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1 Introduction
Fractional integral equations have recently been applied in various areas of engineering, science, finance,
applied mathematics, and bio-engineering as well as many other areas. However, many researchers remain
unaware of this field. There has been a significant development in ordinary and partial fractional differential
and integral equations in recent years; see the monographs of Abbas et al. [1, 2], Baleanu et al. [3], Kilbas
et al. [4], Miller and Ross [5], Lakshmikantham et al. [6], Samko et al. [7]. In[8], Butzer et al. investigate
properties of the Hadamard fractional integral and derivative. In [9], they obtained the Mellin transforms
of the Hadamard fractional integral and differential operators. In [10], Pooseh et al. obtained expansion
formulas of the Hadamard operators in terms of integer order derivatives. Many other interesting properties
of those operators and others are summarized in [7] and the references therein. Recent interesting existence
results on Hadamard fractional differential equations are given in [11–16].

Recently some interesting results on the attractivity of the solutions of some classes of integral equations
have been obtained by Abbas et al. [17–20], Banaś et al. [21–24], Darwish et al. [25], Pachpatte [26, 27] and
the references therein. This paper deals with the existence and the attractivity of solutions of the following
Hadamard fractional integral equation of the form

u(t, x) = µ(t, x) + f (t, x,H Irσu(t, x), u(t, x)) + 1
Γ(r1)Γ(r2)

∫︀ t
1
∫︀ x
1
(︀
log t

s
)︀r1−1 (︁log x

y

)︁r2−1
×g(t, x, s, y, u(s, y)) dydssy ; (t, x) ∈ J := [1, +∞) × [1, b],

(1.1)
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where b > 1, r = (r1, r2), r1, r2 ∈ (0,∞), H Irσ is the Hadamard integral of order r, µ : J → R, f : J ×R ×R →
R, g : J′ × R → R are given continuous functions, J′ = {(t, x, s, y) ∈ J2 : s ≤ t, y ≤ x} and Γ(·) is the (Euler’s)
Gamma function defined by

Γ(ξ ) =
∞∫︁
0

tξ−1e−tdt; ξ > 0.

Our investigations are considered in Fréchet spaceswith an application of Burton-Kirk fixedpoint theorem for
the existence of solutions of the integral equation (1.1), and we prove that all solutions are uniformly globally
attractive. To our knowledge, the study of integral equations of Hadamard type have not been considered yet
in Fréchet spaces, so the present results constitute to contribution to this study.

2 Preliminaries
In this section we introduce notations, definitions, and preliminary facts which are used throughout this
paper. By L1([1, +∞) × [1, b]); we denote the space of Lebesgue-integrable functions u : [1, +∞) × [1, b] → R
with the norm

‖u‖1 =
∞∫︁
1

b∫︁
1

|u(t, x)|dxdt.

By C := C(J) we denote the space of continuous functions from J into R.

Definition 1. [4, 28] The Hadamard fractional integral of order q > 0 for a function g ∈ L1([1, a],R), is
defined as

(H Iq1g)(x) =
1
Γ(q)

x∫︁
1

(︁
log xs

)︁q−1 g(s)
s ds.

Example 2. Let β > 0 and letw : [1, e] → R be the function defined byw(x) = (log x)β−1. Then the Hadamard
fractional integral of order q > 0 for w is given by

(H Iq1w)(x) =
Γ(β)

Γ(β + q) (log x)
β+q−1.

Definition 3. Let r1, r2 ≥ 0, σ = (1, 1) and r = (r1, r2). For w ∈ L1(J,R), define the Hadamard partial
fractional integral of order r by the expression

(H Irσw)(x, y) =
1

Γ(r1)Γ(r2)

x∫︁
1

y∫︁
1

(︁
log xs

)︁r1−1 (︁
log yt

)︁r2−1 w(s, t)
st dtds.

