly convex
Banach spaces and generalize a main result of Chen [Chen C. M., A note on asymptotic pointwise weaker
Meir-Keeler type contractions, Appl. Math. Lett., 2012, 25, 1267-1269]. Examples are given to support our main
results.
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1 Introduction
Let (X, d) be ametric space. Amapping T : X → X is said to beMeir-Keeler contraction provided that for every
ε > 0 there exists δ > 0, such that

ε ≤ d(x, y) < ε + δ ⇒ d(Tx, Ty) < ε for all x, y ∈ X. (1.1)

Another interesting extension of the Banach contraction principle was established in [1].

Theorem 1.1. Let (X, d) be a complete metric space and let T : X → X be a Meir-Keeler contraction mapping.
Then T has a unique fixed point and the Picard iteration sequence {Tnx0} converges to the fixed of T for any
x0 ∈ X.

Recently, the class of Meir-Keeler contractions was generalized in [2] as follows.

Definition 1.2. Let (A, B) be a nonempty pair of subsets of a metric space (X, d). A mapping T : A∪B → A∪B
is called a cyclic Meir-Keeler contraction if T is cyclic on A ∪ B, that is, T(A) ⊆ B, T(B) ⊆ A and for every ε > 0
there exists δ > 0 such that

d*(x, y) < ε + δ ⇒ d*(Tx, Ty) < ε for all (x, y) ∈ A × B, (1.2)

where d*(a, b) = d(a, b) − dist(A, B) for any (a, b) ∈ A × B.

The following result is a generalization of Theorem 1.1 in uniformly convex Banach spaces.
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Theorem 1.3. [2] Let A and B be nonempty and closed subsets of a uniformly convex Banach space X, such
that A is convex. Suppose T is a cyclic Meir-Keeler contraction on A ∪ B. Then there exists a unique point z ∈ A
for which d(z, Tz) = dist(A, B). Moreover, for any x0 ∈ A the iterate sequence {T2nx0} converges to z.

We mention that Theorem 1.3 is valid in metric spaces when the pair (A, B) satisfies the property UC (see
Theorem 3 of [3] for more details).

Let (A, B) be a nonempty pair in ametric space (X, d). Amapping T : A∪B → A∪B is said to be noncyclic
provided that T(A) ⊆ A and T(B) ⊆ B. If A∩B = ∅, then it is interesting to study the existence of best proximity
pairs for the non-self mapping T, that is, a point (p, q) ∈ A × B, such that

p = Tp, q = Tq and d(p, q) = dist(A, B).

In this case, the existence of a best proximity pair for the noncyclic mapping T is equivalent to the existence
of a solution of the following minimization problem:

Find min
x∈A

d(x, Tx), min
y∈B

d(y, Ty) and min
(x,y)∈A×B

d(x, y). (1.3)

Existence of best proximity pairs for noncyclicmappingswas first studied in [4] (see also [5] for a different
approach to the sameproblem) . Itwas proved that if (A, B) is a nonempty, bounded, closed and convexpair in
a uniformly convexBanach space X, and T : A∪B → A∪B is a noncyclicmapping forwhich ‖Tx−Ty‖ ≤ ‖x−y‖
for all (x, y) ∈ A × B, then T has at least one best proximity pair (see Theorem 2.1 and Proposition 2.1 of [4]).

In this paper, we study the noncyclic version of themappings considered in Theorem 1.3, in order to prove
the existence and convergence of best proximity pairs using the metric projection operators in the setting of
complete CAT(0) spaces.Wealso extendoneof themain theoremsof [6] to noncyclicmappings and establish a
newbest proximity pair theorem in uniformly convex Banach spaces. Finally, in the last section of this article,
we show that under some sufficient conditions the class of noncyclic relatively u-continuous mappings is
continuous on their domains and so the existence of best proximity pairs for such mappings can be obtained
easily from the Schauder’s fixed point result.

