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Abstract: In this paper, we provide some generalizations of the Darbo’s fixed point theorem associated with
the measure of noncompactness and present some results on the existence of the coupled fixed point theo-
rems for a special class of operators in a Banach space. To acquire this result, we define α-ψ and β-ψ con-
densing operators and using them we propose new fixed point results. Our results generalize and extend
some comparable results from the literature. Additionally, as an application, we apply the obtained fixed
point theorems to study the nonlinear functional integral equations.
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1 Introduction and preliminaries
The study of nonlinear integral equations, nowadays, is a subject of interest for many researchers in nonlin-
ear functional analysis. Integral equations arise in many practical problems including potential theory and
other physics-related problems. On the other hand, fixed point theory is one of the most effective and fruit-
ful tool used in nonlinear analysis to solve functional integral equations. It's concerned with the conditions
for the existence of one or more fixed points of a mapping T from a topological space X into itself. Brouwer
[1] established a fixed point result what has become the well-known Brouwer's fixed point theorem for finite
dimensional spaces. While in 1922, Banach [2] introduced his celebrated Banach contraction principle for
complete metric spaces which guarantee the existence and uniqueness of fixed point. Afterwards, in 1930,
Schauder [3] extended the Brouwer's fixed point theorem to infinite dimensional spaces using the condition
of compactness. There are many developments in fixed point theory in various directions, one among them
is single-valuedmappings (see [4–10] and references therein). Furthermore, Kuratowski [11] in 1930, opened
up a new direction of research with the introduction of the concept of a measure of noncompactness, which
gives the degree of noncompactness for bounded sets. The measure of noncompactness can also be used in
the study of single-valued andmultivaluedmappings, especially inmetric and topological fixed point theory.
Themeasure of noncompactness combining with some algebraic arguments is beneficial for studyingmathe-
matical formulations, especially solving the existence of solutions of some nonlinear problems under certain
situations.
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The Kuratowski and Hausdorff measure of noncompactness [12, 13] in a metric space are well-known in
the literature and the proof of the Darbo's fixed point result depends upon the technique of the measure of
noncompactness. The Darbo's fixed point theorem is a very useful generalization of Schauder's fixed point
theorem for noncompact operators which is very helpful to solve differential and integral equations. Due to
this fact, researchers are always interested to find the extensions and generalizations of the Darbo's fixed
point theorem. Up to now, several papers have been published on the generalization of Darbo's fixed point
theorem (see [14–18] and references therein) and on the existence and behaviour of solutions of nonlinear
differential and integral equations [19–27] using the technique of measure of noncompactnes.

On the other hand, in metric fixed point theory Samet [9] introduced a nice generalization of Banach
fixed point theorem using the Definition 1.1, of α-admissible mappings. Inspired from the above mentioned,
applied the concept of α-admissible mappings to the Darbo theorem. We generalized the Theorem 1.4, in a
more general setting. To attain this result, we define α-ψ and β-ψ condensing operators and moreover, we
used the introduced concepts to propose new fixed point results. We also supply some new coupled fixed
point results through a measure of noncompactness for more general class of functions. The obtained re-
sults generalize and extend well-known results available in the literature. Moreover, some examples and an
application to a functional integral equation are given to illustrate the usability of this idea.

Throughout this paper, we will work in a Banach space E with the norm ‖.‖ and the zero element θ.
Denote by B(x, r) the closed ball centered at x with radius r. We use the standard notation λX and X + Y to
denote the algebraic operations on sets. Moreover, the symbol X stands for the closure of a set X while coX
and coX denotes the convex hull and closed convex hull of X respectively. Finally,we denoteME by the family
of all nonempty bounded subsets of the space E and byNE its subfamily consisting of all relatively compact
subsets of E.

The remaining part of the paper is organized as follows. First, we recall some known definitions and
basic tools which are useful to prove our main results with the corresponding references. In Section 2, we
give our proposed fixed point results and their implementation to obtain a coupled fixed point results and in
solving a functional integral equation.We begin by taking into account the axiomatic definition of the degree
of noncompactness.

Definition 1.1. [4] A mapping µ : ME −→ R+ = [0, +∞) is said to be a measure of noncompactness in E if it
satisfies the following conditions:

MNC1. The family kerµ = {X ∈ ME : µ(X) = 0} is a nonempty set and kerµ ⊂ NE;
MNC2. X ⊆ Y ⇒ µ(X) ≤ µ(Y);
MNC3. µ(X) = µ(X);
MNC4. µ(coX) = µ(X);
MNC5. µ(λX + (1 − λ)Y) ≤ λµ(X) + (1 − λ)µ(Y), for all λ ∈ [0, 1];
MNC6. If Xn is a sequence of closed sets fromME such that Xn+1 ⊂ Xn for n = 1, 2, · · · , and if limn→∞ µ(Xn) =

0 then X∞ =
⋂︀∞
n=1 Xn ≠ ϕ.

It follows from Definition 1.1, that X∞ is a member of the family Kerµ. In view that µ(X∞) ≤ µ(Xn) for any n,
we can deduce that µ(X∞) = 0. This yields that X∞ ∈ kerµ.

Definition 1.2. (Compact operator)[28] An operator T : X → Y is referred to as compact if T(S) is relatively
compact in a Banach space Y for any bounded subset S in a Banach space X.

Theorem 1.3. (Schauder’s fixed point theorem)[3] Let C be a nonempty, bounded, closed and convex subset of
a Banach space E. Then each continuous and compact map T : C → C has at least one fixed point in C.

Theorem 1.4. (Darbo’s fixed point theorem)[29] Let C be a nonempty, bounded, closed and convex subset of a
Banach space E and let T : C −→ C is a continuous mapping such that there exists a constant k ∈ [0, 1) such
that

µ(TS) ≤ kµ(S),
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for any nonempty subset S of C. Then T has a fixed point in the set C.

Denote with Ψ the family of nondecreasing functions ψ : [0, +∞) → [0, +∞) such that limn→∞ ψn(t) = 0, for
each t > 0, where ψn is the n-th iteration of ψ.

Lemma 1.5. For every function ψ ∈ Ψ the following holds:
if ψ is nondecreasing, then for each t > 0, limn→∞ ψn(t) = 0 implies ψ(t) < t.

Definition 1.6. [9] Let T : X → X and α : X × X → [0, +∞). We say that T is α-admissible if for every x, y ∈ X

α(x, y) ≥ 1 ⇒ α(Tx, Ty) ≥ 1.

Example 1.7. [9] Let X = [0, +∞). Define T : X → X by Tx = ln x, ∀ x ∈ X, and α : X ×X → [0, +∞) defined by

α(x, y) =
{︃

2 if x ≥ y,
0 if x < y.

Then T is α-admissible.

2 Main results
Definition 2.1. (α-ψ condensing operator) Let E be a Banach space and let T : E → E be a given operator.
We say that T is an α-ψ condensing operator if there exist two functions α : E × E → [0, +∞) and ψ ∈ Ψ such
that

α(x, Tx)µ(TX) ≤ ψ(µ(X)),

for any bounded subset X of E and x ∈ X with µ an arbitrary measure of noncompactness.