Let X be a Fréchet space with a family of semi-norms {‖ · ‖n}n∈N* . We assume that the family of semi-norms
{‖ · ‖n} verify :

‖x‖1 ≤ ‖x‖2 ≤ ‖x‖3 ≤ . . . for every x ∈ X.

Let Y ⊂ X, then we say that Y is bounded if for every n ∈ N, there exists Mn > 0 such that

‖y‖n ≤ Mn for all y ∈ Y .

To X we associate a sequence of Banach spaces {(Xn , ‖ · ‖n)} as follows: First, for every n ∈ N, we consider
the equivalence relation ∼n defined as x ∼n y if and only if ‖x − y‖n = 0 for x, y ∈ X. We denote by Xn =
(X|∼n , ‖ · ‖n) the quotient space, the completion of Xn with respect to ‖ · ‖n . To every Y ⊂ X, we associate a
sequence {Yn} of subsets Yn ⊂ Xn as follows. For every x ∈ X, we denote by [x]n the equivalence class of x of
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subset Xn and we define Yn = {[x]n : x ∈ Y}. We denote by Yn, intn(Yn) and ∂nYn, respectively, the closure,
the interior and the boundary of Yn with respect to ‖ · ‖n in Xn . For more information about this subject see
[29].

Definition 4. Let X be a Fréchet space. A functionN : X −→ X is said to be a contraction if for each n ∈ N∖{0}
there exists kn ∈ [0, 1) such that

‖N(u) − N(v)‖n ≤ kn‖u − v‖n for all u, v ∈ X.

We need the following extension of the Burton-Kirk fixed point theorem in the case of a Fréchet space.

Theorem 5. [30] Let (X, ‖ · ‖n) be a Fréchet space and let A, B : X → X be two operators such that

(a) A is a compact operator;
(b) B is a contraction operator with respect to a family of seminorms {‖ · ‖n};
(c) the set

{︀
x ∈ X : x = λA(x) + λB

(︀ x
λ
)︀
, λ ∈ (0, 1)

}︀
is bounded.

Then the operator equation A(u) + B(u) = u has a solution in X.

Let ∅ ≠ Ω ⊂ C, and let G : Ω → Ω, and consider the solutions of the equation

(Gu)(t, x) = u(t, x). (2.1)

Now we introduce the concept of attractivity of solutions for the equation (2.1).

Definition 6. [21] Solutions of the equation (2.1) are locally attractive if there exists a ball B(u0, η) in the space
C such that, for arbitrary solutions v = v(t, x) and w = w(t, x) of equation (2.1) belonging to B(u0, η) ∩ Ω, we
have that, for each x ∈ [1, b],

lim
t→∞

(︀
v(t, x) − w(t, x)

)︀
= 0. (2.2)

When the limit (2.2) is uniformwith respect to B(u0, η)∩Ω, solutions of equation (2.1) are said to be uniformly
locally attractive (or equivalently that solutions of (2.1) are locally asymptotically stable).

Definition 7. [21] The solution v = v(t, x) of equation (2.1) is said to be globally attractive if (2.2) holds for
each solution w = w(t, x) of (2.1). If condition (2.2) is satisfied uniformly with respect to the set Ω, solutions
of equation (2.1) are said to be globally asymptotically stable (or uniformly globally attractive).

3 Existence and attractivity results
Let us start by defining what we mean by a solution of of the equation (1.1).

Definition 8. A function u ∈ C(J) is said to be a solution of (1.1) if u satisfies equation (1.1) on J.

For each p ∈ N∖{0, 1}, consider following set, Cp = C([1, p] × [1, b]). We define in C(J) the semi-norm by

‖u‖p = sup
(t,x)∈[1,p]×[1,b]

‖u(t, x)‖.

Then C is a Fréchet space with the family of semi-norms {‖u‖p}.

