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Abstract: In this paper we will present the pointwise and normwise estimations of the deviations consid-
ered by W. Lenski, B. Szal, [Acta Comment. Univ. Tartu. Math., 2009, 13, 11-24] and S. Saini, U. Singh, [Boll.
Unione Mat. Ital., 2016, 9, 495-504] under general assumptions on the class considered sequences defining the
method of the summability. We show that the obtained estimations are the best possible for some subclasses
of L? by constructing the suitable type of functions.
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1 Introduction

Let L? (1 < p < oo) be the class of all 2r—periodic real-valued functions, integrable in the Lebesgue sense,
with p—th power over Q = [-, 7] with the norm

1/p

£l = IF Ol = / If@©Pdt|  when 15p<oo. 0
Q

Consider the trigonometric Fourier series

Sf(x) := a"z(f) + i(ay(f) cosvx + b, (f) sin vx)
v=1

and its conjugate

§f(x) = i(by(f) cosvx — a,(f) sinvx)

v=1

with the partial sums gkf . We know that if f € L? then

Fooi=-1 [ 003 cot St - im0,
0
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where Bl
Fx,e) = —% /wx ® % cot %dt
with
Y@ =fx+t)-f(x-10),

which exists for almost all x [1, Theorem (3.1)IV].
Let A := (a,,’ k) be an infinite lower triangular matrix of real numbers such that

anx=0when k=0,1,2,...,n, a,x =0whenk > n,

n
Z any =1, wheren=0,1,2,...,
=0

and let,form=0,1,2,...,n,

m n
An’m = Z an’k and An,m = Z an’k.
k=0 k=m

Let the A-transformation of (gkf) be given by

Toaf () =Y aniSif ) (n=0,1,2,..).

k=0

Following Leindler [2] (see also [3]), we assume that for every nand 0 < m < n

n-1 m
K L
Z ‘an,r - an,r+1‘ < mel Z Aan,r
k=m+1 r2m/2

or
-1

-m n
> Jany = anra| <K L > a
n,r nr+l| = m+1 n,r

r=0 r=n-m

hold if (an,r);., belongs to MRBVS (Mean Rest Bounded Variation Sequence) or MHBVS (Mean Head
Bounded Variation Sequence), for n = 1, 2, ..., respectively, and let

n

|A| _ An’m N when (an,r):lzo S MRBVS,
n,m Zn,nfm N When (an,r);lzo S MHBVS.

As a measure of approximation, we will use the generalized modulus of continuity of function f in the space
L? defined for 5 = 0 by the formula

1
N Bp P
wpf (8)p := sup

sin t
O<|t|<6 2

/ i (B dx
0

Itis clear thatfor 8 > a2 0
aﬁf (6)LP < Waf (5)Lp ,

and it is easily seen that wof (-);, = wf (*)» is the classical modulus of continuity.

Let us consider a function & of modulus of continuity type on the interval [0, 27], i.e. a nondecreasing
continuous function having the following properties: w (0) = 0, w (61 + 62) < w (61) + w (d3) forany 0 < §; <
02 < 81 + 0y < 2m. It is easy to conclude that the function 5% (0) is a quasi nonincreasing function of 4.
Namely the subadditivity implies w (nd) < nw (§) , whence w (\d) < (A + 1) w (¢) and therefore ‘Zg—‘zz) < 25%1)
since

5(5,) < (% N 1) 5(61) < z%a(al),
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wheren € Ng, A>20and 0 < 61 < 6>.
Let
IP @) ={f € L : Tsf Oy <5 (D)},

where w is a function of modulus of continuity type. It is clear that for 3 > = 0
I’ @), c L? @)g -

The deviation Tn, 2f —f was estimated by Qureshi [4] (with a special matrix A), the norm estimates we can
find in the works of Lal and Nigam [5], Dhakal [6], Lal and Singh [7], Mishra, Khari et al. [8], Mishra and Mishra
[9], Nigam and Sharma [10], Rhoades [11], Sonker and Singh [12] and Qureshi [13]. The next generalization was
obtained by Eenski and Szal [14] in the following form:

Theorem A. Let f € LP (&), withg <1~ 1717’ (a”’k>lt=0 € HBVS (Head Bounded Variation Sequence) or

(an, k) Z=o € RBVS (Rest Bounded Variation Sequence), respectively, and let & be such that

N 1/p
[ () s gt =on (o) ?
0
and Y
p
/ (W)psin”;dt = Ox ((n+1)7) o

n+l

hold with0 < v < g + 1%' Then

™

Taaf 07 (x 5757) [ = 0« ((n0 1 antn+ 15 (757))

for all x, where
n
- {an,o , when (a":k>k:0 € RBVS,

ann , when (a,),_, € HBVS.

Theorem B. Let f € L? (&), with 8 < 1- L, (anu);_, € HBVS (or (ani),_, € RBVS)and let & satisfy (3)
With0<'y<ﬁ+%,

/ (Iléx((tl;))psmﬁp Sary =0 ((n+ 1)) )
0

and

=, 4
/(t:ijlf;)é) dto =0 (e )5 (557)) ©)
0

where g = p(p - 1)71. Then

Ty af (X) —f(x)’ = Ox ((n + 1) an(n + 1)@ (ﬁ))

for all x such that f(x) exists, where

dno, When (an),_, € RBVS,
4 = _
"~ @nn, when (an)"_, € HBVS.

Recently, Saini and Singh [15] have proved the following theorem:
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Theorem C. Let f be 27 - periodic function belonging to Lip (&(t), p)- class with p > 1 and let A = (a, ;) be
a lower triangular regular matrix with nonnegative and nondecreasing (with respect to 0 < k < n) entries and
Ay = 1. Then the degree of approximation of f, conjugate of f , by matrix means of its conjugate Fourier
series is given by

provided w(t) is a positive increasing function satisfying the condition
v ~ ~
/ ti(lt/)p t=0 (%) ’
0
where O < v < 7.

We shall write J; < J,, if there exists a positive constant C, depending on some parameters, such that
J12Cla.

K

T(fin)-fo| -0 L /‘*’“) dt |,

n+1 t2+1/p

1
n+l

2 Statement of the results

In this paper, we will present the estimations of the deviations Tn, A0 —]Nf(-) and 7",,, A0 —]Nr (-, %) under
general assumptions and we will show that the obtained degrees of approximations are the best for some
subclasses of LP.

Theorem 1. Let (a,1),., € MHBVS U MRBVS with the condition |A|, .= O (3%;), where 7 = [x/t],
(g <t<m).Let f € LP and let be such that

o - .
/ (t ‘gx(t()t” ),, sin Zdt e =0y ((n+ 1) ©)
and O "
/ <myg)(t ) sin’? Ldty =0, (1) @
hold with 0 <~ < + 1. Thenil
17 o )| -0 05 (55 0

holds for all x.

Theorem 2. Let (ay ), , € MHBVS U MRBVS with the condition |A|, .= O (;i1), where 7 = [n/t]
(g <t<m).Let f € LP and let & be such that (7) and

n+l = ) ”
J (it o),
o 1/q
[(59) @y -o(mris(55). ()
0
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hold with 0 < ~ < ﬂ+p%. Then

Toaf 0 -F (0| = 0x (n+ 175 (7)) (1)

n+1

holds for all x such that f(x) exists.

Theorem 3. Let (any),_, € MHBVS U MRBVS with the condition |A|, .= O (;i1), where = = [=/t],

n+1

(751 <t <) and let & satisfy the conditions (6) and (7) with & < v < B+ L. If the function t %@ (t) is

n+l =
nondecreasing, then

s

IBN ™
(n+1) ‘”(n+1

Toaf 00-F (x5 ) = 0+ 175 (7)) 12)

n+1 n+1

) < sup
feLr(@)p

with0< B <1 - %forallx.