Theorem 2.2. Let C be a nonempty, bounded, closed and convex subset of a Banach space E and there exists
α : E × E → [0, +∞) such that T : C → C is a continuous, α-admissible and α-ψ condensing operator satisfying
the following:

(i) there exist closed and convex X0 ⊆ C and x0 ∈ X0 such that

TX0 ⊆ X0, α(x0, Tx0) ≥ 1, (2.1)

where µ be an arbitrarymeasure of noncompactness and ψ ∈ Ψ . Then T has at least one fixed point in the set C.

Proof. Firstly, define the sequence of the sets {Xn} and elements {xn} as follows:

Xn = co(TXn−1), xn = Txn−1 ∀ n ≥ 1.

Since TX0 ⊆ X0, thus
X1 = co(TX0) ⊆ X0,

X2 = co(TX1) ⊆ co(TX0) = X1.

Therefore, by continuing this process we obtain X0 ⊇ X1 ⊇ X2 ⊇ · · · Xn ⊇ Xn+1 ⊇ · · · , and also

TXn ⊆ TXn−1 ⊆ co(TXn−1) = Xn .

If there exists an integer N ≥ 0 such that µ(XN) = 0, then XN is a relatively compact set and also TXN ⊆ XN .
Thus, Theorem1.3, implies that T hasfixedpoint.Next,weassume that µ(Xn) ≠ 0 for any n ≥ 0. Fromequation
(2.1) we have α(x0, x1) = α(x0, Tx0) ≥ 1, and also T is a α-admissible operator implies that α(x1, x2) ≥ 1.
Recursively, we get the following inequality

α(xn , xn+1) ≥ 1, ∀ n ≥ 0. (2.2)
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Furthermore, from our assumptions and equation (2.2), we have

µ(Xn+1) ≤ α(xn , xn+1)µ(Xn+1)
= α(xn , Txn)µ

(︀
co(TXn)

)︀
= α(xn , Txn)µ(TXn)
≤ ψ
(︀
µ(Xn)

)︀
,

continuing in this manner, we reach the following inequality

µ(Xn+1) ≤ ψn
(︀
µ(X0)

)︀
. (2.3)

Thus, equation (2.3) implies that µ(Xn) → 0 as n →∞. Since the sequence {Xn} is nested so from Definition
1.1 (axiomMNC6), we deduce that the set X∞ =

⋂︀∞
n=1 Xn is nonempty, closed and convex subset of the set X0.

On the other hand, µ(X∞) ≤ µ(Xn), ∀ n ∈ N implies that µ(X∞) = 0. Hence we get that X∞ is a member of the
kerµ, which implies X∞ is compact. Moreover, we have X∞ ⊂ Xn and T(Xn) ⊂ Xn for all n ∈ N . Therefore,
T : X∞ → X∞ is well defined. For any bounded A ⊂ X∞, we have T(A) ⊂ X∞ and T(A) is a compact subset of
X∞, implies that T is compact operator. Therefore, Theorem 1.3, completes the proof.

Remark 2.3. In Theorem 2.2, we get Darbo’s theorem if we take α(x, y) = 1 and ψ(t) = kt for all t ≥ 0 and for
k ∈ [0, 1).

Now using the above theorem, we prove the following corollary which belongs to the classical metric fixed
point theory.

Corollary 2.4. Let C be a nonempty, bounded, closed and convex subset of a Banach space E and there exists
α : E × E → [0, +∞) such that T : C → C is a continuous and α-admissible operator satisfying the following:

(i) for any x, y, u ∈ X, we have
α(u, Tu)‖Tx − Ty‖ ≤ ψ

(︀
‖x − y‖

)︀
; (2.4)

(ii) there exist closed and convex X0 ⊆ C and x0 ∈ X0 such that

TX0 ⊆ X0, α(x0, Tx0) ≥ 1, (2.5)

where ψ ∈ Ψ . Then T has at least one fixed point in C.

Proof. Let µ : ME → R+ be defined as
µ(X) = diamX,

where diamX = sup{‖x − y‖ : x, y ∈ X} stands for the diameter of X. It is easy to see that µ is a measure
of noncompactness in a space E in the sense of Definition 1.1. Furthermore, from equation (2.4) and ψ being
nondecreasing we have

α(u, Tu) sup
x,y∈X

‖Tx − Ty‖ ≤ ψ
(︀
sup
x,y∈X

‖x − y‖
)︀
,

which implies that
α(u, Tu)µ(TX) ≤ ψ

(︀
µ(X)

)︀
,

so from Theorem 2.2, we get the desired result.

Proposition 2.5. If α(x, x) ≥ 1 for all x ∈ E, then the set of all fixed points of T in Theorem 2.2, is a compact
set.

Proof. Let F = {x ∈ C : Tx = x} be the set of all fixed points of T and µ(F) ≠ 0, then by α-ψ condensing
operator of T we have

α(x, Tx)µ(TF) ≤ ψ
(︀
µ(F)

)︀
< µ(F),
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which is a contradiction from above inequality since T(F) = F. This implies that F is a relatively compact
set. Now taking into account any convergent sequence {xn} ⊂ F and xn → x*, we have x* ∈ C, because C is
closed. The continuity of T implies that xn = Txn → Tx* and Tx* = x*, which means that x* ∈ F, i.e. F is a
compact set.

Example 2.6. The operator T : BC(R+) → BC(R+) defined by

Tx(t) =
{︃

x
2 if ‖x‖ ≤ 1,
2x − 2 if ‖x‖ > 1,

and let BC(R+) denote the space of all real-valued bounded and continuous functions onR+. First, we observe
that Theorem 1.4, cannot be applied in the case when ‖x‖, ‖y‖ > 1 and we obtain

‖Tx(t) − Ty(t)‖ = ‖2x(t) − 2 − 2y(t) + 2‖ = 2‖x(t) − y(t)‖,

and by taking supremum value on both sides we have

µ(TX) = 2µ(X).

Now, we define the mapping α : BC(R+) × BC(R+) −→ BC(R+) by

α(x, y) =
{︃

1 ‖x‖ ≤ 1,
0 otherwise.

Clearly, T is a α-ψ condensing operator with ψ(t) = t
2 for t ≥ 0, and µ(X) = diamX.

In order to prove the next results, we need the following definitions.

Definition 2.7. (β-admissible) Let T : E → E and β : 2E → [0, +∞). We say that T is β-admissible operator if
for every X ∈ 2E , we have

β(X) ≥ 1 ⇒ β(co TX) ≥ 1.

Example 2.8. Let T : BC(R+) → BC(R+) be defined by Tx(t) = λx(t) for λ ≥ 1, and also there exist β :
2BC(R+) → R+ such that

β(X) = diam(X)

for every X ⊂ BC(R+). Then T is β-admissible operator.

Example 2.9. Let T : BC(R+) → BC(R+) and there exist β : 2BC(R+) → R+ such that

Tx(t) = ex(t) and β(X) = sup{‖x‖ : x ∈ X}

for every x ∈ BC(R+), X ⊂ BC(R+) respectively. Then T is β-admissible operator.