Now, we are concerned with the existence and the uniform global attractivity of solutions of the integral
equation (1.1). The following hypotheses will be used in the sequel.
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(H1) There exist continuous functions l, k : J → R+, with

lim
t→∞

l(t, x) = lim
t→∞

k(t, x) = 0, for x ∈ [1, b], (3.1)

such that
|f (t, x, u1, v1) − f (t, x, u2, v2)| ≤

l(t, x)|u1 − u2| + k(t, x)|v1 − v2|
1 + |u1 − u2| + |v1 − v2|

,

for each (t, x) ∈ J and each u1, u2, v1, v2 ∈ R.
(H2) There exist continuous functions P, Q, φ : J′ → R+ and a nondecreasing function ψ : [0,∞) → (0,∞)

such that
|g(t, x, s, y, u)| ≤ P(t, x, s, y) + Q(t, x, s, y)|u|1 + |u| ;

for (t, x, s, y) ∈ J′, u ∈ R, and

|g(t1, x1, s, y, u) − g(t2, x2, s, y, u)| ≤ φ(s, y)(|t1 − t2| + |x1 − x2|)ψ(|u|),

for (t1, x1), (t2, x2), (s, y) ∈ J and u ∈ R. Moreover, assume that

lim
t→∞

t∫︁
1

⃒⃒⃒⃒
log ts

⃒⃒⃒⃒r1−1 P(t, x, s, y)
s ds = lim

t→∞

t∫︁
1

⃒⃒⃒⃒
log ts

⃒⃒⃒⃒r1−1 Q(t, x, s, y)
s ds = 0, (3.2)

for each (x, y) ∈ J with y ≤ x.

Theorem 9. Assume that the hypotheses (H1) and (H2) hold. If

kp +
lp(log p)r1 (log b)r2
Γ(1 + r1)Γ(1 + r2)

< 1, (3.3)

where
kp = sup

(t,x)∈[1,p]×[1,b]
k(t, x), lp = sup

(t,x)∈[1,p]×[1,b]
l(t, x); p ∈ N∖{0, 1},

then the Hadamard integral equation (1.1) has at least one solution in the space C. Moreover, solutions of
equation (1.1) are uniformly globally attractive.

Proof. Let us define the operators A, B : C → C by

(Au)(t, x) =
t∫︁

1

x∫︁
1

(︂
log ts

)︂r1−1(︂
log xy

)︂r2−1 g(t, x, s, y, u(s, y))
syΓ(r1)Γ(r2)

dyds, (t, x) ∈ J, (3.4)

(Bu)(t, x) = µ(t, x) + f (t, x,H Irσu(t, x), u(t, x)), (t, x) ∈ J. (3.5)

We shall show that the operators A and B satisfy all of the conditions of Theorem 5. The proof will be given
in several steps.

Step 1: A is compact.
To this aim, wemust prove that A is continuous and it transforms every bounded set into a relatively compact
set. Recall that M ⊂ C is bounded if and only if,

∀p ∈ N∖{0, 1}, ∃ℓp > 0, such that ∀u ∈ M, ‖u‖p ≤ ℓp .

Further, we say that M = {u(t, x); (t, x)) ∈ J} ⊂ C is relatively compact if and only if, for each p ∈ N∖{0, 1},
the family {u(t, x)|(t,x)]∈[1,p]×[1,b]} is equicontinuous and uniformly bounded on [1, p] × [1, b]. The proof will
be given in several claims.
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Claim 1: A is continuous.
Let {un}n∈N∖{0,1} be a sequence in M such that un → u in M. Then, for each (t, x) ∈ J, we have

|(Aun)(t, x) − (Au)(t, x)| ≤ 1
Γ(r1)Γ(r2)

∫︀ t
1
∫︀ x
1
⃒⃒
log t

s
⃒⃒r1−1 ⃒⃒⃒log x

y

⃒⃒⃒r2−1
×|g(t, x, s, y, un(s, y)) − g(t, x, s, y, u(s, y))|dyds

≤ 1
Γ(r1)Γ(r2)

∫︀ t
1
∫︀ x
1
⃒⃒
log t

s
⃒⃒r1−1 ⃒⃒⃒log x

y

⃒⃒⃒r2−1
×|g(t, x, s, y, un(s, y)) − g(t, x, s, y, u(s, y))|dyds.