2 Preliminaries
In this section we recall some fundamental concepts which will be used in our coming discussion.

Definition 2.1. A Banach space X is said to be uniformly convex if there exists a strictly increasing function
δ : (0, 2] → [0, 1], such that the following implication holds for all x, y, p ∈ X, R > 0 and r ∈ [0, 2R]:⎧⎪⎪⎨⎪⎪⎩

‖x − p‖ ≤ R
‖y − p‖ ≤ R
‖x − y‖ ≥ r

⇒ ‖ x + y2 − p‖ ≤ (1 − δ( rR ))R

It is well known that Hilbert spaces and lp spaces (1 < p < ∞) are uniformly convex Banach spaces.
Given (A, B), a pair of nonempty subsets of a normed linear space X, then its proximal pair is the pair

(A0, B0) given by
A0 = {x ∈ A : ‖x − y′‖ = dist(A, B) for some y′ ∈ B},

B0 = {y ∈ B : ‖x′ − y‖ = dist(A, B) for some x′ ∈ A}.

Proximal pairs may be empty but, in particular, if A and B are nonempty weakly compact and convex, then
(A0, B0) is a nonemptyweakly compact convexpair in X.Wewill say that thepair (A, B) isproximinalprovided
that A0 = A and B0 = B.

Ametric space (X, d) is said to be a (uniquely) geodesic space if every two points x and y of X are joined by
a (unique) geodesic, i.e, a map c : [0, l] ⊆ R → X, such that c(0) = x, c(l) = y, and d(c(t), c(t′)) = |t − t′| for all
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t, t′ ∈ [0, l]. A subset A of a geodesic space X is said to be convex if the image of any geodesic that joins each
pair of points x and y of A (geodesic segment [x, y]) is contained in A. A point z in X belongs to a geodesic
segment [x, y] if and only if there exists t ∈ [0, 1], such that d(x, z) = td(x, y) and d(y, z) = (1 − t)d(x, y).
We write z = (1 − t)x ⊕ ty for simplicity. Notice that this point may not be unique. Any Banach space is for
instance a geodesic space with usual segments as geodesic segments.

A geodesic triangle △(x1, x2, x3) in a geodesic metric space (X, d) consists of three points x1, x2, x3 in
X (the vertices of △) and a geodesic segment between each pair of vertices (the edges of △). A comparison
triangle for the geodesic triangle △(x1, x2, x3) in (X, d) is a triangle △(x1, x2, x3) := △(x1, x2, x3) in the
Euclidean planeE2, such that dE2 (xi , xj) = d(xi , xj) for i, j ∈ {1, 2, 3}. A geodesic space is said to be a CAT(0)
space if all geodesic triangles of appropriate size satisfy the following comparison axiom:

CAT(0) : Let △ be a geodesic triangle in X and let △ be a comparison triangle for △. Then △ is said to
satisfy the CAT(0) inequality if for all x, y ∈ △ and all comparison points x, y ∈ △

d(x, y) ≤ dE2 (x, y).

For details about CAT(0) spaces, we refer to [7, 8].
The next lemma plays an important role in our results.

Lemma 2.2. ([9]) Let (X, d) be a CAT(0) space and let (A, B) be a nonempty and closed pair of subsets in X.
Suppose B is bounded. Then (A0, B0) is a nonempty, bounded and closed pair. Moreover, if (A, B) is convex, then
(A0, B0) is also convex.

Let (X, d) be a metric space and C be a nonempty subset of X. The metric projection operator PC : X → 2C is
defined as

PC(x) := {y ∈ C : d(x, y) = dist({x}, C)},

where 2C denotes the set of all subsets of X. It is well known that if C is a nonempty, closed and convex subset
of a complete CAT(0) space X, then the metric projection PC is single-valued from X onto C (see [7] for more
details).

Now, suppose (A, B) is a nonempty, closed and convex pair in a complete CAT(0) space X, such that B is
bounded. By Lemma 2.2 (A0, B0) is also nonempty, closed and convex.