Definition 2.10. (β-ψ condensing operator) Let E be a Banach space and let T : E → E be a given operator.
We say that T is β-ψ condensing operator if there exist two functions β : 2E → [0, +∞) and ψ ∈ Ψ such that

β(X)µ(TX) ≤ ψ
(︀
µ(X)

)︀
, (2.6)

for any bounded subset X of E with µ an arbitrary measure of noncompactness.

Theorem 2.11. Let C be a nonempty, bounded, closed and convex subset of a Banach space E and there exists
β : 2E → [0, +∞) such that T : C → C is a continuous, β-admissible and β-ψ condensing operator satisfying
the following:

(i) there exist closed and convex X0 ⊆ C such that

TX0 ⊆ X0, β(X0) ≥ 1, (2.7)
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where µ be an arbitrary measure of noncompactness and ψ ∈ Ψ . Then T has at least one fixed point in C.

Proof. Similarly, as in the proof of Theorem 2.2, we define the following sequence:

Xn = co(TXn−1).

Since TX0 ⊆ X0, thus
X1 = co(TX0) ⊆ X0,

X2 = co(TX1) ⊆ co(TX0) = X1.

Therefore, by continuing this process we obtain

X0 ⊇ X1 ⊇ X2 ⊇ · · · Xn ⊇ Xn+1 ⊇ · · ·

and
TXn ⊆ TXn−1 ⊆ co(TXn−1) = Xn .

If there exists an integer N0 ≥ 0 such that µ(XN0 ) = 0, implies XN0 is relatively compact and also TXN0 ⊆ XN0 .
Thus, Theorem 1.3, implies that T has fixed point. Moreover, we assume that µ(Xn) ≠ 0 for all n ≥ 0. For T to
be a β-admissible operator and from equation (2.7), we obtain β(X1) = β(co TX0) ≥ 1. Recursively, we obtain
the following inequality

β(Xn) ≥ 1, ∀ n ≥ 0. (2.8)

Furthermore, from equation (2.8) we have

µ(Xn+1) ≤ β(Xn)µ(Xn+1)
= β(Xn)µ

(︀
co(TXn)

)︀
= β(Xn)µ(TXn)
≤ ψ
(︀
µ(Xn)

)︀
,

continuing in this manner, we reach at the following inequality

µ(Xn+1) ≤ ψn
(︀
µ(X0)

)︀
. (2.9)

Equation (2.9) implies that µ(Xn) → 0 as n →∞. Since the sequence {Xn} is nested and in view of Definition
1.1(axiom MNC6), we deduce that the set X∞ =

⋂︀∞
n=1 Xn is nonempty, closed and convex subset of the set X0.

Hence, we get that X∞ is a member of the kerµ and T maps X∞ into itself and taking into account Theorem
1.3, gives the desired result.

Remark 2.12. From Theorem 2.11, we get Darbo’s theorem if we take β(X) = 1 and ψ(t) = kt for all t ≥ 0 and
for some k ∈ [0, 1).

Now let us pay attention to the following corollary from the above theorem which belongs to the classical
metric fixed point theory.

Corollary 2.13. Let C be a nonempty, bounded, closed and convex subset of a Banach space E and there exists
β : 2E → [0, +∞) such that T : C → C is a continuous and β-admissible operator satisfying the following:

(i) for any X ∈ MC and x, y ∈ X, we have

β(X)‖Tx − Ty‖ ≤ ψ
(︀
‖x − y‖

)︀
; (2.10)

(ii) there exist closed and convex X0 ⊆ C such that

TX0 ⊆ X0, β(X0) ≥ 1 (2.11)

where ψ ∈ Ψ . Then T has at least one fixed point in the set C.
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Proof. Let µ : ME → R+ be defined as:
µ(X) = diamX

where diamX = sup{‖x − y‖ : x, y ∈ X} stands for the diameter of X. Clearly, from Definition 1.1, µ is a
measure of noncompactness in the space E. Further, from (2.10) and ψ to be nondecreasing we have

β(X) sup
x,y∈X

‖Tx − Ty‖ ≤ ψ
(︀
sup
x,y∈X

‖x − y‖
)︀
,

implies that
β(X)µ(TX) ≤ ψ

(︀
µ(X)

)︀
.

So from Theorem 2.11, we get desired result.

Proposition 2.14. If β(X) ≥ 1 for all X ∈ 2E having T(X) = X, then the set of all fixed points of T in Theorem
2.11, is a compact set.

Proof. Let F = {x ∈ C : Tx = x} be the set of all fixed points of T and µ(F) ≠ 0, from the assumption of
Theorem 2.11, we have

β(F)µ(TF) ≤ ψ
(︀
µ(F)

)︀
< µ(F),

which is a contradiction from above inequality since T(F) = F. This implies that F is a relatively compact
set. Now taking into account any convergent sequence {xn} ⊂ F and xn → x*, we have x* ∈ C, because C is
closed. The continuity of T implies that xn = Txn → Tx* and Tx* = x*, which means that x* ∈ F, i.e. F is a
compact set.

Example 2.15. The operator T : BC(R+) → BC(R+) defined by

Tx(t) =
{︃

x
2 if ‖x‖ ≤ 1,
2x − 3

2 if ‖x‖ > 1.

At first we take a look at that Theorem 1.4, cannot be carried out in the case while ‖x‖, ‖y‖ > 1 and we obtain

‖Tx(t) − Ty(t)‖ = ‖2x(t) − 3
2 − 2y(t) +

3
2‖ = 2‖x(t) − y(t)‖.

Through taking supremum value on both sides we have

µ(TX) = 2µ(X).

However, if we define β : 2BC(R+) → [0, +∞) by

β(X) =
{︃

1 if ‖x‖ ≤ 1, ∀x ∈ X,
0 otherwise.

Certainly T is an β-ψ condensing operator with ψ(t) = t
2 for t ≥ 0, and µ(X) = diamX.

Coupled fixed point theorems

In this section, we prove some coupled fixed point theorems using α-admissible and β-admissible operators.
Before that let us take into account some basic definitions about coupled fixed points and the measure of
noncompactness in product spaces.

Definition 2.16. (Coupled fixed point)[10] An element (x, y) in E2 is called a coupled fixed point of amapping
T : E2 → E if T(x, y) = x and T(y, x) = y.
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Lemma 2.17. [30] Suppose that µ1, µ2, ..., µn are the measures of noncompactness in Banach spaces
E1, E2, · · · , En respectively. Moreover, assume that the function F : [0,∞)n −→ [0,∞) is convex and
F(x1, x2, · · · , xn) = 0 if and only if each xi = 0 for all i = 1, 2, · · · , n. Then we define a measure of non-
compactness on E1 × E2×, · · · , ×En as follows:

µ(S) = F(µ1(S1), µ2(S2), ..., µn(Sn)),

where Si denotes the natural projections of S into Ei for i = 1, 2, · · · , n.

Additionally, as a result of Lemma 2.17, we present the following examples.