(3.6)

If (t, x) ∈ [1, p] × [1, b] with p ∈ N∖{0, 1} then, since un → u as n →∞ and g is continuous, (3.6) gives

‖A(un) − A(u)‖p → 0 as n →∞.

Claim 2: A maps bounded sets into bounded sets in C.
LetM be the bounded set in C as in Claim 1. Then, for each p ∈ N∖{0, 1}, there exists ℓp > 0, such that for all
u ∈ C we have ‖u‖p ≤ ℓp .
For an arbitrary fixed (t, x) ∈ [1, p] × [1, b] we have

|(Au)(t, x)| ≤ 1
Γ(r1)Γ(r2)

t∫︁
1

x∫︁
1

⃒⃒⃒⃒
log ts

⃒⃒⃒⃒r1−1 ⃒⃒⃒⃒
log xy

⃒⃒⃒⃒r2−1
|g(t, x, s, y, u(s, y))|dyds

≤ 1
Γ(r1)Γ(r2)

t∫︁
1

x∫︁
1

⃒⃒⃒⃒
log ts

⃒⃒⃒⃒r1−1 ⃒⃒⃒⃒
log xy

⃒⃒⃒⃒r2−1 P(t, x, s, y) + Q(t, x, s, y)|u(s, y)|
1 + |u(s, y)| dyds.

Thus,

|(Au)(t, x)| ≤ 1
Γ(r1)Γ(r2)

t∫︁
1

x∫︁
1

⃒⃒⃒⃒
log ts

⃒⃒⃒⃒r1−1 ⃒⃒⃒⃒
log xy

⃒⃒⃒⃒r2−1
(P(t, x, s, y) + Q(t, x, s, y))dyds

≤ Pp + Qp ,

where

Pp = sup
(t,x)∈[1,p]×[1,b]

t∫︁
1

x∫︁
1

⃒⃒⃒⃒
log ts

⃒⃒⃒⃒r1−1 ⃒⃒⃒⃒
log xy

⃒⃒⃒⃒r2−1 P(t, x, s, y)
Γ(r1)Γ(r2)

dyds,

and

Qp = sup
(t,x)∈[1,p]×[1,b]

t∫︁
1

x∫︁
1

⃒⃒⃒⃒
log ts

⃒⃒⃒⃒r1−1 ⃒⃒⃒⃒
log xy

⃒⃒⃒⃒r2−1 Q(t, x, s, y)
Γ(r1)Γ(r2)

dyds.

Thus
‖A(u)‖p ≤ Pp + Qp := ℓ′p .
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Claim 3: A maps bounded sets into equicontinuous sets in C.
Let (t1, x1), (t2, x2) ∈ [1, p] × [1, b], t1 < t2, x1 < x2 and let u ∈ M. We have

|(Au)(t2, x2) − (Au)(t1, x1)| ≤ 1
Γ(r1)Γ(r2)

⃒⃒⃒ t2∫︁
1

x2∫︁
1

⃒⃒⃒⃒
log t2s

⃒⃒⃒⃒r1−1 ⃒⃒⃒⃒
log x2y

⃒⃒⃒⃒r2−1
×[g(t2, x2, s, y, u(s, y)) − g(t1, x1, s, y, u(s, y))]dyds

⃒⃒⃒
+ 1
Γ(r1)Γ(r2)

⃒⃒⃒ t2∫︁
1

x2∫︁
1

⃒⃒⃒⃒
log t2s

⃒⃒⃒⃒r1−1 ⃒⃒⃒⃒
log x2y

⃒⃒⃒⃒r2−1
g(t1, x1, s, y, u(s, y))dyds

−
t2∫︁
1

x2∫︁
1

⃒⃒⃒⃒
log t1s

⃒⃒⃒⃒r1−1 ⃒⃒⃒⃒
log x1y

⃒⃒⃒⃒r2−1
g(t1, x1, s, y, u(s, y))dyds

⃒⃒⃒

+ 1
Γ(r1)Γ(r2)

