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Abstract:Weprove strong convergence of the sequence generatedby implicit viscosity approximationmethod
involving a multivalued nonexpansive mapping in framework of CAT(0) space. Under certain appropriate
conditions on parameters, we show that such a sequence converges strongly to a fixed point of the mapping
which solves a variational inequality. We also present some convergence results for the implicit viscosity
approximation method in complete R-trees without the endpoint condition.
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1 Introduction
Let C be a nonempty closed convex subset of a Hilbert space E and T : C → C, the fixed point set of T is
denoted by F(T), that is, F(T) = {x ∈ C : x = Tx}. A mapping T : C → C said to be a nonexpansive mapping
if ||Tx − Ty|| ≤ ||x − y|| for all x, y ∈ C.

In the past few decades, several iterative schemes have been introduced to approximate fixed point of
nonexpansive mappings.

In 2000,Moudafi [1] introduced anew iterativemethod for approximating the fixedpoint of nonexpansive
mappings. An approximating sequence {xn} is generated through the following scheme:

x0 ∈ C arbitrarily chosen
xn+1 =αn f (xn) + (1 − αn)Txn; n ≥ 0,

where {αn} is a sequence in (0, 1) and f : C → C is a contraction mapping with contractive factor k ∈ (0, 1).
This method is commonly known as viscosity approximation method.

Moudafi has shown that under certain conditions, the sequence {xn} not only converges strongly to a
fixed point x* of T but also solves the following variational inequality:

⟨fx* − x*, x* − x⟩ ≥ 0, where x ∈ F(T). (1)
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The viscosity approximation has attracted the attention of several mathematicians due to its applications in
monotone inclusions, convex optimization, and linear programming, etc.

In 2015, Xu et al. [2] modified the viscosity method and introduced an implicit midpoint rule for nonex-
pansive mappings as follows:

x0 ∈ C arbitrarily chosen

xn+1 =αn f (xn) + (1 − αn)T
(︀ xn + xn+1

2
)︀
; n ≥ 0.

The authors showed that viscosity implicit midpoint rule converges strongly to a fixed point of T and also
solves the variational inequality (1).

Ke and Ma [3] studied the generalized viscosity implicit rules of nonexpansive mappings.
They introduced the following schemes and proved convergence theorems under certain assumptions

imposed on the sequences of parameters αn , and βn:

xn+1 = αn f (xn) + (1 − αn)T(βnxn + (1 − βn)xn+1),

and
xn+1 = αnxn + βn f (xn) + 𝛾nT(snxn + (1 − sn)xn+1).

Recently, many authors have generalized results on nonlinear mappings to more general spaces than
Hilbert spaces such as CAT(0) spaces such as [4–6]. The study of viscosity approximation methods has been
extended to various directions. Wu and Zhao [7] proved the viscosity approximation results for multivalued
nonexpansive mappings in the setup of Hilbert and Banach spaces and obtained a relationship between
fixed point of the such mappings and the solution of the variational inequality problem.
Preechasilp [8] extended the results in [2] to CAT(0) spaces. Panyanak and Suantai [9] extended the results
in [10] for a multivalued nonexpansive mapping in the setting of CAT(0) spaces. Xiong and Lan [11] and [12]
studied a two-step viscosity iteration approximation methods for approximating the fixed points of multival-
ued nonexpansive mappings in CAT(0) spaces.

In this paper, motivated by the work in [8] and [11, 12], the generalized implicit viscosity approximation
scheme presented by Ke and Ma [3] is extended and generalized in the following ways:

(a) underlying space possess a nonlinear structure;
(b) a two step implicit viscosity scheme is introduced for a multivalued nonexpansive mapping.
Consider the following two step implicit viscosity approximation method for multivalued nonexpansive

mapping in the framework of CAT(0) spaces. Let αn , βn ∈ (0, 1), and x0 ∈ C chosen arbitrarily. Define

xn+1 = αn f (xn)⊕ (1 − αn)un; un ∈ Tyn;
yn = βnxn ⊕ (1 − βn)zn+1; zn+1 ∈ Txn+1,

(2)

such that d(zn , zn+1) ≤ d(xn , xn+1), d(un , un+1) ≤ d(yn , yn+1) and d(xn , zn+1) ≤ d(xn , xn+1)
and

xn+1 = αn f (xn)⊕ (1 − αn)un; un ∈ Tyn;
yn = βnxn ⊕ (1 − βn)xn+1,

(3)

such that d(un , un+1) ≤ d(yn , yn+1) . We prove the convergence of the above implicit viscosity iterative pro-
cesses to the fixed point of the multivalued nonexpansive map under some appropriate conditions on the
parameters. We also show that this fixed point solves a variational inequality. Now, we recall some defini-
tions and lemmas to be used in the sequel. A subset C of a metric space (E, d) is called proximal if for any
x ∈ E, there exists an element y ∈ C such that

d(x, y) = d(x, C) = inf{d(x, z) : z ∈ C}.
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We denote by K(C) and CB(X), the collection of all nonempty compact subsets of C and the collection of all
nonempty closed bounded subsets of C, respectively. The Hausdorff distance induced by metric d on E is
given by

H(A, B) = max{sup
a∈A

d(a, B), sup
b∈B

d(b, A)}.

Let T : C → 2C , where 2C is the collection of all nonempty subsets of C. An element x ∈ C is called a fixed
point of T, if x ∈ Tx. The set of all fixed points of T will be denoted by F(T).