Consider the mapping P : A0 ∪ B0 → A0 ∪ B0 as below

P(x) :=
{︃
PB0 (x), if x ∈ A0,
PA0 (x), if x ∈ B0.

Then P is a single-valued cyclic mapping on A0 ∪ B0, that is, T(A0) ⊆ B0 and T(B0) ⊆ A0. Furthermore, for
each x ∈ A0 ∪ B0 we have d(x,Px) = dist(A, B) (see [10, 11] for more information).

We finish this section by recalling the following geometric notion.

Definition 2.3. [3] Let A and B be nonempty subsets of a metric space (X, d). Then (A, B) is said to satisfy
property UC if for any {xn} and {zn} sequences in A and {yn} sequence in B, such that limn→∞ d(xn , yn) =
dist(A, B) and limn→∞ d(zn , yn) = dist(A, B), we have limn→∞ d(xn , zn) = 0.

Notice that property UC is not symmetric, that is, it is not true that if (A, B) has property UC then so does
(B, A). It was proved in [12, 13] that if (A, B) is a nonempty and closed pair in a uniformly convex Banach
space (or CAT(0)), space such that A is convex, then (A, B) has property UC.

Lemma 2.4. [3] Let A and B be two nonempty subsets of a metric space (X, d). Assume that (A, B) satisfies
property UC. Let {xn} and {yn} be sequences in A and B, respectively, such that either of the following holds:

lim
m→∞

sup
n≥m

d(xm , yn) = d(A, B) or lim
n→∞

sup
m≥n

d(xm , yn) = d(A, B).

Then {xn} is a Cauchy sequence.
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3 Existence and convergence of best proximity pairs

3.1 Noncyclic Meir-Keeler contractions

Here we present the noncyclic version of Definition 1.2 in order to study the existence and convergence of best
proximity pairs.

Definition 3.1. Let (A, B) be a nonempty pair of subsets of a metric space (X, d). A mapping T : A∪B → A∪B
is called a noncyclic Meir-Keeler contraction if T is noncyclic and satisfies condition (2) of Definition 1.2.

The next lemma will be used in our coming discussion.

Lemma 3.2. (see also [14] for the same result in uniformly convex Banach spaces) Let (A, B) be a nonempty,
closed and convex pair in a complete CAT(0) space X, such that B is bounded. Then the projection mapping
P : A0 ∪ B0 → A0 ∪ B0 is continuous.

Proof. Let {xn} be a sequence in A0, such that xn → x ∈ A0. Then

d(Pxn , x) ≤ d(Pxn , xn) + d(xn , x) → dist(A, B),

which implies that d(Pxn , x) → dist(A, B). Thereby, Pxn → Px and so P|A0 is continuous. Equivalently, we
can show that P|B0 is continuous.

We now prove the main result of this section.

Theorem 3.3. Let (A, B) be a nonempty, closed and convex pair in a complete CAT(0) space X and T : A∪B →
A ∪ B a noncyclic Meir-Keeler contraction mapping. For an arbitrary element x0 ∈ A0 define{︃

xn = Tnx0,
yn = Pxn ,

(3.1)

for all n ∈ N. If either A or B is bounded, then the sequence {(xn , yn)} ⊆ A0 × B0 converges to a best proximity
pair of the mapping T.

Proof. Notice that from Lemma 2.2 the pair (A0, B0) is nonempty, closed and convex and so it has property
UC. Put δn := d*(xn , yn+1). We claim that δn → 0. Note that if δk = 0 for some k ∈ N, then

δk+1 = d*(xk+1, yk+2) ≤ d*(xk , yk+1) = 0,

which implies that δn = 0 for all n ≥ k. Besides, if δn > 0 for all n ∈ N, then from Proposition 1 of [2] there
exists a nondecreasing and continuous L-function φ for which

δn+1 = d*(xn+1, yn+2) < φ(d*(xn , yn+1)) = φ(δn).