Example 2.18. Let µ be a measure of noncompactness on a Banach space E, and let the function
F : [0, +∞)2 → [0, +∞) be convex with F(x1, x2) = 0 if and only if xi = 0 for i = 1, 2. Then

µ*(X) = F(µ(X1), µ(X2)),

defines a measure of noncompactness in E × E, where Xi denote the natural projections of X into E.

Example 2.19. Let µ be ameasure of noncompactness onaBanach space E, considering F(x, y) = x+y for any
(x, y) ∈ [0, +∞)2. Thenwe see that F is convex and F(x, y) = 0 if and only if x = y = 0, hence all the conditions
of Lemma 2.17, are satisfied. Therefore, µ*(X) = µ(X1) + µ(X2) defines a measure of noncompactness in the
space E × E where Xi , i = 1, 2 denote the natural projections of X into E.

Example 2.20. Let µ be ameasure of noncompactness on a Banach space E. If we define F(x, y) = max{x, y}
for any (x, y) ∈ [0, +∞)2, then all the conditions of Lemma 2.17, are satisfied and µ*(X) = max{µ(X1), µ(X2)}
is a measure of noncompactness in the space E × E where Xi , i = 1, 2 denote the natural projections of X into
E.

Theorem 2.21. Let C be a nonempty, bounded, closed and convex subset of a Banach space E and 𝛾 : E2×E2 →
[0, +∞), let T : C × C → C be continuous and also fulfilling the following conditions:

(i) let X1 × X2 ⊆ C × C and T(x1, y1) = x2, T(y1, x1) = y2 such that

𝛾
(︀
(x1, y1), (x2, y2)

)︀
µ
(︀
T(X1 × X2)

)︀
≤ 12ψ

(︀
µ(X1) + µ(X2)

)︀
, (2.12)

for any (x1, y1) ∈ X1 × X2;
(ii) for all (x, y), (u, v) ∈ C × C and 𝛾

(︀
(x, y), (u, v)

)︀
≥ 1 we have

𝛾
(︁(︀
T(x, y), T(y, x)

)︀
,
(︀
T(u, v), T(v, u)

)︀)︁
≥ 1; (2.13)

(iii) further, there exist closed and convex X0, Y0 ⊆ C such that T(X0 × Y0) ⊆ X0, T(Y0 × X0) ⊆ Y0 and also
there exists (x0, y0) ∈ X0 × Y0 such that

𝛾
(︁
(x0, y0),

(︀
T(x0, y0), T(y0, x0)

)︀)︁
≥ 1, (2.14)

and
𝛾
(︁
(y0, x0),

(︀
T(y0, x0), T(x0, y0)

)︀)︁
≥ 1, (2.15)

where µ be an arbitrary measure of noncompactness on E and ψ ∈ Ψ . Then T has at least one coupled fixed
point in C × C.

Proof. To prove this theorem, we need to define G : C × C → C × C by

G(x, y) =
(︀
T(x, y), T(y, x)

)︀
. (2.16)

From Example 2.19, we take µ* is a measure of noncompactness on E2 as follows:

µ*(X) = µ(X1) + µ(X2), (2.17)
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where X1 and X2 are the natural projections of X on E. Further, we define α : X2 × X2 → [0, +∞) as follows:

α
(︀
(x1, y1), (x2, y2)

)︀
= min

{︁
𝛾
(︀
(x1, y1), (x2, y2)

)︀
, 𝛾
(︀
(y1, x1), (y2, x2)

)︀}︁
.

We need to show that G satisfies all the conditions of Theorem 2.2, then G has a fixed point in C × C, which
is the coupled fixed point of the operator T . We list the following conditions which we want to meet for the
desired result:

• G is continuous and α-admissible operator;
• α

(︀
(x1, y1), G(x1, y1)

)︀
µ*(G(X)) ≤ ψ

(︀
µ*(X)

)︀
, for (x1, y1) ∈ X;

• There exists closed and convex subset A0 ⊆ C × C, and (x0, y0) ∈ A0 such that

GA0 ⊆ A0, α
(︀
(x0, y0), G(x0, y0)

)︀
≥ 1.

We can easily see fromequation (2.16) thatG is continuous.Now fromequations (2.13) and (2.16), it is clear that
whenever α

(︀
(x1, y1), (x2, y2)

)︀
≥ 1, we have α

(︀
G(x1, y1), G(x2, y2)

)︀
≥ 1, which shows that G is α-admissible.

Also, from equation (2.12) we have

𝛾
(︀
(x1, y1), (x2, y2)

)︀
µ
(︀
T(X1 × X2)

)︀
≤ 12ψ

(︀
µ(X1) + µ(X2)

)︀
, (2.18)

𝛾
(︀
(y1, x1), (y2, x2)

)︀
µ
(︀
T(X2 × X1)

)︀
≤ 12ψ

(︀
µ(X2) + µ(X1)

)︀
. (2.19)

From equations (2.17), (2.18) and (2.19), we obtain

α
(︀
(x1, y1), (x2, y2)

)︀(︁
µ
(︀
T(X1 × X2)

)︀
+ µ
(︀
T(X2 × X1)

)︀)︁
≤ ψ
(︀
µ*(X1 × X2)

)︀
.

Eventually, from equations (2.16) and (2.17) we have

α
(︀
(x1, y1), (x2, y2)

)︀
µ*
(︀
G(X)

)︀
≤ ψ
(︀
µ*(X)

)︀
.

Now allow taking A0 = X0 × Y0 and from equations (2.14) and (2.15) we have G(A0) ⊆ A0 and
α
(︀
(x0, y0), G(x0, y0)

)︀
≥ 1. So all the conditions of the Theorem 2.2 are satisfied and G has a fixed point in

C × C.

Corollary 2.22. Let C be a nonempty, bounded, closed and convex subset of aBanach space E and 𝛾 : E2×E2 →
[0, +∞), let T : C × C → C be continuous and also satisfying the following conditions:

(i) let X1 × X2 ⊆ C × C and T(x1, y1) = x2, T(y1, x1) = y2 such that

𝛾
(︀
(x1, y1), (x2, y2)

)︀
µ
(︀
T(X1 × X2)

)︀
≤ 12ψ

(︀
max

{︀
µ(X1), µ(X2)

}︀)︀
, (2.20)

for any (x1, y1) ∈ X1 × X2;
(ii) for all (x, y), (u, v) ∈ C × C and 𝛾

(︀
(x, y), (u, v)

)︀
≥ 1 we have

𝛾
(︁(︀
T(x, y), T(y, x)

)︀
,
(︀
T(u, v), T(v, u)

)︀)︁
≥ 1; (2.21)

(iii) also, there exist closed and convex X0, Y0 ⊆ C such that T(X0 × Y0) ⊆ X0, T(Y0 × X0) ⊆ Y0 and also
there exists (x0, y0) ∈ X0 × Y0 such that

𝛾
(︁
(x0, y0),

(︀
T(x0, y0), T(y0, x0)

)︀)︁
≥ 1, (2.22)

and
𝛾
(︁
(y0, x0),

(︀
T(y0, x0), T(x0, y0)