Let x, y ∈ E. A geodesic path joining x to y (or,more briefly, a geodesic from x to y) is amap c froma closed
interval [0, a] to E such that c(0) = x, c(a) = y, and d(c(s), c(t)) = |t − s| for all t, s ∈ [0, a]. In particular, c is
an isometry and d(x, y) = a. The image of c is called a geodesic (or metric) segment joining x and y. When it
is unique, the geodesic segment is denoted by [x, y]. The space E is called a geodesic if every two points of E
are joined by a geodesic, and E is said to be uniquely geodesic if there is exactly one geodesic joining x and
y for each x, y ∈ E. A subset C ⊂ X is said to be convex if C includes every geodesic segment joining any two
of its points.

A geodesic triangle ∆(p, q, r) in a geodesic space (E, d) consists of three points p, q, r in E (called ver-
tices of ∆) and a choice of three geodesic segments [p, q], [q, r], [r, p] ( edges of ∆) joining them. A com-
parison triangle for a geodesic triangle ∆(p, q, r) in E is a triangle ∆(p, q, r) in the Euclidean plane R2 such
that dR2 (p, q) = d(p, q), dR2 (q, r) = d(q, r) and dR2 (r, p, ) = d(r, p). A triangle △(p, q, r) having vertices
p, q, r ∈ R2 is called a comparison triangle of ∆(p, q, r) in E.

A point u ∈ [p, q] is said to be a comparison point for u ∈ [p, q] if d(p, u) = dR2 (p, u). Similarly, compar-
ison points on [q, r] and [r, p] can be defined.

Suppose that ∆ is a geodesic triangle in E and ∆ is a comparison triangle for ∆. A geodesic space is said to
be a CAT(0) space, if all geodesic triangles of appropriate size satisfy the following comparison axiom called
CAT(0) inequality:

d(u, v) ≤ dR2 (u, v), for all u, v ∈ ∆, u, v ∈ ∆.

Every CAT(0) space is a uniquely geodesic and any complete and simply connected Riemannian mani-
fold having nonpositive sectional curvature is a CAT(0) space. Other examples of CAT(0) spaces include pre-
Hilbert spaces , R-trees, Euclidean buildings and complex Hilbert ball with a hyperbolic metric as special
case (see, for example, [13–15] ).

Let C be a nonempty closed convex subset of a complete CAT(0) space (E, d). Then, for any x ∈ E there
exists a unique point x0 ∈ C such that [14]

d(x, x0) = inf{d(x, y) : y ∈ C}.

A point x0 in C is said to be a unique nearest point of x ∈ E. The metric projection of E onto C is the mapping
PC : E → C defined as: corresponding to each x in E,

PC(x) is the unique nearest point of x in C.

By Lemma 2.1 [13], for each x, y ∈ E and t ∈ [0, 1], there exists a unique point z ∈ [x, y] such that

d(x, z) = (1 − t)d(x, y) and d(y, z) = td(x, y). (4)

Throughout this paper, we shall use the notation tx⊕ (1− t)y for the unique point z satisfying (4). Finally,
we give some known results in CAT(0) spaces needed in our results.

Lemma 1.0.1. [16] Let E be a CAT(0) space. Then

d(kx ⊕ (1 − k)y, z) ≤ kd(x, z) + (1 − k)d(y, z)

for all x, y, z ∈ E and k ∈ (0, 1).

Lemma 1.0.2. [16] Let E be a CAT(0) space. Then

d2(kx ⊕ (1 − k)y, z) ≤ kd2(x, z) + (1 − k)d2(y, z) − k(1 − k)d2(x, y)

for all x, y, z ∈ E and k ∈ (0, 1).
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Lemma 1.0.3. [17] Let E be a CAT(0) space. Then

d(kx ⊕ (1 − k)z, ky ⊕ (1 − k)z) ≤ kd(x, y)

for all x, y, z ∈ E and k ∈ (0, 1).

Lemma 1.0.4. [18] Let E be a CAT(0) space. Then

d(kx ⊕ (1 − k)z,mx ⊕ (1 − m)y) ≤ |k − m|d(x, y)

for all x, y ∈ E and k,m ∈ (0, 1).

Lemma 1.0.5. [14] Let E be a CAT(0) space, p, q, r, s ∈ E and k ∈ [0, 1]. Then

d(kp ⊕ (1 − k)q, kr ⊕ (1 − k)s) ≤ kd(p, r) + (1 − k)d(q, s).

Berg and Nikolaev [19] introduced an important concept of quasilinearization as follows:
Denote a pair (a, b) ∈ E × E by

−→
ab and call it a vector. The quasilinearization is a map ⟨., .⟩ : E2 × E2 → R

defined by

⟨
−→
ab,

−→
cd⟩ = 1

2

(︂
d2(a, d) + d2(b, c) − d2(a, c) − d2(b, d)

)︂
for all a, b, c, d ∈ E. One can easily see that ⟨

−→
ab,

−→
cd⟩ = ⟨

−→
cd,

−→
ab⟩, ⟨

−→
ab,

−→
cd⟩ = −⟨

−→
ba,

−→
cd⟩ and ⟨−→ax,

−→
cd⟩ +

⟨
−→
xb,

−→
cd⟩ = ⟨

−→
ab,

−→
cd⟩ for all a, b, c, d, x ∈ E. A metric space E satisfies Cauchy-Schwarz inequality if⃒⃒⃒⃒

⟨
−→
ab,

−→
cd⟩

⃒⃒⃒⃒
≤ d(a, b)d(c, d)

for all a, b, c, d ∈ E. It is known that a geodesically connected metric space is CAT(0) space if and only if it
satisfies the Cauchy-Schwarz inequality [19].

Following are some important lemmas.