Now by Lemma 2 of [2], we conclude that limn→∞ δn = 0. Thus, d(xn , yn+1) → dist(A, B) and d(xn+1, yn+1) =
dist(A, B) for all n ∈ N. In view of the fact that (A, B) has property UC, d(xn , xn+1) → 0. Moreover, by the fact
that d(xn , yn) = dist(A, B) = d(xn+1, yn+1) and using Lemma 4.3 of [11], we obtain d(yn , yn+1) = d(xn , xn+1) →
0. Fix ε > 0 and choose r ∈ (0, ε), such that φ(ε + r) ≤ ε. Then there exists N ∈ N, such that

max{d(xm+1, xm), d(ym+1, ym)} < r, d*(xm , ym+1) < ε for all m ≥ N .

Consider m ≥ N. We prove that

d*(xm , yn+1) < r + ε for all n ≥ m. (3.2)
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Clearly, (5) holds for n = m. Assume that (5) is satisfied for some n ≥ m. Then

d*(xm+1, yn+2) ≤ φ(d*(xm , yn+1)) ≤ φ(r + ε) ≤ ε,

and so,
d*(xm , yn+2) ≤ d(xm , xm+1) + d*(xm+1, yn+2) < r + ε,

that is, (5) holds. Therefore,
lim
m→∞

sup
n≥m

d(xm , yn+1) = dist(A, B).

It now follows from Lemma 2.4 that {xn} and so {yn} are Cauchy sequences. Suppose that xn → p ∈ A0. Since
P|A0 is continuous yn = Pxn → Pp := q. It is worth noticing that T and P are commuting on A0 ∪ B0. Indeed,
if x ∈ A0, then

d(Tx,PTx) = dist(A, B), d(Tx, TPx) ≤ d(x,Px) = dist(A, B).

This implies that PTx = TPx. Similarly, if x ∈ B0, then the result follows. Thereby,

d(Txn ,PTp) = d(Txn , TPp) ≤ d(xn , q) → dist(A, B).

Hence, Txn → Tp. Because of the fact that d(xn , Txn) → 0, the point p is a fixed point of T in A0. On the other
hand,

Tq = TPp = PTp = Pp = q.

Thus, (p, q) is a best proximity pair of the mapping T and (xn , yn) → (p, q) ∈ A0 × B0.

Let us illustrate Theorem 3.3 with the following examples.

Example 3.1. Let X = R2 and d be the river metric on X defined by

d((x1, y1), (x2, y2)) =
{︃
|y1 − y2|, if x1 = x2,
|x1 − x2| + |y1| + |y2|, if x1 ≠ x2.

It is well known that (R2, d) is a complete CAT(0) space (see [15]). Suppose A = {(0, x) : 0 ≤ x ≤ 1
2} and

B = {(1, y) : y ≥ 0}. Thus, (A, B) is a closed and convex pair and that A is bounded. Clearly, dist(A, B) = 1.
Define the noncyclic mapping T : A ∪ B → A ∪ B with T(0, x) = (0, x2) and T(1, y) = (1, y2 ). We have

d(T(0, x), T(1, y)) = d((0, x2), (1, y2)) = 1 + x2 + y2 ,

d((0, x), (1, y)) = 1 + x + y.

This implies that the mapping T is noncyclic Meir-Keeler contraction. Therefore, all of the conditions of
Theorem 3.3 hold and T has a best proximity pair which is the point ((0, 0), (1, 0)).

Here, we present an example to show that the convergence result of Theorem 3.3 may not be concluded
if the geodesic space X is not CAT(0).

Example 3.2. Consider the Banach space X = R2 with the supremum norm. In this case X is a geodesic
metric space which is not uniquely geodesic and so is not a CAT(0) space. Suppose A = {(t, 1) : 0 ≤ t ≤ 1}
and B = {(s, 0) : 0 ≤ s ≤ 1}. Then (A, B) is a compact and convex pair and dist(A, B) = 1. Moreover, A = A0
and B = B0. Define the mapping T : A ∪ B → A ∪ B with

T(t, 1) =
{︃
(1, 1) if t ∈ Q ∩ [0, 1],
( t2 , 1) if t ∈ Qc ∩ [0, 1],

and T(s, 0) = (0, 0).