)︀)︁
≥ 1, (2.23)

where µ be an arbitrary measure of noncompactness on E and ψ ∈ Ψ . Then T has at least one coupled fixed
point in C × C.
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Theorem 2.23. Let C be a nonempty, bounded, closed and convex subset of a Banach space E and 𝛾 : 2E1×E2 →
[0, +∞), let T : C × C → C be continuous and satisfying the following conditions:

(i) for any X1 × X2 ⊆ C × C, we have

𝛾(X1 × X2)µ(T(X1 × X2)) ≤
1
2ψ
(︀
µ(X1) + µ(X2)

)︀
; (2.24)

(ii) for any U × V ⊆ C × C and 𝛾(U × V) ≥ 1, we have

𝛾
(︁
co
(︀
T(U × V) × T(V × U)

)︀)︁
≥ 1; (2.25)

(iii) there exist closed and convex X0, Y0 ⊆ C such that T(X0 × Y0) ⊆ X0 and T(Y0 × X0) ⊆ Y0 such that

𝛾(X0 × Y0) ≥ 1 and 𝛾(Y0 × X0) ≥ 1, (2.26)

where µ be an arbitrary measure of noncompactness and ψ ∈ Ψ . Then T has at least one coupled fixed point in
C × C.

Proof. Firstly, we define G : C × C → C × C such that

G(x, y) =
(︀
T(x, y), T(y, x)

)︀
, (2.27)

also take µ* is measure of noncompactness on E2 as follows:

µ*(X) = µ(X1) + µ(X2), (2.28)

where X1 and X2 are the natural projections of X on E. Further,we define β : 2E1×E2 → [0, +∞) in the following
way:

β(X) = min
{︁
𝛾(X1 × X2), 𝛾(X2 × X1)

}︁
,

where X1 and X2 are the natural projections of X on E. To get required result we need to show that G satisfies
all the conditions of Theorem 2.11, which are following:

• G is continuous and β-admissible operator;
• β(X)µ*(G(X)) ≤ ψ

(︀
µ*(X)

)︀
;

• There exists closed and convex subset A0 ⊆ C × C such that GA0 ⊆ A0 and β(A0) ≥ 1.

Clearly G is continuous and also whenever β(X1 × X2) ≥ 1, we have β
(︀
co G(X1 × X2)

)︀
≥ 1, which shows that

G is β-admissible. From our hypothesis we have

𝛾(X1 × X2)µ(T(X1 × X2)) ≤
1
2ψ
(︀
µ(X1) + µ(X2)

)︀
, (2.29)

𝛾(X2 × X1)µ(T(X2 × X1)) ≤
1
2ψ
(︀
µ(X2) + µ(X1)

)︀
. (2.30)

From equations (2.28), (2.29) and (2.30) we obtain

β(X)
(︁
µ
(︀
T(X1 × X2)

)︀
+ µ
(︀
T(X2 × X1)

)︀)︁
≤ ψ
(︀
µ*(X1 × X2)

)︀
.

Finally, from equations (2.27) and (2.28), we get the following inequality

β(X)µ*
(︀
G(X)

)︀
≤ ψ
(︀
µ*(X)

)︀
.

In the end, from equation (2.26) we take A0 = X0 × Y0 and we have G(A0) ⊆ A0 and also β(A0) ≥ 1. all the
conditions of the Theorem 2.11 are satisfied and G has a fixed point in C × C.

Corollary 2.24. Let C be a nonempty, bounded, closed and convex subset of a Banach space E and 𝛾 : 2E1×E2 →
[0, +∞), let T : C × C → C be continuous and satisfying the following conditions:



176 | Habib ur Rehman et al.

(i) for any X1 × X2 ⊆ C × C, we have

𝛾(X1 × X2)µ(T(X1 × X2)) ≤
1
2ψ
(︁
max

{︀
µ(X1), µ(X2)

}︀)︁
; (2.31)

(ii) for any U × V ⊆ C × C and 𝛾(U × V) ≥ 1 we have

𝛾
(︁
co
(︀
T(U × V) × T(V × U)

)︀)︁
≥ 1; (2.32)

(iii) there exist closed and convex X0, Y0 ⊆ C such that T(X0 × Y0) ⊆ X0 and T(Y0 × X0) ⊆ Y0 such that

𝛾(X0 × Y0) ≥ 1 and 𝛾(Y0 × X0) ≥ 1, (2.33)

where µ be an arbitrary measure of noncompactness and ψ ∈ Ψ . Then T has at least one coupled fixed point in
C × C.

A functional integral equation

In this section, we are going to present an application of Theorem 2.11, a study of existence of solution for
an integral equation defined on the Banach spaces BC(R+), which includes all continuous real-valued and
bounded functions on R+ and equipped with the norm, i.e.

‖x‖ = sup
{︀
|x(t)| : t > 0

}︀
.

The measure of noncompactness on BC(R+) [21, 30–32] for a positive fixed t onMBC(R+) is defined as follows:

µ(X) = ω0(X) + lim sup
t→∞

diam X(t), (2.34)

where diam X(t) = sup
{︀
|x(t) − y(t)| : x, y ∈ X

}︀
and X(t) =

{︀
x(t) : x ∈ X

}︀
. Before defining the ω0(X), we first

need to define the modulus of continuity for any x ∈ X and ϵ > 0. The modulus of the continuity of x on the
interval [0, T] denoted by ωT(x, ϵ), i.e.

ωT(x, ϵ) = sup
{︀⃒⃒
x(t) − x(s)

⃒⃒
: t, s ∈ [0, T], |t − s| ≤ ϵ

}︀
,

where
ωT(X, ϵ) = sup

{︀
ωT(x, ϵ) : x ∈ X

}︀
,

ωT0 (X) = lim
ϵ→0

ωT(X, ϵ),

ω0(X) = lim
T→∞

ωT0 (X).

As an application of the Theorem 2.11, we are going to have a look at the existence of the solution for the
following integral equation:

x(t) = A(t) + h
(︀
t, x(ξ (t))

)︀
+ f
(︂
t, x(ξ (t)), φ

(︁ β(t)∫︁
0

g
(︀
t, s, x(η(s))

)︀
ds
)︁)︂

. (2.35)

For this cause, we assume the following conditions:

i) the function A : R+ → R+ is continuous and bounded with M1 = sup{|A(t)| : t ∈ R+};
ii) ξ , η, β : R+ → R+ are continuous functions and ξ (t) →∞ as t →∞;
iii) the function φ is continuous and there exist α, δ > 0, such that

|φ(t1) − φ(t2)| ≤ δ|t1 − t2|α , (2.36)

for any t1, t2 ∈ R+ and moreover, φ(0) = 0;
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iv) the functions h : R+ × R → R and f : R+ × R × R → R are continuous and ψ ∈ Ψ , and there exists
nondecreasing continuous function θ : R+ → R with θ(0) = 0. Also, there exists ζ : R2 → R with
ζ (x1, y1) ≥ 0 such that

|h(t, x1) − h(t, y1)| ≤
1
2ψ(|x1 − y1|), (2.37)

and
|f (t, x1, d1) − f (t, y1, d2)| ≤

1
2
(︀
ψ (|x1 − y1|)

)︀
+ θ(|d1 − d2|), (2.38)

for all x1, y1 ∈ R for any t ≥ 0;
v) the functions defined by t → |h(t, 0)| and t → |f (t, 0, 0)| are bounded on R+; i.e.