Lemma 1.0.6. [10] Let E be a complete CAT(0) space. Then for all u, x, y ∈ E, the following inequality

d2(x, u) ≤ d2(y, u) + 2⟨−→xy,−→xu⟩

holds.

Lemma 1.0.7. [10] Let E be a complete CAT(0) space. If for any u, v ∈ E and t ∈ [0, 1], we set ut = tu⊕ (1− t)v.
Then, for each x, y ∈ E, we have

1. ⟨−→utx,−→uty⟩ ≤ t⟨−→ux,−→uty⟩ + (1 − t)⟨−→vx,−→uty⟩;
2. ⟨−→utx,−→uy⟩ ≤ t⟨−→ux,−→uy⟩ + (1 − t)⟨−→vx,−→uy⟩;
3. ⟨−→utx,−→vy⟩ ≤ t⟨−→ux,−→vy⟩ + (1 − t)⟨−→vx,−→vy⟩.

Lemma 1.0.8. [20] Let C be a nonempty convex subset of a complete CAT(0) space E , x ∈ E and u ∈ C. Then

u = PCx if and only if ⟨−→yu,−→ux⟩ ≥ 0 for all y ∈ C.

Now, we recall some convergence results in CAT(0) spaces.
Let {xn} be a bounded sequence in a CAT(0) space E. For x ∈ E , set

r(x, {xn}) = lim sup
n→∞

d(x, xn).

The asymptotic radius r({xn}) of {xn} is given by

r({xn}) = inf{r(x, {xn}) : x ∈ E},

and the asymptotic center A({xn}) of {xn} is the set

A({xn}) = {x ∈ E : r(x, {xn}) = r({xn})}.



Generalized implicit viscosity approximation method | 351

It is well known that in a CAT(0) space, A({xn}) consists of exactly one point. A sequence {xn} is said to
∆−convergent to x ∈ E if A({xnk}) = {x} for every subsequence {xnk} of {xn}. The uniqueness of asymptotic
center implies that the CAT(0) space satisfies the Opial’s property, i.e., for given {xn} ⊂ E such that {xn}
∆−converges to x and given y ∈ E with y ≠ x,

lim sup
n→∞

d(xn , x) < lim sup
n→∞

d(xn , y).

Lemma 1.0.9. [9] Every bounded sequence in a complete CAT(0) space has a ∆− convergent subsequence.

Lemma 1.0.10. [9] Let E be a CAT(0) space, {xn} a sequence in E and x ∈ E. Then {xn} ∆− converges to x if
and only if lim supn→∞⟨

−−→xnx,−→yx⟩ ≤ 0 for all y ∈ E.

A multivalued nonexpansive operator T : C → K(C) satisfies the endpoint condition, if F(T) ≠ ϕ and T(x) =
{x} for any x ∈ F(T).

Lemma 1.0.11. [11] Assume that C is a closed convex subset of a complete CAT(0) space E. If T : C → CB(C)
satisfies the endpoint condition, then F(T) is closed and convex.

Lemma 1.0.12. [9] If C is a closed convex subset of a complete CAT(0) space E and T : C → K(C) is a nonex-
pansive mapping, then the conditions {xn} ∆-converges to x and d(xn , Txn) → 0 imply x ∈ F(T).

Recall that a continuous linear functional µ on l∞, the Banach space of bounded real sequence, is called
a Banach limit if ||µ|| = µ(1, 1, ...) and µn(an) = µn(an+1) for all {an} ∈ l∞. The following lemma is an
important tool for proving the convergence of a sequence {d2(xn , q)}.

Lemma 1.0.13. [21] Let {an} be a sequence of non-negative real number satisfying the property

an+1 ≤ (1 − αn)an + αnβn , n ≥ 0,

where {αn} ⊆ (0, 1) and {βn} ⊆ R such that

1.
∑︀∞

n=0 αn = 0;
2. lim supn→∞ βn ≤ 0 or

∑︀∞
n=0 |αnβn| < ∞.

Then {an} converges to zero, as n →∞.

2 Results
Now, we present the following convergence result of our iterative scheme (2).

Theorem 2.0.1. Let C be a nonempty closed convex subset of a complete CAT(0) space E, T : C → K(C) a
multivalued nonexpansive mapping satisfying the endpoint condition and f : C → C a contraction with k ∈
(0, 1). If sequences {αn} and {βn} ∈ (0, 1) satisfy

A1 limn→∞ αn = 0,
A2

∑︀∞
n=1 αn = ∞,

A3
∑︀∞

n=1 |αn+1 − αn| = ∞,
A4 0 < ϵ ≤ βn ≤ βn+1 < 1 for all n ≥ 0.

Then the sequence generated by (2) converges strongly to a fixed point x* of the nonexpansive mapping T,
which solves the variational inequality

⟨
−−−−→
x*f (x*),

−→xx*⟩ ≥ 0 for all x ∈ F(T). (5)

That is, x* ∈ PF(T)f (x*).