For x = (t, 1) ∈ A and y = (s, 0) ∈ B we have the following cases:
Case 1. If t ∈ Q ∩ [0, 1], then

‖Tx − Ty‖ = ‖(1, 1)‖ = 1 = dist(A, B).
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Case 2. If t ∈ Qc ∩ [0, 1], then
‖Tx − Ty‖ = ‖( t2 , 1)‖ = 1 = dist(A, B).

Therefore, T is a noncyclic Meir-Keeler contraction mapping. We note that ((1, 1), (0, 0)) is a best proximity
pair for the mapping T. It is worth noting that if x0 = (t0, 1) ∈ A0 with t0 ∈ Qc ∩ [0, 1], then

xn = Tnx0 = ( t02n , 1) → (0, 1), yn = Pxn = ( t02n e1, 0) → (0, 0),

whereas, the point ((0, 1), (0, 0)) is not a best proximity pair for the mapping T.

3.2 Asymptotic pointwise noncyclic Meir-Keeler contractions

In this section, we establish a best proximity pair theorem for a generalized class of noncyclic Meir-Keeler
contractions in uniformly convex Banach spaces. We refer to [16] for a cyclic version of these conclusions in
order to study the existence of best proximity points. To this end, we recall some notions of [6].

Definition 3.4. [6] The function ψ : R+ → R+ is called a weaker Meir-Keeler-type function, if for each η > 0,
there exists δ > η, such that for t ∈ R+ with η ≤ t < δ, there exists n0 ∈ N, such that ψn0 (t) < η.

The notion of asymptotic pointwise weaker Meir-Keeler-type ψ-contractions was introduced in [6] as follows.

Definition 3.5. [6] Let A be a nonempty subset of a normed linear space X and ψ : R+ → R+ a weaker Meir-
Keeler-type function. A mapping T : A → A is said to be an asymptotic pointwise weaker Meir-Keeler-type
ψ-contraction if for each i ∈ N and for each x, y ∈ A,

‖T ix − T iy‖ ≤ ψi(||x||)||x − y||.

The next theorem is the main result of [6].

Theorem 3.6. [6] Let A be nonempty weakly compact convex subset of a Banach space X and ψ : R+ → R+

a weaker Meir-Keeler-type function, such that for each t ∈ R+, {ψi(t)}i∈N is nonincreasing. Suppose that
T : A → A is an asymptotic pointwise weaker Meir-Keeler-type ψ-contraction. Then T has a unique fixed point
z ∈ A, and for each x ∈ A, the sequence of Picard iterates, {Tn(x)} converges in norm to z.

The following lemma will be useful in the main result of this section.

Lemma 3.7. Let (A, B) be a nonempty, weakly compact and convex pair of subsets of a Banach space X and let
T : A ∪ B → A ∪ B be a noncyclic mapping. Suppose that ψ : R+ → R+ is a weaker Meir-Keeler-type function,
such that for each t ∈ R, {ψi(t)}i∈N is nonincreasing, and for each (x, y) ∈ A × B

||T ix − T iy||* ≤ ψi(||x||)||x − y||* for all y ∈ B, (3.3)

||T ix − T iy||* ≤ ψi(||y||)||x − y||* for all x ∈ A. (3.4)

Then for any (x, y) ∈ A × B there exits a point (v, w) ∈ A × B, such that

lim sup
i

||T ix − w|| = dist(A, B) = lim sup
i

||v − T iy||.