Theorem 4. Let (a,),., € MHBVS U MRBVS with the condition |A|, .= O (;1), where 7 = [x/t],
(741 <t < 7) and let & satisfy the conditions (7), (9) and (10) with & < < f + ~.
If the function t #% (t) is nondecreasing and concave then

~ ™
(n+ 1)6 w (—) < sup
n+1 FELP(@)s

Toaf 0 -F ()| = 0x (n+ 175 () (13)

with 3 > 0, for all x such thatf(x) exists .

Remark 1. If we consider & (t) = t* with 8 < o < 1 + 3, then t %% (t) is a nondecreasing and concave function

of t.

Theorem 5. Let (a,x),_, € MHBVS U MRBVS with the condition |A|, .= O (7%;), where v = [r]t],
(japstsm).Let f € LP (&)s where f < 1~ 3 and 0 <~ < 8+ . Then

n+l ~

Theorem 6. Let (a,),_, € MHBVS U MRBVS with the condition |A|, .= O (;Z7), where + = [r]/t],

n+1

(7ap stsm).Let f € LP (&); and & be such that (10) holds with O < v <  + . Then

n+l ~

Remark 2. Iff € LP(&)g, where & (t) = t* with 3 < o < 1+ 3, B > 0, then the conditions of our theorems
are satisfied. Putting Ay = (a, i), where a, ; = n—ll whenk =0,1,2,...,nand a, = 0, when k > n, in our
theorems, we obtain the following degree of approximation = (n + 1)°~,

07 (5, -0 05 (). )

‘n+1 n+1

LafO-F0O|, =0 (m+ 1’5 (;55))- (15)

n+1

3 Corollaries

Finally, we give some corollaries as an application of our results.

Corollary 1. Under the assumptions of Theorems 1 and 2 we can obtain better orders of approximations than
these in Theorems A and B.

Corollary 2. From Theorems 5 and 6 the result of Saini and Singh follows with more general assumptions on
the matrix A.
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4 Auxiliary results

We begin this section with some notation following Zygmund [1, Section 5 of Chapter II].
It is clear that

S0 =1 [ Fex+0Du©de

and -
~ 1 n N
Taaf ) ==1 [FO+ 0> anei (0 dt,
A k=0
where .
— cos £ — cos 2kt
Di(t)=) sinvt=—2 2
k() Vz::osmu 2sin
Hence
Toaf 07 (6 - / wx(t)zan Dy (Ot + 1 / wx(t)zan oD () dt
and
T af (0 / e (© aniD (0
k=0
where s
.
Dy(- 22,
2sin 2

Now, we formulate some estimates of the considered kernel.
Lemma 1. (see[1]) If O < |t| < 7/2, then

~ ES — ks
‘Dk (t)’ < 2 and ‘Dk (t)‘ < T

and for any real t, we have

sk+1.

it s%k(k+1)|t| and |Dy (0

Lemma 2. (see [16]) If (a,x),_, € MHBVS, then

n —_—
> an kD (1)
k=0

=0 (t_lzn,n—ZT)
and if (ay, k) € MRBVS, then

(14nr),

> @Dy (1) =0
k=0

for2® <t<mw(n=2,3,..), wherer = [x/t].

Lemma 3. Ift ?&(t) is a concave and nondecreasing function of t, then the function

fo(x)=g{k55( ) (k - 1)ﬁk (ﬁ)]sinkx, (x € [0.7])

belongs to LP () 3.

—_— 121
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ak—kw(k)—(k pred (kh).

First, we show that aj = ay,q, i.e.