Proof. We shall be divide the proof into four steps.
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STEP 1 First we show that the sequence {xn} is bounded. For any p ∈ F(T), we have

d(xn+1, q) ≤ d(αn f (xn)⊕ (1 − αn)un , q)
≤ αnd(f (xn), q) + (1 − αn)d(un , q)
≤ αnd(f (xn), f (q)) + αnd(f (q), q) + (1 − αn)d(un , Tq)
≤ αnd(f (xn), f (q)) + αnd(f (q), q) + (1 − αn)H(Tyn , Tq)
≤ kαnd(xn , q) + αnd(f (q), q) + (1 − αn)d(yn , q)
≤ kαnd(xn , q) + (1 − αn)d(βnxn ⊕ (1 − βn)zn+1, q) + αnd(f (q), q)
≤ kαnd(xn , q) + (1 − αn)[βnd(xn , q) + (1 − βn)d(zn+1, q)] + αnd(f (q), q)
≤ (kαn + (1 − αn)βn)d(xn , q) + (1 − αn)(1 − βn)d(zn+1, Tq)] + αnd(f (q), q)
≤ (kαn + (1 − αn)βn)d(xn , q) + (1 − αn)(1 − βn)H(Txn+1, Tq)] + αnd(f (q), q)
≤ (kαn + (1 − αn)βn)d(xn , q) + (1 − αn)(1 − βn)d(xn+1, q)] + αnd(f (q), q). (6)

Therefore,

[1 − (1 − αn)(1 − βn)]d(xn+1, q) ≤ (kαn + (1 − αn)βn)d(xn , q) + αnd(f (q), q). (7)

Since αn , βn ∈ (0, 1), we have [1 − (1 − αn)(1 − βn)] < 1. Hence,

d(xn+1, p) ≤
[︂
kαn + (1 − αn)βn

1 − (1 − αn)(1 − βn)

]︂
d(xn , q) +

αn
1 − (1 − αn)(1 − βn)

d(f (q), q)

=
[︂
1 − αn(1 − k)

1 − (1 − αn)(1 − βn)

]︂
d(xn , p) +

αn(1 − k)
1 − (1 − αn)(1 − βn)

(︂
1

1 − k d(f (q), q)
)︂
.

Consequently,

d(xn+1, q) ≤ max
{︂
d(xn , q),

1
1 − k d(f (q), q)

}︂
. (8)

By induction we obtain that

d(xn+1, q) ≤ max
{︂
d(x0, q),

1
1 − k d(f (q), q)

}︂
. (9)

Thus {xn} is bounded. Furthermore, we deduce f (xn), {un} and {zn+1} are bounded.

STEP 2 Now, we prove that limn→∞ d(xn+1, xn) = 0. By (2) and Lemmas 1.0.3 and 1.0.4, we have

d(yn , yn−1) =d(βnxn ⊕ (1 − βn)zn+1, βn−1xn−1 ⊕ (1 − βn−1)zn)
≤d(βnxn ⊕ (1 − βn)zn+1, βnxn ⊕ (1 − βn)zn) + d(βnxn ⊕ (1 − βn)zn , βnxn−1 ⊕ (1 − βn)zn)
+ d(βnxn−1 ⊕ (1 − βn)zn , βn−1xn−1 ⊕ (1 − βn−1)zn)
≤(1 − βn)d(zn , zn+1) + βnd(xn−1, xn) + |βn − βn−1|d(xn−1, zn)
≤(1 − βn)d(xn , xn+1) + βnd(xn−1, xn) + |βn − βn−1|d(xn−1, xn)
≤(1 − βn)d(xn , xn+1) + βn−1d(xn−1, xn). (10)

Again using Lemmas 1.0.3 and 1.0.4 and inequality (10), we obtain that

d(xn+1, xn) =d(αn f (xn)⊕ (1 − αn)un , αn−1fyn−1 ⊕ (1 − αn−1)un−1)
≤d(αn f (xn)⊕ (1 − αn)un , αn fxn ⊕ (1 − αn)un−1)
+ d(αn f (xn)⊕ (1 − αn)un−1, αn f (xn−1)⊕ (1 − αn)un−1) (11)
+ d(αn f (xn−1)⊕ (1 − αn)un−1, αn−1f (xn−1)⊕ (1 − αn−1)un−1)
≤(1 − αn)d(un , un−1) + αnd(f (xn), f (xn−1)) + |αn − αn−1|d(f (xn−1), un−1)
≤(1 − αn)d(yn , yn−1) + kαnd(xn , xn−1) + |αn − αn−1|M
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≤(1 − βn)(1 − αn)d(xn , xn+1) + |βn−1(1 − αn)d(xn−1, xn) + kαnd(xn−1, xn) + |αn − αn−1|M
=(1 − βn)(1 − αn)d(xn , xn+1) + (βn−1(1 − αn) + kαn)d(xn−1, xn) + |αn − αn−1|M (12)

where M ≥ supn≥0 d(f (xn−1), un−1). Therefore

(1 − (1 − αn))(1 − βn)d(xn+1, xn) ≤ (βn−1(1 − αn) + kαn)d(xn−1, xn) + |αn − αn−1|M.

Thus,

d(xn+1, xn) ≤
βn−1(1 − αn) + kαn
1 − (1 − αn)(1 − βn)

d(xn−1, xn) +
|αn − αn−1|

1 − (1 − αn)(1 − βn))(1 − βn)]
M

≤
[︂
1 − αn(1 − k) + (βn − βn−1)(1 − αn))1 − (1 − αn)(1 − βn)

]︂
× d(xn−1, xn) +

|αn − αn−1|
1 − (1 − αn)(1 − βn)

M.

Clearly, from condition (A4), we have

0 < ϵ ≤ 1 − (1 − αn)(1 − βn) < 1.

This implies that

αn(1 − k) + (βn − βn−1)(1 − αn))
1 − (1 − αn)(1 − βn)

≥ αn(1 − k) − (βn − βn−1) ≥ αn(1 − k).

Therefore,

d(xn+1, xn) ≤ αn(1 − k)d(xn−1, xn) + |αn − αn−1|
M
ϵ .

It follows from conditions (A1),(A2) and Lemma 1.0.13 that

d(xn+1, xn) → 0 as n →∞.

Now, we prove that limn→∞ d(xn , Tn) = 0. By definition (2), we have d(xn , zn+1) ≤ d(xn , xn+1). Thus

d(xn , zn) ≤d(xn , zn+1) + d(zn+1, zn)
≤d(xn , xn+1) + d(xn , xn+1).