⃒⃒⃒ t2∫︁
1

x2∫︁
1

⃒⃒⃒⃒
log t1s

⃒⃒⃒⃒r1−1 ⃒⃒⃒⃒
log x1y

⃒⃒⃒⃒r2−1
g(t1, x1, s, y, u(s, y))dyds

−
t1∫︁
1

x1∫︁
1

⃒⃒⃒⃒
log t1s

⃒⃒⃒⃒r1−1 ⃒⃒⃒⃒
log x1y

⃒⃒⃒⃒r2−1
g(t1, x1, s, y, u(s, y))dyds

⃒⃒⃒
.

Then, we get

|(Au)(t2, x2) − (Au)(t1, x1)| ≤ 1
Γ(r1)Γ(r2)

t2∫︁
1

x2∫︁
1

⃒⃒⃒⃒
log t2s

⃒⃒⃒⃒r1−1 ⃒⃒⃒⃒
log x2y

⃒⃒⃒⃒r2−1
×
⃒⃒⃒
g(t2, x2, s, y, u(s, y)) − g(t1, x1, s, y, u(s, y))

⃒⃒⃒
dyds

+ 1
Γ(r1)Γ(r2)

t1∫︁
1

x1∫︁
1

⃒⃒⃒ (︂
log t2s

)︂r1−1(︂
log x2y

)︂r2−1

−
(︂
log t1s

)︂r1−1(︂
log x1y

)︂r2−1 ⃒⃒⃒
×
⃒⃒⃒
g(t1, x1, s, y, u(s, y))

⃒⃒⃒
dyds

+ 1
Γ(r1)Γ(r2)

t1∫︁
1

x2∫︁
x1

⃒⃒⃒⃒
log t2s

⃒⃒⃒⃒r1−1 ⃒⃒⃒⃒
log x2y

⃒⃒⃒⃒r2−1
|g(t1, x1, s, y, u(s, y))|dyds

+ 1
Γ(r1)Γ(r2)

t2∫︁
t1

x1∫︁
1

⃒⃒⃒⃒
log t2s

⃒⃒⃒⃒r1−1 ⃒⃒⃒⃒
log x2y

⃒⃒⃒⃒r2−1
|g(t1, x1, s, y, u(s, y))|dyds

+ 1
Γ(r1)Γ(r2)

t2∫︁
t1

x2∫︁
x1

⃒⃒⃒⃒
log t2s

⃒⃒⃒⃒r1−1 ⃒⃒⃒⃒
log x2y

⃒⃒⃒⃒r2−1
|g(t1, x1, s, y, u(s, y))|dyds.
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Thus, we obtain

|(Au)(t2, x2) − (Au)(t1, x1)| ≤ 1
Γ(r1)Γ(r2)

t2∫︁
1

x2∫︁
1

⃒⃒⃒⃒
log t2s

⃒⃒⃒⃒r1−1 ⃒⃒⃒⃒
log x2y

⃒⃒⃒⃒r2−1
×φ(s, y)(|t1 − t2| + |x1 − x2|)ψ(ℓp)dyds

+ 1
Γ(r1)Γ(r2)

t1∫︁
1

x1∫︁
1

⃒⃒⃒ (︂
log t2s

)︂r1−1(︂
log x2y

)︂r2−1
−
(︂
log t1s

)︂r1−1(︂
log x1y

)︂r2−1 ⃒⃒⃒
×(P(t1, x1, s, y) + Q(t1, x1, s, y))dyds

+ 1
Γ(r1)Γ(r2)

t2∫︁
t2

x2∫︁
1

⃒⃒⃒⃒
log t2s

⃒⃒⃒⃒r1−1 ⃒⃒⃒⃒
log x2y

⃒⃒⃒⃒r2−1
(P(t1, x1, s, y) + Q(t1, x1, s, y))dyds

+ 1
Γ(r1)Γ(r2)