M2 = sup{|h(t, 0)| : t ∈ R+} < ∞, (2.39)

M3 = sup{|f (t, 0, 0)| : t ∈ R+} < ∞; (2.40)

vi) the function g : R+ ×R+ ×R → R is a continuous function and there exists positive solution r0 of the
inequality

M1 + ψ(r0) +M2 +M3 + θ(δM4) < r0, (2.41)

where M4 is a positive constant defined by the following equalities

M4 = sup
{︂⃒⃒⃒ β(t)∫︁

0

g
(︀
t, s, x(η(s))

)︀
ds
⃒⃒⃒α
: t ∈ R+ and x ∈ BC(R+)

}︂
, (2.42)

and

lim
t→∞

β(t)∫︁
0

⃒⃒⃒
g
(︀
t, s, x(η(s))

)︀
− g
(︀
t, s, u(η(s))

)︀⃒⃒⃒
ds = 0, (2.43)

uniformly with respect to x, u ∈ BC(R+);
vii) for ζ (x(t), y(t)) ≥ 0, for all x, y ∈ X ⊆ BC(R+) and for any t ∈ R+, implies that ζ (u(t), v(t)) ≥ 0, for all

u, v ∈ coT(X) and for any t ∈ R+. Moreover, ζ (x0(t), y0(t)) ≥ 0 for all x0, y0 ∈ Br0 (ball of radius of r0
in BC(R+)), for any t ∈ R+.

Theorem 2.25. Suppose that (i)-(vii) holds; then the system of integral equation

x(t) = A(t) + h
(︀
t, x(ξ (t))

)︀
+ f
(︂
t, x(ξ (t)), φ

(︁ β(t)∫︁
0

g
(︀
t, s, x(η(s))

)︀
ds
)︁)︂

(2.44)

has at least one solution in the space BC(R+).

Proof. Let T : BC(R+) → BC(R+) be an operator defined by

(Tx)(t) = A(t) + h
(︀
t, x(ξ (t))

)︀
+ f
(︂
t, x(ξ (t)), φ

(︁ β(t)∫︁
0

g
(︀
t, s, x(η(s))

)︀
ds
)︁)︂

. (2.45)

Moreover, the space BC(R+) is equipped the following norm:

‖(x)‖BC(R+) = ‖x‖∞. (2.46)

We can easily show that the solution of equation (2.44) in BC(R+) is equivalent to the fixed point of T. Ob-
viously Tx is continuous function for any x ∈ BC(R+). Furthermore, using the triangular inequality and
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ζ (x(t), 0) ≥ 0 for t ∈ R+, and additionally by means of our assumptions we obtain⃒⃒
T(x)(t)

⃒⃒
≤
⃒⃒
A(t)

⃒⃒
+
⃒⃒
h
(︀
t, x(ξ (t))

)︀
− h(t, 0)

⃒⃒
+
⃒⃒
h(t, 0)

⃒⃒
+
⃒⃒
f (t, 0, 0)

⃒⃒
+
⃒⃒⃒⃒
f
(︂
t, x(ξ (t)), φ

(︁ β(t)∫︁
0

g
(︀
t, s, x(η(s))

)︀
ds
)︁)︂
− f (t, 0, 0)

⃒⃒⃒⃒

≤ M1 +
1
2ψ
(︀
|x(ξ (t))|

)︀
+M3 +

1
2ψ
(︀
|x(ξ (t))|

)︀
+ θ
(︂⃒⃒⃒⃒
φ
(︁ β(t)∫︁

0

g
(︀
t, s, x(η(s))

)︀
ds
)︁
− φ(0)

⃒⃒⃒⃒)︂
+M2

≤ M1 + ψ
(︀
|x(ξ (t))|

)︀
+M3 +M2 + θ

(︂
δ
⃒⃒⃒⃒(︁ β(t)∫︁

0

g
(︀
t, s, x(η(s))

)︀
ds
)︁⃒⃒⃒⃒α)︂

.

(2.47)

So, from above equation and making use of equations (2.41) and (2.42), we have

‖Tx‖∞ ≤ M1 +M2 +M3 + ψ(‖x‖∞) + θ(δM4) ≤ r0. (2.48)

Thus, T is well-defined and we obtain T(B̄r0 ) ⊂ B̄r0 . Further, we prove that the mapping T : B̄r0 → B̄r0 is
continuous. Let x, u ∈ B̄r0 such that ζ (x(t), u(t)) ≥ 0 for t ∈ R+ and for ϵ > 0, ‖x − u‖B̄r0 <

ϵ
2 , then we have

⃒⃒⃒
T(x)(t) − T(u)(t)

⃒⃒⃒
=
⃒⃒⃒⃒
h
(︀
t, x(ξ (t))

)︀
+ f
(︂
t, x(ξ (t)), φ

(︁ β(t)∫︁
0

g
(︀
t, s, x(η(s))

)︀
ds
)︁)︂

− h
(︀
t, u(ξ (t))

)︀
− f
(︃
t, u(ξ (t)), φ

(︁ β(t)∫︁
0

g
(︀
t, s, u(η(s))

)︀
ds
)︁)︂⃒⃒⃒⃒

≤ 12ψ
(︀
|x(ξ (t)) − u(ξ (t))|

)︀
+ 1
2ψ
(︀
|x(ξ (t)) − u(ξ (t))|

)︀
+ θ
(︂⃒⃒⃒⃒
φ
(︁ β(t)∫︁

0

g
(︀
t, s, x(η(s))

)︀
ds
)︁
− φ
(︁ β(t)∫︁

0

g
(︀
t, s, u(η(s))

)︀
ds
)︁⃒⃒⃒⃒)︂

≤ ψ(‖x − u‖) + θ
(︂
δ
⃒⃒⃒⃒ β(t)∫︁
0

(︁
g
(︀
t, s, x(η(s))

)︀
− g
(︀
t, s, u(η(s))

)︀)︁
ds
⃒⃒⃒⃒α)︂

.