Using the fact that limn→∞ d(xn , xn+1) = 0, wehave limn→∞ d(xn , zn) = 0. Consequently, limn→∞ d(xn , Txn) =
0. Note that

d(xn , Tyn) ≤d(xn , un)
≤d(xn , xn+1) + d(xn+1, un)
≤d(xn , xn+1) + αnd(f (xn), un)
≤d(xn , xn+1) + αnM1

where M1 ≥ supn≥0 d(f (xn), un) for all n ≥ 0. Then by condition (A1) and limn→∞ d(xn , xn+1) = 0, we obtain
that limn→∞ d(xn , Tyn) = 0.

STEP 3 Now, we show that {xn} converges strongly to x* where x* = PF(T)f (x*) which is equivalent to varia-
tional inequality (32).
Since {xn} is bounded, by Lemma 1.0.9, there exists a subsequence {xnj} of {xn} such that ∆−limj→∞ xnj = x*.
Also,

lim sup
n→∞

⟨
−−−−→
x*f (x*),

−−−→
x*xn)⟩ = lim sup

j→∞
⟨
−−−−→
x*f (x*),

−−−→
x*xnj )⟩. (13)

From Lemma 1.0.12 , we get x* ∈ F(T). Again, by Lemma 1.0.10 , we have

lim sup
j→∞

⟨
−−−−→
x*f (x*),

−−−→
x*xj)⟩ ≤ 0 (14)
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By (13) and (15) we have
lim sup
n→∞

⟨
−−−−→
x*f (x*),

−−−→
x*xn)⟩ ≤ 0. (15)

We now prove that {xn} converges strongly to x*. If we set vn = αnx* ⊕ (1 − αn)un where un ∈ Tyn. Then from
Lemma 1.0.6 and 1.0.7, we have

d2(xn+1, x*) ≤d2(vn , x*) + 2⟨
−−−−→xn+1vn ,−−−−→xn+1x*⟩

≤d2(αnx* ⊕ (1 − αn)un , x*) + 2⟨
−−−−→xn+1vn ,−−−−→xn+1x*⟩

≤
[︀
αnd(x*, x*) + (1 − αn)d(un , x*)

]︀2 + 2[︀αn⟨−−−−−→f (xn)vn ,−−−−→xn+1x*⟩ + (1 − αn)⟨
−−−→unvn ,−−−−→xn+1x*⟩]

≤(1 − αn)2d(un , x*) + 2
[︀
αnαn⟨

−−−−→
f (xn)x*,

−−−−→xn+1x*⟩ + αn(1 − αn)⟨
−−−−−→
f (xn)un ,−−−−→xn+1x*⟩

+ αn(1 − αn)⟨−−→unx*,
−−−−→xn+1x*⟩ + (1 − αn)2⟨

−−−→unun ,−−−−→xn+1x*⟩
]︀

≤(1 − αn)2d(yn , x*) + 2
[︀
α2n⟨

−−−−→
f (xn)x*,

−−−−→xn+1x*⟩ + αn(1 − αn)⟨
−−−−→
f (xn)x*,

−−−−→xn+1x*⟩
]︀

=(1 − αn)2d(yn , x*) + 2αn⟨
−−−−→
f (xn)x*,

−−−−→xn+1x*⟩ (16)

Note that
⟨
−−−−→
f (xn)x*,

−−−−→xn+1x*⟩ = (1 − αn)⟨−−→unx*,
−−−−→
f (xn)x*⟩.

By Cauchy Schwarz inequality, (16) becomes

d2(xn+1, x*) ≤ (1 − αn)2d2(yn , x*) + 2αn(1 − αn)⟨
−−→unx*,

−−−−→
f (xn)x*⟩

≤ (1 − αn)2d2(yn , x*) + 2αn(1 − αn)⟨
−−−−−−→
f (xn)f (x*),

−−→unx*⟩ + 2αn(1 − αn)⟨
−−→
f (x*)x*,

−−→unx*⟩

≤ (1 − αn)2d2(yn , x*) + 2αn(1 − αn)⟨
−−−−−−→
f (xn)f (x*),

−−→unx*⟩ + 𝛾n

≤ (1 − αn)2d2(yn , x*) + 2αn(1 − αn)d(f (xn), f (x*))d(un , x*) + 𝛾n

≤ (1 − αn)2d2(yn , x*) + 2αn(1 − αn)kd(xn , x*)d(yn , x*) + 𝛾n (17)

where

𝛾n = 2αn(1 − αn)⟨
−−→
f (x*))x*,

−−→unx*⟩. (18)

Then,

0 ≤ (1 − αn)2d(yn , x*) + 2αn(1 − αn)kd(xn , x*)d2(yn , x*) + 𝛾n − d2(xn+1, x*).

By using the quadratic formula to solve the above quadratic equation for d2(yn , x*), we get

d(yn , x*) ≥
1

2(1 − αn)2

(︂
− 2kαn(1 − αn)d(xn , x*) +

√︀
(2αn(1 − αn)k)2 − 4(1 − αn)2(𝛾n − d2(xn+1, x*))

)︂
= (−kαnd(xn , x*)) ×

√︀
k2αn2d2(xn , x*) − (𝛾n − d2(xn+1, x*))

1 − αn
.

Moreover,

d(βnxn ⊕ (1 − βn)zn+1, x*) ≥
−kαnd(xn , x*)

√︀
k2αn2d2(xn , x*) − (𝛾n − d2(xn+1, x*))

1 − αn

implies that

βnd(xn , x*) + (1 − βn)d(zn+1, x*) ≥
−kαnd(xn , x*)

√︀
k2αn2d2(xn , x*) − (𝛾n − d2(xn+1, x*))

1 − αn
.