Proof. For some fixed element x ∈ A define f : B → [0,∞) with

f (y) = lim sup
i

||T ix − y||* for all y ∈ B.
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By the fact that B is weakly compact and convex, f attains its minimum at a point w ∈ B. We have

f (T jy) = lim supi ||T ix − T jy||*

= lim supi ||T i+jx − T jy||*

= lim supi ||T j(T ix) − T jy||*

≤ lim supi ψj(||y||)||T ix − y||*

= ψj(||y||)f (y)

for all y ∈ B. Since w ∈ B is a minimum of f , we obtain

f (w) ≤ f (T jw) ≤ ψj(||w||)f (w) for all j ∈ N. (3.5)

From Theorem 3 of [6], we conclude that limj ψj||w|| = 0. It now follows from (8) that f (w) = 0 and so
f (T jw) = 0 for all j ∈ N. Therefore,

lim sup
i

||T ix − w|| = dist(A, B) = lim sup
i

||T ix − T jw|| for all j ∈ N. (3.6)

By a similar argument for y ∈ B we can find an element v ∈ A, such that

lim sup
i

||v − T iy|| = dist(A, B) = lim sup
i

||T jv − T iy|| for all j ∈ N, (3.7)

and hence the lemma.

Here, we present the following new fixed point result.

Theorem 3.8. Let (A, B) be a nonempty, weakly compact and convex pair in a Banach space X and T : A∪B →
A ∪ B be a noncyclic mapping. Assume that ψ : R+ → R+ is a weaker Meir-Keeler-type function, such that for
each t ∈ R, {ψi(t)}i∈N is nonincreasing, and for each (x, y) ∈ A × B

||T ix − T iy|| ≤ ψi(||x||)||x − y|| for all y ∈ B,

||T ix − T iy|| ≤ ψi(||y||)||x − y|| for all x ∈ A.

Then A ∩ B is nonempty and T has a unique fixed point in A ∩ B. Furthermore, for each x ∈ A ∩ B, if xn = Tnx,
then {xn} converges to the fixed point of T.

Proof. Let x ∈ A. It follows from Lemma 3.7 that there exists w ∈ B, such that

lim sup
i

‖T ix − w‖ = lim sup
i

‖T ix − Tw‖ = 0,

which implies that w ∈ B is a fixed point of the mapping T|B. Again, by Lemma 3.7 there exists an element
v ∈ A, such that

‖v − w‖ = lim sup
i

‖v − T iw‖ = 0,

which yields that v = w. So A∩ B is nonempty. Now it is sufficient to note that A∩ B is also a weakly compact
and convex subset of X and T maps A ∩ B into itself. Hence, the result follows from Theorem 3.6.

In what follows we provide some sufficient conditions to ensure the existence, as well as convergence, of best
proximity pairs for weaker Meir-Keeler noncyclic contractions.

Theorem 3.9. Let (A, B) be a nonempty, closed and convex pair in a uniformly convex Banach space X, such
that either A, or B is bounded. Suppose T : A ∪ B → A ∪ B is a noncyclic mapping satisfying (6) and (7). If
T is weakly continuous on A0, then T has a best proximity pair, and for any x0 ∈ A0 the iteration sequence
{(xn , yn)} ⊆ A0 × B0 defined in (4) converges to a best proximity pair of the mapping T.
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Proof. Assume that B is bounded. Then the pair (A0, B0) is nonempty, closed and convex. Let x0 ∈ A0. From
relation (9) of Lemma 3.7 there exists a point w ∈ B0 for which

lim sup
i

‖T ix0 − w‖ = dist(A, B) = lim sup
i

‖T ix0 − Tw‖.

Since X is uniformly convex and B0 is convex we must have w = Tw. On the other hand,

lim
i→∞

sup
j≥i

‖T ix0 − T jw‖ = lim
i→∞

‖T ix0 − w‖ = dist(A, B).

Now from Lemma 2.4 we obtain that the sequence {xi} is Cauchy in A0 and so there exists a point v ∈ A0,
such that xi → v. Thus, ‖v − w‖ = dist(A, B). Since T|A0 is weakly continuous, Txi ⇀ Tv, where "⇀" denotes
the weak convergence. It follows from the lower semi-continuity of the norm that

‖Tv − w‖ ≤ lim inf
i→∞

‖Txi − w‖ = dist(A, B).

Strict convexity of X yields that Tv = v. By the fact that the projection mapping P is continuous on A0 we
conclude that

yi = Pxi → Pv.