(2.49)

Now using the equation (2.43) there exists T > 0 such that if t > T, Then we have

θ
(︂
δ
⃒⃒⃒⃒ β(t)∫︁
0

(︁
g
(︀
t, s, x(η(s))

)︀
− g
(︀
t, s, u(η(s))

)︀)︁
ds
⃒⃒⃒⃒α)︂

≤ ϵ2 , (2.50)

for any x, u ∈ BC(R+). Now we consider the following two cases:
Case 1. If t > T, then from equations (2.49) and (2.50) we get⃒⃒

T(x)(t) − T(u)(t)
⃒⃒
≤ ψ
(︁ ϵ
2

)︁
+ ϵ2 < ϵ2 + ϵ2 = ϵ. (2.51)

Case 2. Similarly for t ∈ [0, T], we have

⃒⃒
T(x)(t) − T(u)(t)

⃒⃒
≤ ψ
(︁ ϵ
2

)︁
+ θ
(︂
δ
⃒⃒⃒⃒ β(t)∫︁
0

(︁
g
(︀
t, s, x(η(s))

)︀
− g
(︀
t, s, u(η(s))

)︀)︁
ds
⃒⃒⃒⃒α)︂

< ϵ2 + θ
(︁
δ
(︀
βTβ(ϵ)

)︀α)︁,
(2.52)
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where βT = sup {β(t) : t ∈ [0, T]}, and

β(ϵ) = sup
{︁⃒⃒
g(t, s, x) − g(t, s, u)

⃒⃒
: t ∈ [0, T], s ∈ [0, βT ], x, u ∈ [−r0, r0], ‖x − u‖BC(R+) <

ϵ
2

}︁
. (2.53)

Since g is continuous on [0, T]×[0, βT ]×[−r0, r0], we have β(ϵ) → 0 as ϵ → 0 and by continuity of θwe obtain

θ
(︁
δ
(︀
βTβ(ϵ)

)︀α)︁→ 0.

Finally, from equations (2.51) and (2.52), we conclude that T is a continuous function from B̄r0 into B̄r0 . Now
we show that the map T satisfies all the conditions of Theorem 2.11. To do this, for an arbitrary T > 0 and
ϵ > 0, assume that X1 are arbitrary nonempty subsets of B̄r0 and t1, t2 ∈ [0, T], with |t1 − t2| ≤ ϵ. Without
loss of generality let β(t1) ≤ β(t2), and ζ (x(t1), x(t2)) ≥ 0, for any arbitrary x ∈ X1, we have⃒⃒
Gx(t1) − Gx(t2)

⃒⃒
=
⃒⃒
A(t1) − A(t2)

⃒⃒
+
⃒⃒
h
(︀
t2, x(ξ (t2))

)︀
− h
(︀
t2, x(ξ (t1))

)︀⃒⃒
+
⃒⃒
h
(︀
t2, x(ξ (t1))

)︀
− h
(︀
t1, x(ξ (t1))b

)︀⃒⃒
+

⃒⃒⃒⃒
⃒f
(︂
t2, x(ξ (t2)), φ

(︁ β(t2)∫︁
0

g
(︀
t2, s, x(η(s))

)︀
ds
)︁)︂
− f
(︂
t2, x(ξ (t1)), φ

(︁ β(t2)∫︁
0

g
(︀
t2, s, x(η(s))

)︀
ds
)︁)︂⃒⃒⃒⃒⃒

+

⃒⃒⃒⃒
⃒f
(︂
t2, x(ξ (t1)), φ

(︁ β(t2)∫︁
0

g
(︀
t2, s, x(η(s))

)︀
ds
)︁)︂
− f
(︂
t1, x(ξ (t1)), φ

(︁ β(t2)∫︁
0

g
(︀
t2, s, x(η(s))

)︀
ds
)︁)︂⃒⃒⃒⃒⃒

+

⃒⃒⃒⃒
⃒f
(︂
t1, x(ξ (t1)), φ

(︀ β(t2)∫︁
0

g
(︀
t2, s, x(η(s))

)︀
ds
)︁)︂
− f
(︂
t1, x(ξ (t1)), φ

(︁ β(t2)∫︁
0

g
(︀
t1, s, x(η(s))

)︀
ds
)︁)︂⃒⃒⃒⃒⃒

+

⃒⃒⃒⃒
⃒f
(︂
t1, x(ξ (t1)), φ

(︁ β(t2)∫︁
0

g
(︀
t1, s, x(η(s))

)︀
ds
)︁)︂
− f
(︂
t1, x(ξ (t1)), φ

(︁ β(t1)∫︁
0

g
(︀
t1, s, x(η(s))

)︀
ds
)︁)︂⃒⃒⃒⃒⃒.

(2.54)

Now we make the following substitutions⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ωT(A, ϵ) = sup
{︁⃒⃒
A(t1) − A(t2)

⃒⃒
: t1, t1 ∈ [0, T], |t1 − t2| ≤ ϵ

}︁
,

ωTr0 (h, ϵ) = sup
{︁⃒⃒
h(t2, x) − h(t1, x)

⃒⃒
: t1, t2 ∈ [0, T], |t1 − t2| ≤ ϵ, x ∈ [−r0, r0]

}︁
,

ωT(ξ , ϵ) = sup
{︁⃒⃒
ξ (t1) − ξ (t2)

⃒⃒
: t1, t2 ∈ [0, T], |t1 − t2| ≤ ϵ

}︁
,

ωT
(︀
x, ωT(ξ , ϵ)

)︀
= sup

{︁⃒⃒
x(t1) − x(t2)

⃒⃒
: t1, t2 ∈ [0, T], |t1 − t2| ≤ ωT(ξ , ϵ)

}︁
,

D1 = βT sup
{︁⃒⃒
g(t, s, x)

⃒⃒
: t ∈ [0, T], s ∈ [0, βT ], x ∈ [−r0, r0]

}︁
,

ωTr0 ,K(f , ϵ) = sup
{︁⃒⃒
f (t2, x, d) − f (t1, x, d)

⃒⃒
: t1, t2 ∈ [0, T], |t1 − t2| ≤ ϵ,

x ∈ [−r0, r0], d ∈ [−D1, D1]
}︁
,

ωTr0 (g, ϵ) = sup
{︁⃒⃒⃒
g(t1, s, x) − g(t2, s, x)

⃒⃒⃒
: t1, t2 ∈ [0, T], |t1 − t2| ≤ ϵ,

x ∈ [−r0, r0], s ∈ [0, βT ]},
ωT(q, ϵ) = sup

{︁⃒⃒
q(t1) − q(t2)

⃒⃒
: t1, t2 ∈ [0, T], |t1 − t2| ≤ ϵ

}︁
,

UTr0 = sup
{︁⃒⃒
g(t, s, x)

⃒⃒
: t ∈ [0, T], s ∈ [0, βT ], x ∈ [−r0, r0]

}︁
.