t1∫︁
1

x2∫︁
x1

⃒⃒⃒⃒
log t2s

⃒⃒⃒⃒r1−1 ⃒⃒⃒⃒
log x2y

⃒⃒⃒⃒r2−1
(P(t1, x1, s, y) + Q(t1, x1, s, y))dyds

+ 1
Γ(r1)Γ(r2)

t2∫︁
t1

x2∫︁
x1

⃒⃒⃒⃒
log t2s

⃒⃒⃒⃒r1−1 ⃒⃒⃒⃒
log x2y

⃒⃒⃒⃒r2−1
(P(t1, x1, s, y) + Q(t1, x1, s, y))dyds.

From the continuity of the functions P, Q, φ, and as t1 −→ t2 and x1 −→ x2, the right-hand side of the
above inequality tends to zero. As a consequence of claims 1–3, and from the Arzelá-Ascoli theorem, we can
conclude that A is continuous and compact.

Step 2: B is a contraction.
Consider v, w ∈ C. Then, by (H1), for any p ∈ N∖{0, 1} and each
(t, x) ∈ [1, p] × [1, b], we have

|(Bv)(t, x) − (Bw)(t, x)| ≤ l(t, x)|H Irσ(v − w)(t, x)| + k(t, x)|(v − w)(t, x)|

≤
(︂
k(t, x) + l(t, x)(log p)

r1 (log b)r2
Γ(1 + r1)Γ(1 + r2)

)︂
|v − w|.

Thus,
‖(B(v) − B(w)‖p ≤

(︂
kp +

lp(log p)r1 (log b)r2
Γ(1 + r1)Γ(1 + r2)

)︂
‖v − w‖p .

By (3.3), we conclude that B is a contraction.

Step 3: The set E :=
{︀
u ∈ C(J) : u = λA(u) + λB

(︀ u
λ
)︀
, λ ∈ (0, 1)

}︀
is bounded.

Let u ∈ C(J), such that u = λA(u) + λB
(︀ u
λ
)︀
for some λ ∈ (0, 1). Then, for any p ∈ N∖{0, 1} and each

(t, x) ∈ [1, p] × [1, b], we have

|u(t, x)| ≤ λ|A(u)| + λ|B
(︁u
λ

)︁
|

≤ |µ(t, x)| + |f (t, x, 0, 0)| + k(t, x) + l(t, x)

+ 1
Γ(r1)Γ(r2)

t∫︁
1

x∫︁
1

⃒⃒⃒⃒
log ts

⃒⃒⃒⃒r1−1 ⃒⃒⃒⃒
log xy

⃒⃒⃒⃒r2−1 P(t, x, s, y) + Q(t, x, s, y)
sy dyds

≤ µp + fp + kp + lp + Pp + Qp ,

where
µp = sup

(t,x)∈[1,p]×[1,b]
µ(t, x), fp = sup

(t,x)∈[1,p]×[1,b]
|f (t, x, 0, 0)|.

Thus,
‖u‖p ≤ µp + fp + kp + lp + Pp + Qp =: ℓ*p .
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Hence, the set E is bounded.

As a consequence of steps 1–3 and Theorem 5 we deduce that N has a fixed point u which is a solution of
the integral equation (1.1).

Step 4: The uniform global attractivity of solutions of the integral equation (1.1).
Let u and v be any two solutions of (1.1), then for each (t, x) ∈ J we have

|u(t, x) − v(t, x)| ≤ |f (t, x,H Irσu(t, x), u(t, x)) − f (t, x,H Irσv(t, x), v(t, x))|