Now

(1 − αn)βnd(xn , x*) + (1 − αn)(1 − βn)d(zn+1, x*)

≥ −kαnd(xn , x*)
√︀
k2αn2d2(xn , x*) − (𝛾n − d2(xn+1, x*)),
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implies that

((1 − αn)βn − kαn)d(xn , x*) + (1 − αn)(1 − βn)d(zn+1, x*) ≥
√︀
k2αn2d2(xn , x*) − (𝛾n − d2(xn+1, x*)).

Squaring both sides in the above inequality and using the following inequality

2d(xn , x*)d(xn+1, x*) ≤ d2(xn , x*) + d2(xn+1, x*)

we obtain that

k2α2nd2(xn , x*) − 𝛾n + d2(xn+1, x*) ≤(kαn + (1 − αn)βn)2d2(xn , x*) + (1 − βn)2(1 − αn)2d2(xn+1, x*)
+ 2(kαn + (1 − αn)βn)(1 − βn)(1 − αn) × d(xn , x*)d(xn+1, x*)
≤(kαn + (1 − αn)βn)2d2(xn , x*) + (1 − βn)2(1 − αn)2d2(xn+1, x*)
+ (kαn + (1 − αn)βn)(1 − βn)(1 − αn) × (d2(xn , x*) + d2(xn+1, x*)).

This gives

(1 − (1 − βn)2(1 − αn)2 − (kαn + (1 − αn)βn)(1 − βn)(1 − αn))d2(xn+1, x*))
≤ ((kαn + (1 − αn)βn)2 + (kαn + (1 − αn)βn)(1 − βn)(1 − αn))d2(xn , x*) + 𝛾n

which can be further simplified as

(1 − (1 − βn)(1 − αn)(1 + (k − 1)αn)d2(xn+1, x*))
≤ ((kαn + (1 − αn)(1 + (k − 1)αn) − k2α2n)d2(xn , x*) + 𝛾n

Therefore,

d2(xn+1, x*)) ≤
((kαn + (1 − αn)(1 + (k − 1)αn) − k2α2n)
(1 − (1 − βn)(1 − αn)(1 + (k − 1)αn)

d2(xn , x*) +
𝛾n

(1 − (1 − βn)(1 − αn)(1 + (k − 1)αn)
(19)

Suppose that

ξn =
1
αn

(︂
1 − ((kαn + (1 − αn)(1 + (k − 1)αn) − k2α2n)

1 − (1 − βn)(1 − αn)(1 + (k − 1)αn)

)︂
= 2(1 − k) + αn(2k − 1)
1 − (1 − βn)(1 − αn)(1 + (k − 1)αn)

.

From condition (A4), the sequence {βn} satisfies 0 < ϵ ≤ βn ≤ βn+1 < 1 for all n ≥ 0, and hence limn→∞ βn
exists. Let limn→∞ βn = β > 0. Then

lim
n→∞

ξn =
2(1 − k)

β > 0.

Suppose δ0 > 0 satisfies
δ0 <

2(1 − k)
β

then there exists n0 such that ξn > δ0 for all n ≥ n0. Therefore, for all n ≥ n0, we have

((kαn + (1 − αn)(1 + (k − 1)αn) − k2α2n)
1 − (1 − βn)(1 − αn)(1 + (k − 1)αn)

≤ 1 − δ0αn .

Then from equation (19), we have

d2(xn+1, x*) ≤ (1 − δ0αn)d2(xn , x*) + ηn (20)

where ηn = 𝛾n
1−(1−βn)(1−αn)(1+(k−1)αn) . From equations (18) and (15), we have

lim sup
n→∞

𝛾n
αn
≤ 0

which further implies that
lim sup
n→∞

ηn
αn
≤ 0. (21)
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From conditions (A1), (A2), (20), (21) and Lemma 1.0.13 , we obtain

d(xn , x*) = 0 as n →∞.

Thus, {xn} converges strongly to x*.

STEP 4 Next, we show that x* = PF(T)f (x*). Let q ∈ F(T). Since T(x) is compact for any x ∈ C, T(x) ∈ CB(X).
From Lemma 1.0.12 it follows that F(T) is closed and convex, which further implies that PF(T)z is well defined
for any z ∈ E. Moreover, applying Lemma 1.0.2 we obtain that

d2(xn+1, q) ≤d2(αn f (xn)⊕ (1 − αn)un , q)
≤αnd2(f (xn), q) + (1 − αn)d2(un , q) − αn(1 − αn)d2(f (xn), un)
≤αnd2(f (xn), q) + (1 − αn)d2(un , Tq) − αn(1 − αn)d2(f (xn), un)
≤αnd2(f (xn), q) + (1 − αn)H2(Tyn , Tq) − αn(1 − αn)d2(f (xn), un)
≤αnd2(f (xn), q) + (1 − αn)d2(yn , q) − αn(1 − αn)d2(f (xn), un)

≤αnd2(f (xn), q) + (1 − αn)
(︂
βnd2(xn , q) + (1 − βn)d2(zn+1, q) − βn(1 − βn)d(xn , zn+1)

)︂
− αn(1 − αn)d2(f (xn), un)
≤αnd2(f (xn), q) + βn(1 − αn)d2(xn , q)
+ (1 − βn)(1 − αn)d2(zn+1, Tq) − βn(1 − βn)d(xn , zn+1) − αn(1 − αn)d2(f (xn), un)
≤αnd2(f (xn), q) + βn(1 − αn)d2(xn , q)
+ (1 − βn)(1 − αn)H2(Txn+1, Tq) − βn(1 − βn)d(xn , zn+1) − αn(1 − αn)d2(f (xn), un)
≤αnd2(f (xn), q) + βn(1 − αn)d2(xn , q)
+ (1 − βn)(1 − αn)d2(xn+1, q) − βn(1 − βn)d(xn , zn+1) − αn(1 − αn)d2(f (xn), un).