(2.55)
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Now using equations (2.54) and (2.55) we have⃒⃒
Tx(t1) − Tx(t2)

⃒⃒
≤ ωT(A, ϵ) + 1

2ψ
(︀
|x(ξ (t2)) − x(ξ (t1))|

)︀
+ ωTr0 (h, ϵ) +

1
2ψ
(︀
|x(ξ (t2)) − x(ξ (t1))|

)︀
+ ωTr0 ,K(f , ϵ)

+ θ
(︂⃒⃒⃒⃒
φ
(︁ β(t2)∫︁

0

g
(︀
t2, s, x(η(s))

)︀
ds
)︁
− φ
(︁ β(t2)∫︁

0

g
(︀
t1, s, x(η(s))

)︀
ds
)︁⃒⃒⃒⃒)︂

+ θ
(︃⃒⃒⃒⃒
φ
(︁ β(t2)∫︁

0

g
(︀
t1, s, x(η(s))

)︀
ds
)︁
− φ
(︁ β(t1)∫︁

0

g
(︀
t1, s, x(η(s))

)︀
ds
)︁⃒⃒⃒⃒)︂

≤ ωT(A, ϵ) + ωTr0 (h, ϵ) + ψ
(︀
ωT(x, ωT(ξ , ϵ))

)︀
+ ωTr0 ,K(f , ϵ)

+ θ
(︂
δ
⃒⃒⃒⃒ β(t2)∫︁

0

(︁
g
(︀
t2, s, x(η(s))

)︀
− g
(︀
t1, s, x(η(s))

)︀)︁
ds
⃒⃒⃒⃒α)︂

+ θ
(︂
δ
⃒⃒⃒⃒ β(t2)∫︁
β(t1)

(︁
g
(︀
t1, s, x(η(s))

)︀⃒⃒⃒⃒α)︂

≤ ωT(A, ϵ) + ωTr0 (h, ϵ) + ψ
(︀
ωT(x, ωT(ξ , ϵ))

)︀
+ ωTr0 ,K(f , ϵ) + θ

(︀
δ(βTωTr0 (g, ϵ))

α)︀ + θ(︀δKωT(β, ϵ))α)︀.

(2.56)

Since x is an arbitrary element of X1 the above expression implies that

ωL
(︀
T(X1), ϵ

)︀
≤ ωT(A, ϵ) + ωTr0 (h, ϵ) + ψ

(︀
ωT(X1, ωT(ξ , ϵ))

)︀
+ ωTr0 ,K(f , ϵ)

+ θ
(︀
δ(βTωTr0 (g, ϵ))

α)︀ + θ(︀δ(KωT(β, ϵ))α)︀. (2.57)

Moreover, by the uniform continuity of f , g and h on the compact sets [0, T] × [−r0, r0] × [−D1, D1], [0, T] ×
[0, βT ] × [−r0, r0] and [0, T] × [−r0, r0] respectively. We get ωTr0 ,K(f , ϵ) → 0, ωTr0 (g, ϵ) → 0 and ωTr0 ,K(h, ϵ) → 0
as ϵ → 0. Also due to the uniform continuity of ξ , q and A on [0, T], we get ωT(ξ , ϵ) → 0, ωT(β, ϵ) → 0
and ωT(A, ϵ) → 0 as ϵ → 0. Moreover, θ is a nondecreasing continuous function with θ(0) = 0 and K is
finite, hence we have θ

(︀
δ(βTωTr0 (g, ϵ))α

)︀
+ θ
(︀
δ(KωT(β, ϵ))α

)︀
−→ 0, as ϵ → 0. Now taking the limit ϵ → 0 in

equation (2.57), we get
ωL0
(︀
T(X1)

)︀
≤ ψ
(︀
ωT0 (X1)

)︀
, (2.58)

and taking the limit T →∞ in aforementioned equation (2.58), we obtain

ω0
(︀
T(X1)

)︀
≤ ψ
(︀
ω0(X1)

)︀
. (2.59)

Further, in addition ζ (x(t), u(t)) ≥ 0 for arbitrary x, u,∈ X1⃒⃒
Tx(t) − Tu(t)

⃒⃒
≤
⃒⃒
h
(︀
t, x(ξ (t))

)︀
− h
(︀
t, u(ξ (t))

)︀⃒⃒
+
⃒⃒⃒⃒
f
(︂
t, x(ξ (t)), φ

(︁ β(t)∫︁
0

g
(︀
t, s, x(η(s))

)︀
ds
)︁)︂
− f
(︂
t, u(ξ (t)), φ

(︁ β(t)∫︁
0

g
(︀
t, s, u(η(s))

)︀
ds
)︁)︂⃒⃒⃒⃒

≤ 12ψ
(︀
|x(ξ (t)) − u(ξ (t))|

)︀
+ 1
2ψ
(︀
|x(ξ (t)) − u(ξ (t))|

)︀
+ θ
(︂⃒⃒⃒⃒
φ
(︁ β(t)∫︁

0

g
(︀
t, s, x(η(s))

)︀
ds
)︁
− φ
(︁ β(t)∫︁

0

g
(︀
t, s, u(η(s))

)︀
ds
)︁⃒⃒⃒⃒)︂

≤ ψ
(︀
diamX1(ξ (t))

)︀
+ θ
(︂
δ
⃒⃒⃒⃒ β(t)∫︁
0

(︁
g
(︀
t, s, x(η(s))

)︀
− g
(︀
t, s, u(η(s))

)︀)︁
ds
⃒⃒⃒⃒α)︂

.

(2.60)
Since x, u and t are arbitrary in equation (2.60) we conclude that

diamT(X1) ≤ ψ
(︀
diamX1(ξ (t))

)︀
+ θ
(︂
δ
⃒⃒⃒⃒ β(t∫︁
0

(︁
g
(︀
t, s, x(η(s))

)︀
− g
(︀
t, s, u(η(s))

)︀)︁
ds
⃒⃒⃒⃒α)︂

. (2.61)
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Taking t → 0 in equation (2.61) and using equation (2.43), we have

lim sup
t→∞

diam TX1(t) ≤ ψ
(︀
lim sup
t→∞

diamX1(ξ (t))
)︀
. (2.62)

Now from equations (2.59), (2.62) and taking into account the superadditivity of the function ψ, we conclude
that

ω0
(︀
T(X1

)︀
+ lim sup

t→∞
diamT(X1)(t) ≤ ψ

(︀
ω0(X1)

)︀
+ ψ
(︀
lim sup
t→∞

diamX1(ξ (t))
)︀

≤ ψ
(︀
ω0(X1) + lim sup

t→∞
diamX1(ξ (t))

)︀ (2.63)

Finally, from equation (2.34), we get
µ
(︀
T(X1)

)︀
≤ ψ
(︀
µ(X1)

)︀
. (2.64)

Furthermore, we define the function β : BC(R+) × BC(R+) −→ [0, +∞), by

β(X1) =
{︃

1 ζ (x(t), y(t)) ≥ 0, ∀ x, y ∈ X1,
0 otherwise,

which implies that for any X1 ⊆ Br0 , we have

β(X1)µ
(︀
T(X1)

)︀
≤ ψ
(︀
µ(X1)

)︀
.

Let β(X) ≥ 1, which implies that ζ (x(t), y(t)) ≥ 0, and from our assumption (viii) implies that β(coTX) ≥ 1, so
T is β-admissible. Since from hypothesis ζ (x0(t), y0(t)) ≥ 0, for all x0, y0 ∈ Br0 , implies that β(Br0 ) ≥ 1. Thus
by Theorem 2.11, T has atleast one fixed point in BC(R+).

3 Conclusion
Taking into account its interesting applications, looking for newly fixed point theorems concerning the new
setup of contractive type conditions has acquired considerable attention over the last few decades. In this
regard, themain purpose of this paper is to provide new ideas of α-ψ and β-ψ condensing operators andmake
use of them to establish a new fixed point and coupled fixed point theorems. An application to a solution of
the functional integral equation is illustrated to the usability of the obtained fixed point results.
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