Therefore,
‖v − TP(v)‖ = ‖Tv − TP(v)‖ = ‖Tv − P(Tv)‖ = dist(A, B),

and so, TP(v) = P(v). Hence, (v,Pv) is a best proximity pair for the mapping T and the sequence (xi , yi)
converges to (v,Pv).

4 Continuity of noncyclic relatively u-continuous mappings in
CAT(0) spaces

In this section, we consider another class of noncyclic mappings, called noncyclic relatively u-continuous
mappings, which was studied in [11, 17] (see also [18] for the cyclic version of such mappings).

Definition 4.1. Let A and B be two nonempty subsets of a metric space (X, d). A mapping T : A ∪ B → A ∪ B
is said to be a noncyclic relatively u-continuous mapping if T is noncyclic on A ∪ B and satisfies the following
condition:

∀ε > 0, ∃δ > 0 if d*(x, y) < δ, then d*(Tx, Ty) < ε

for all (x, y) ∈ A × B.

It is worth noticing that this class of mappings contains the class of noncyclic Meir-Keeler contractions as
a subclass.

Example 4.1. Consider the space X = R2 with the river metric d defined in Example 3.1. Suppose A = {(x, 0) :
0 ≤ x ≤ 1} and B = {(y, 1) : 0 ≤ y ≤ 1}. Obviously, dist(A, B) = 1. Let T : A ∪ B → A ∪ B be defined with

T(x, 0) = (
√
x, 0), T(y, 1) = (√y, 1),

where x, y ∈ [0, 1]. Let x := (x, 0) ∈ A and y := (y, 1) ∈ B. Then

d*(Tx, Ty) =
√
x +√y, d*(x, y) = x + y.

Let ε > 0 be given. Since the function t →
√
t is continuous at zero, there exists δ > 0, such that

√
t < ε

2 ,
whenever 0 < t < δ. Now if d*(x, y) < δ, then x + y < δ and so

d*(Tx, Ty) =
√
x +√y < ε2 + ε2 = ε,
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that is, T is noncyclic relatively u-continuous. Notice that if x = (0, 0), y = ( 14 , 1), then

d(Tx, Ty) = 1 + 1
2 > 1 + 1

4 = d(x, y),

which implies that T is neither noncyclic Meir-Keeler contraction, nor noncyclic relatively nonexpansive. It
is worth noting that T has a best proximity pair which are the points ((0, 0), (0, 1)) and ((1, 0), (1, 1)).

In [4] the following interesting theoremwas proved to show that every noncyclic relatively nonexpansive
mapping is nonexpansive on its domain (see also [9] for the same problem in CAT(0) spaces).

Theorem 4.2. (Proposition 3.2 of [4]) Let (A, B) be a nonempty, bounded, closed, convex and proximinal pair
in a Hilbert spaceH. If T : A∪B → A∪B is a noncyclic relatively nonexpansive mapping, that is, T is noncyclic
and ‖Tx − Ty‖ ≤ ‖x − y‖ for all (x, y) ∈ A × B, then T is nonexpansive on A ∪ B.

The main purpose of this section is to obtain a similar result to Theorem 4.2 for noncyclic relatively
u-continuous mappings in the setting of CAT(0) spaces. In order to do this, we recall the following geometric
notion of geodesic spaces.

Definition 4.3. A geodesic metric space (X, d) is said to satisfy condition (C) provided that for any a, b, u ∈ X
and R, r ≥ 0 with R ≥ max{d(u, a), d(u, b)} and r ≤ d(u, 12a ⊕ 1

2b), we have

d(a, b)
2 ≤

√
R2 − r2.

For example every CAT(0) space satisfies condition (C) (see [7], p. 177).
We are now ready to state the main conclusion of this section.

Theorem 4.4. Let (A, B) be a nonempty, closed, convex and proximinal pair in a complete CAT(0) space X. If
T : A ∪ B → A ∪ B is a noncyclic relatively u-continuous mapping, then T is a continuous mapping.