Proof. Letk=2,3,...and

s~ (1Y o gk-1_ 1 . B~ 1 kK (/1
V5 (1) -G08 () 20005 () K 5 (1) 19
and 0 < kay < k°% (1), i.e.
- s~ {1\ o sgk—-1_ 1 1B~ 1
o<kfiea (1) -e-vta ()] ews (3). @

From the relations (see equation [17])

1 k+1 1 (k+1)(k-1) 1

kK 2k+1 k+1 ' kQ@k+1) k-1
k+1 (k+1)(k-1)

2%k+1 kQ2k + 1) <1
and using the concavity of the function t°& (t) , we obtain
B~ 1 k+1 B~ 1 (k+ 1)(k 1) B~ 1
k“(k)22k+1(k+1) “<k+1 FRake ) KV ) (18)
ie. r "
2k+1 B~ 1 B~ 1 -1 _ 1\B~ 1
i1 — kW <k> >(k+1) w(k+1> 5 (k-1)"w (k—l)'
Thus, we get

s (L), K 1 P SR WAL Sk TSNP
kw(k)+k+1<w<k>2(k+l)w<k+1 + 2 (k-1)"w 1)

Hence, we finally obtain estimation (16) .
We know (see inequality [17]) that from the concavity of the function ¢t ?& (t) , we have

B~ (1N . k-1 -1 (L
kk w<%)_(k 1)(k 1)w(k_1),

which implies immediately the left side of inequality (17). Using the monotonicity of the function t %% () we

get
~ k 1 ~ (1 k-1_/(1 1,5~ (1
B = gt~ 2 B ) B2 2 )= 2P fl
k w( ) (k-1) (k 1)5/( w(k> k 3 w<k) kk w(k),

which gives the right side of inequality an.
Let us denote

G0 (8) = folx + 8) = fox) = folx = ) + fo(x) = Sx(t) - Sx(~t).

/ wo| }
0
N ’ (187
< su |3[5] O/ fotas 0-foCordx b+ |5 0/ ol 0~ 0P dx
{/|Sx(t)|pdx}

Hence, we get

sm

wgfo(8)r := sup {

0O<|t|<6

1

<2 sup
O<|t\<<5
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t < x <7 —t. We have

[k’6~< ) (l—1)ﬂk 15 ( 11” (sin k(x + t) - sin kx)

[k% <%) — (k- 1)5 ( 1)} (sin k(x + t) - sin kx)
5 [k% (%) - (k- 1)ﬁk;k1a (kf 1)} sin k(x +

k=m+1

i [kﬂUJ(E)—(l—l)ﬂk 15 (kllﬂsinkx

k=m+1

Let 7 < t < 359,

|Sx(8)] =

Ms IMS

=~
Il

2

+

+ =:|S1] +|S2| +IS3].

Using the mean value theorem and the left side of inequality (17), we getfor x <z < x + ¢

~ k-1_ 1
Isi] =< [t § k'kﬁ <*) - (k- 1)’8 <m)
~ (1 ~ 1
< |t }k:; {kkﬁw (%) - (k- Dk-1)"a (k_l)] .

Thus by summation, we obtain the estimate
B,\, 1 ,ﬁ,\,
jsul = tlmm’S () < 6775 (t)

For the terms |s,| and |s3], with x # 0, we get using the left side of inequality (17) and following Totik (see
estimation [17])
B~ 1 (1 1\8 k-1_ 1
Z kw(,{) (k-1) X w(ik—l
k=m+1
4 B~ 1 g m (1
ﬁ[<m~>w<m+1> ot (3)]

% {("” g (m{r 1) ‘m’imrf v (%)} :
Thus by inequalities (16) and (17) , we obtain
e ) (2]
el ) 5]

s~ (1 -85
4m w(m> < 4¢3 (1))

| cos kz|

[

IN

|s,] | sin k(x + t)]

IN

=

| sin kx|

IN

s3]

IN

IN

[s2]

IN

IN

and analogously
s3] < 41773 ().

If x = 0, then we can prove that |s;| < t & (|t]), |s2] < t & (|t[) and |s3| = 0. Collecting these estimates,
we get [Sy ()| < |t| & (|t]). Hence
wafo®)r < @ (9).