+ 1
Γ(r1)Γ(r2)

t∫︁
1

x∫︁
1

⃒⃒⃒⃒
log ts

⃒⃒⃒⃒r1−1 ⃒⃒⃒⃒
log xy

⃒⃒⃒⃒r2−1
×|g(t, x, s, y, u(s, y)) − g(t, x, s, y, v(s, y))|dydssy

≤ k(t, x) + l(t, x) + 2
Γ(r1)Γ(r2)

t∫︁
1

x∫︁
1

⃒⃒⃒⃒
log ts

⃒⃒⃒⃒r1−1 ⃒⃒⃒⃒
log xy

⃒⃒⃒⃒r2−1
×P(t, x, s, y) + Q(t, x, s, y)sy dyds

≤ k(t, x) + l(t, x) + 2
Γ(r1)Γ(r2)

x∫︁
1

⃒⃒⃒⃒
log xy

⃒⃒⃒⃒r2−1

×

⎛⎝ t∫︁
1

⃒⃒⃒⃒
log ts

⃒⃒⃒⃒r1−1
(P(t, x, s, y) + Q(t, x, s, y))dss

⎞⎠ dy
y .

Thus, by (3.1) and (3.2), we deduce that

lim
t→∞

(u(t, x) − v(t, x)) = 0.

Consequently, all solutions of the integral equation (1.1) are uniformly globally attractive.

4 An example
Consider the following Hadamard fractional order integral equation

u(t, x) = xe3−2t
1 + t + x2 + xe−t−2

cp(1 + e−2p|H Irσu(t, x)| + e−p|u(t, x)|)

+
t∫︁

1

x∫︁
1

(︂
log ts

)︂r1−1(︂
log xy

)︂r2−1 g(t, x, s, y, u(s, y))
Γ(r1)Γ(r2)

dyds, (4.1)

for (t, x) ∈ [1, +∞) × [1, e], where cp = e−p + e−2ppr1
Γ(1+r1)Γ(1+r2) , p ∈ N∖{0, 1}, r = (r1, r2) ∈ (0,∞) × (0,∞) and

g(t, x, s, y, u) = xs
−3
4 (1 + |u|) sin

√
t sin s

(1 + y2 + t2)(1 + |u|) , for (t, x, s, y) ∈ J′, and u ∈ R,

and
J′ = {(t, x, s, y) : 1 ≤ s ≤ t and 1 ≤ x ≤ y ≤ e}.

Set
µ(t, x) = xe3−2t

1 + t + x2 , f (t, x, u, v) =
xe−t−2

cp(1 + e−2p|u| + e−p|v|)
.
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The function f is continuous and satisfies the assumption (H1), with

k(t, x) = xe
−t−2−p

cp
, l(t, x) = xe

−t−2−2p

cp
, kp =

e−2−p
cp

and lp =
e−2−2p
cp

.

Also, the function g is continuous and satisfies the assumption (H2), with

P(t, x, s, y) = Q(t, x, s, y) = xs
−3
4 sin

√
t sin s

1 + y2 + t2 , where (t, x, s, y) ∈ J′.

Then, ⃒⃒⃒⃒
⃒⃒
t∫︁

1

⃒⃒⃒⃒
log ts

⃒⃒⃒⃒r1−1 P(t, x, s, y)
s ds

⃒⃒⃒⃒
⃒⃒ ≤

t∫︁
1

⃒⃒⃒⃒
log ts

⃒⃒⃒⃒r1−1
xs−1| sin

√
t sin s|ds

≤ x
⃒⃒⃒
sin

√
t

t∫︁
1

⃒⃒⃒⃒
log ts

⃒⃒⃒⃒r1−1
s−1 ds

≤ e
⃒⃒⃒⃒
(log t)r1√

t

⃒⃒⃒⃒
−→ 0 as t →∞.

Finally, we show that condition (3.3) holds with b = e. Indeed, for each p ∈ N∖{0, 1}, we get

kp +
lp(log p)r1 (log b)r2
Γ(1 + r1)Γ(1 + r2)

= 1
cp

(︂
e−2−p + e−2−2ppr1

Γ(1 + r1)Γ(1 + r2)

)︂
= e−2 < 1.

Hence by Theorem 9, the equation (4.1) has a solution defined on
[1, +∞) × [1, e] and all the solutions are uniformly globally attractive.
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