Proof. Let x ∈ A be an arbitrary element. Since (A, B) is proximinal, there exists y ∈ B for which d(x, y) =
dist(A, B). By the u-continuity of T, for any positive integer n there is a δn > 0 and a neighborhood of x defined
as U(x, δn) := {u ∈ A0 : d(u, x) < δn}, such that u ∈ U(x, δn) implies

d(Tu, Ty) ≤ 1n + dist(A, B).

Let Rn := 1
n + dist(A, B) and r = dist(A, B). Then for u ∈ U(x, δn) we have

r ≤ d(Ty, [12Tu ⊕ 1
2Tx]), max{d(Ty, Tx), d(Ty, Tu)} ≤ Rn .

Since the space X satisfies condition (C), d(Tu,Tx)2 ≤
√︀
R2n − r2, and so,

d(Tu, Tx) ≤ 2
√︂
( 1n )

2 + (2n )dist(A, B) := εn .

For any ε > 0, choose N sufficiently large, such that n ≥ N implies εn < ε. Then for u ∈ U(x, δn) we have
d(Tu, Tx) < ε , which implies that T is continuous on A. Similarly, we can see that T is continuous on B and
this completes the proof.

The next result follows immediately from Theorem 4.4.

Theorem 4.5. Let (A, B) be a nonempty, closed, convex and proximinal pair in a complete CAT(0) space X with
the property that the closed convex hull of every finite subset of X is compact. Then every noncyclic relatively
u-continuous mapping T : A ∪ B → A ∪ B whose image T(A) is relatively compact has a best proximity pair.
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Proof. It follows from Theorem 4.4 that T is continuous on A∪B and so T|A : A → A is continuous. Now from
Theorem 1.3 of [19], T has a fixed point in A. Let p ∈ A be such that p = Tp. Since (A, B) is proximinal, there
exists a point q ∈ B for which d(p, q) = dist(A, B). In view of the fact that T is relatively u-continuous,

d(p, Tq) = d(Tp, Tq) = dist(A, B),

which ensures that q = Tq. Thereby, (p, q) is a best proximity pair of T.

Remark 4.6. It is interesting to note that the considered pair (A, B) in Theorem 4.5 need not be compact. Thus,
our result does not follow from Theorem 4.4 of [11].

Let us illustrate Theorem 4.5 with the following example.

Example 4.2. Consider X = R2 with the radial metric defined by

d((x1, y1), (x2, y2)) =
{︃
ρ((x1, y1), (x2, y2)) if (0, 0), (x1, y1), (x2, y2) are collinear,
ρ((x1, y1), (0, 0)) + ρ((x2, y2), (0, 0)) otherwise,

where ρ denotes the usual Euclidean metric on R2. Then (X, d) is a complete CAT(0) space. (see [15]). Let
A = {(x, 0) : x ≥ 0} and B = {(y, 1) : y ≥ 0}. Then (A, B) is a convex andproximinal pairwhich is noncompact.
Besides, for ((x, 0), (y, 1)) ∈ A × B we have d((x, 0), (y, 1)) = x +

√︀
y2 + 1 which implies that dist(A, B) = 1.

Consider the noncyclic mapping T : A ∪ B → A ∪ B defined by

T(x, 0) = ( x
x + 1 , 0), T(y, 1) =

{︃
(0, 1) if y ∈ Q ∩ [0,∞),
(y, 1) if y ∈ Qc ∩ [0,∞).

In this case, we obtain

d(T(x, 0), T(y, 1)) =
{︃

x
x+1 + 1 if y ∈ Q ∩ [0,∞)
x
x+1 +

√︀
y2 + 1 if y ∈ Qc ∩ [0,∞)

≤ x +
√︀
y2 + 1 = d((x, 0), (y, 1)).

Also, T(A) = [0, 12 ] ×{0}, that is, T|A is compact. Now by Theorem 4.5 T has a best proximity pair which is the
point ((0, 0), (0, 1)).
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