Applying the Banach limit, we have

µnd2(xn+1, q) ≤µnαnd2(f (xn), q) + µnβn(1 − αn)d2(xn , q)
+ µn(1 − βn)(1 − αn)d2(xn+1, q) − µnβn(1 − βn)d(xn , zn+1) − µnαn(1 − αn)d2(f (xn), un).

Therefore,

µnd2(xn+1, q) ≤ µnd2(f (xn), q) − µnd2(f (xn), un) ≤ µnd2(f (xn), q) − µnd2(f (xn), Tyn). (22)

For any x* ∈ C such that xn → x*, we obtain

d(f (xn), Tyn) ≤ d(f (xn), f (x*)) + d(f (x*), x*) + d(x*, Tyn)
≤ kd(xn , x*) + d(f (x*), x*) + H(Tyn , Tx*)
≤ kd(xn , x*) + d(f (x*), x*) + d(yn , x*)
≤ kd(xn , x*) + d(f (x*), x*) + βnd(xn , x*) + (1 − βn)d(x*, zn+1)
≤ kd(xn , x*) + d(f (x*), x*) + βnd(xn , x*) + (1 − βn)d(Tx*, zn+1)
≤ kd(xn , x*) + d(f (x*), x*) + βnd(xn , x*) + (1 − βn)H(Tx*, Txn+1)
≤ kd(xn , x*) + d(f (x*), x*) + βnd(xn , x*) + (1 − βn)d(x*, xn+1)
= (k + βn)d(xn , x*) + d(f (x*), x*) + (1 − βn)d(x*, xn+1) (23)

and

d(fx*, x*) ≤ d(fx*, f (xn)) + d(f (xn), Tyn) + d(Tyn , x*)
≤ d(fx*, f (xn)) + d(f (xn), Tyn) + H(Tyn , Tx*)
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≤ kd(xn , x*) + d(f (xn), Tyn) + d(yn , x*)
≤ kd(xn , x*) + d(f (xn), Tyn) + βnd(xn , x*) + (1 − βn)d(zn+1, x*)
≤ kd(xn , x*) + d(f (xn), Tyn) + βnd(xn , x*) + (1 − βn)d(xn+1, x*)
= (k + βn)d(xn , x*) + d(f (xn), Tyn) + (1 − βn)d(xn+1, x*). (24)

Thus, from (23) and (24), we have

|d(f (xn), Tyn) − d(fx*, x*)| ≤ (k + βn)d(xn , x*) + (1 − βn)d(xn+1, x*). (25)

Using (25) and the fact that xn → x* as n →∞ in (22) we get that

d2(x*, q) ≤ d2(fx*, q) − d2(fx*, x*).

That is,

0 ≤ 12

(︂
d2(x*, x*) + d2(x*, q)

)︂
≤ d2(fx*, q) − d2(fx*, x*) = ⟨

−−−→
x*fx*,

−→qx*⟩.

Hence, from Lemma 1.0.8 x* = PF(T)f (x*) and this completes the proof.

Theorem 2.0.2. Let C be a nonempty closed convex subset of a complete CAT(0) space E, T : C → K(C) a
multivalued nonexpansive mapping satisfying the endpoint condition and f : C → C a contraction with k ∈
(0, 1). If sequences {αn} and {βn} ∈ (0, 1) satisfy

A1 limn→∞ αn = 0,
A2

∑︀∞
n=1 αn = ∞,

A3
∑︀∞

n=1 |αn+1 − αn| = ∞,
A4 0 < ϵ ≤ βn ≤ βn+1 < 1 for all n ≥ 0

then the sequence generated by (3) converges strongly to a fixed point x* where x* ∈ PF(T)f (x*) which is equiva-
lent to the following variational inequality

⟨
−−−−→
x*f (x*),

−→xx*⟩ ≥ 0 for all x ∈ F(T). (26)

Proof. The proof is similar to Theorem (2.0.1).

If T is a nonexpansive single-valued operator, then from Theorem (2.0.1), we can obtain the following result
in [3].

Theorem 2.0.3. Let C be a nonempty closed convex subset of a complete CAT(0) space E, T : C → C a nonex-
pansive mapping and f : C → C a contraction with k ∈ (0, 1). If sequences {αn} and {βn} ∈ (0, 1) satisfy

A1 limn→∞ αn = 0,
A2

∑︀∞
n=1 αn = ∞,

A3
∑︀∞

n=1 |αn+1 − αn| = ∞,
A4 0 < ϵ ≤ βn ≤ βn+1 < 1 for all n ≥ 0

then the sequence generated by

xn+1 = αn f (xn)⊕ (1 − αn)yn;
yn = βnxn ⊕ (1 − βn)xn+1

converges strongly to a fixed point x* which is equivalent to the following variational inequality

⟨
−−−−→
x*f (x*),

−→xx*⟩ ≥ 0 for all x ∈ F(T). (27)
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If f is an identity function then we obtain the following result.

Theorem 2.0.4. Let C be a nonempty closed convex subset of a complete CAT(0) space E and T : C → K(C)
a multivalued nonexpansive mapping satisfying the endpoint condition. If sequences {αn} and {βn} ∈ (0, 1)
satisfy

A1 limn→∞ αn = 0,
A2

∑︀∞
n=1 αn = ∞,

A3
∑︀∞

n=1 |αn+1 − αn| = ∞,
A4 0 < ϵ ≤ βn ≤ βn+1 < 1 for all n ≥ 0

then the for u ∈ C the sequence generated by

xn+1 = αnu ⊕ (1 − αn)yn; un ∈ Tyn;
yn = βnxn ⊕ (1 − βn)zn+1; zn+1 ∈ Txn+1,

such that d(zn , zn+1) ≤ d(xn , xn+1), d(un , un+1) ≤ d(yn , yn+1) and d(xn , zn+1) ≤ d(xn , xn+1), converges strongly
to a unique nearest point x* of u in F(T) which is equivalent to the following variational inequality

⟨−−→x*u,
−→xx*⟩ ≥ 0 for all x ∈ F(T). (28)

Now, we prove some convergence results of the implicit viscosity approximation method in completeR-trees
without the endpoint condition.

Definition 2.0.5. An R−tree is a geodesic space E such that:

1. there is a unique geodesic segment [x, y] joining each pair of points x, y ∈ E;
2. if [y, x] ∩ [x, z] = {x}, then [y, x] ∪ [x, z] = [y, z];
3. if u, v, w ∈ E, then [u, v] ∩ [u, w] = [u, z] for some z ∈ E.

Every R-tree is a CAT(0) space which does not contain the Euclidean plane. Thus to avoid the endpoint con-
dition, R−trees are preferred. Although an R−tree is not strong enough to make all nonexpansive mappings
having the endpoint condition, but it is strong enough to make our theorems hold without this condition.

Let C be closed convex subset of a complete R−tree (E, d). Let T : C → K(C) be a multivalued mapping.
Then, there exists a single-valued mapping t : C → C such that tx ∈ Tx and

d(tx, ty) ≤ H(Tx, Ty) for all x, y ∈ C,

see [22] for details. In this case, we call t a nonexpansive selection of T. A multivaluedmapping T : C → K(C)
is called a quasi-nonexpansive mapping if

H(Tx, p) ≤ d(x, p) for all x ∈ C, p ∈ F(T).

Clearly, every multivalued nonexpanive mapping is quasi-nonexpansive. The following result is needed in
our result.

Proposition 2.0.6. [23] Let C be a closed convex subset of a completeR−tree (E, d) and T : C → P(C) a quasi-
nonexpansive mapping with nonempty closed bounded convex values. Then F(T) is closed and convex.

Let f : C → C be a contraction and fix x1 ∈ C. Define {xn} ∈ C by

xn+1 = αn fxn ⊕ (1 − αn)tyn; tyn ∈ Tyn;
yn = βnxn ⊕ (1 − βn)txn+1; txn+1 ∈ Txn+1,

(29)

where d(xn , txn+1) ≤ d(xn , xn+1)
and

xn+1 = αn fxn ⊕ (1 − αn)tyn; tyn ∈ Tyn;
yn = βnxn ⊕ (1 − βn)xn+1

(30)
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for all n ∈ N.

Theorem 2.0.7. Let C be a nonempty closed convex subset of a completeR−tree E, T : C → K(C) amultivalued
nonexpansive mapping and f : C → C a contraction with k ∈ (0, 1). If sequences {αn} and {βn} ∈ (0, 1) satisfy

A1 limn→∞ αn = 0,
A2

∑︀∞
n=1 αn = ∞,

A3
∑︀∞

n=1 |αn+1 − αn| = ∞,
A4 0 < ϵ ≤ βn ≤ βn+1 < 1 for all n ≥ 0.

Then the sequence generated by (29) converges strongly to a fixed point x* of T, which solves the variational
inequality

⟨
−−−−→
x*f (x*),

−→xx*⟩ ≥ 0 for all x ∈ F(T). (31)

That is, x* ∈ PF(T)f (x*).

Proof. By Theorem 4.2 of [22], F(t) = F(T). The set is closed and convex by Proposition 2.0.6 and t is nonex-
pansive. The conclusion follows from Theorem 2.0.1.

Theorem 2.0.8. Let C be a nonempty closed convex subset of a completeR−tree E, T : C → K(C) amultivalued
nonexpansive mapping and f : C → C a contraction with k ∈ (0, 1). If sequences {αn} and {βn} ∈ (0, 1) satisfy

A1 limn→∞ αn = 0,
A2

∑︀∞
n=1 αn = ∞,

A3
∑︀∞

n=1 |αn+1 − αn| = ∞,
A4 0 < ϵ ≤ βn ≤ βn+1 < 1 for all n ≥ 0.

Then the sequence generated by (30) converges strongly to a fixed point x* of T, which solves the variational
inequality

⟨
−−−−→
x*f (x*),

−→xx*⟩ ≥ 0 for all x ∈ F(T). (32)

That is, x* ∈ PF(T)f (x*).

Proof. The proof is similar to Theorem 2.0.7.

Remarks

Results presented in this paper extend corresponding results in [3] tomultivalued nonexpansivemappings in
the framework of CAT(0) spaces. Using Cauchy Schwarz inequality [19] and other results from [10], [8] etc. we
have shown the strong convergence of the new viscosity method for the implicit rule of a multivalued nonex-
pansive mapping in CAT(0) space. However, in iterative method the condition d(xn , zn+1) ≤ d(xn , xn+1) on is
imposed. Can these results be obtained without this condition? Furthermore, can these results be obtained
when f is a multivalued contraction mapping or f satisfies other generalized contraction conditions? These
are the open questions worth studying in the future.
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