Thus we have proved that f; belongs to L? () 3. O
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Lemma 4. If t ?&(t) is a nondecreasing function of t, then the function

f10) = (n+1)P% (nL) sinx, (x €[0.7])

+1
vl dx}
<t< T, t<x<m-t Wehave
™

]w,l((t)’pdx=]}fl(x+t)—f1(x—t)]pdx=/[(n+1)/3& (ﬁ)}ppsintcos;qux

0 0 0

<[5 ()] < [l s ]

belongs to LP ().
Proof. We have

Sll’l

wpf1(8)rr := sup {

O<|t|<d

]

Let

n+1

Hence, we get

BsfO) < sup {|t17P -0 P G (P} <50,

0s|t|<d

Thus, we have proved that f; belongs to L? (@) . O

5 Proofs of the results

5.1 Proof of Theorem 1

Let us start with the obvious relations
Toaf 0-F (xo5g) = =2 5 e (O fo amDi (O dt+ 2 [% (0 Ro anDy (6= [+ I3

and
IO

Fuar 07 ()| -

By the Holder inequality ( 5t 1) , Lemma 1 and equation (6)

i

<s(m+1)* [ t|p, (B dt
/

it T
<(n+1)° /{tw’zt()t)lsm ﬂ dt /L(i:lg)t} dt
b 7

[EP] ) <moay),

=

Q=

<+

o\ ‘:l

1
forﬂ<1—};.



DE GRUYTER Degrees of the approximations by some special matrix means of conjugate Fourier series == 125

By the Hélder inequality ( £ + 1 = 1), Lemma 2, monotonicity of the function t '@ () and equation (7
Py

™

%/ W}x t)l‘A |dt<(n+1) 1/ ‘w)zz(t”dt

7r

O

T

+1 n+1
1 1
p - q

m q
_ -1 ek (0] w(t)
=(n+1) / [ 50 sin 2} dt / LZ'V e 5] dt

n+l n+l

-

K

<m+1)7? (n+1)”‘z% /[&(t) rdt

o

t2+8-
iy

o s |

sy
<<(n+1)6&(n:rl)’

Q=

1 q
|:t1+,3—'y:| dt

forO<y<pg+ %.
Collecting these estimates, we obtain the desired result.

O
5.2 Proof of Theorem 2
As usual, let us start with the obvious relations
1 n+1
Toaf -F) = — [ (0 Z Dy (B dt + — / Uy (t)Z a, Dy (t)dt = I + I3
0 s
and
By the Hélder inequality (1—1, % = ) , Lemma 1, equations (9) and (10),
1 1
= v p = ~ q q
/ (0l 1 / [wx(m sin® } dt / 50 | 4
2 tsin® {
0 0
1
Tra 1 q
_1 w B~ ™
< (n+1)7 / [tw} dty < (n+1) w(n+1).
0
By the previous proof
7 B (_T
Gl <n+1) w(n+1>’
for0<~v <8+ p%.
Collecting these estimates, we obtain the desired result. O

5.3 Proof of Theorem 3

Let us fix a point x and let us consider the class L?(w)g, with 8 > 0, of all functions f € L? such that
waf () <@ (8),(0 <6 <2m).
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Then Theorem 1 implies the following estimate

™ 3 ™
sup (T af 00~ (% 5
feLr(@)s n n+1
for g < 1- 1%'
On the other hand, the function

) <o

DE GRUYTER

T
n+1

)

i) = (n+1)° (nL) sin x

+1

by Lemma 4 belongs to class LP (w) 8, if tP% (t)isanondecreasing function of ¢, and f; satisfies the conditions

(6) and (7) of Theorem 1. Indeed, we have

1/p x

il 1 p n+l
(W) sin”P £dt <
2

0/ w (It]) O/

Moreover, there exists v such that 1% <y < B+ % and

(

1/p

Fev et . st
/(M sin fdt <

n+l

T

/

T
n+l

<

h—ou

3
3
AN

Let T < t < -Z;. We have

()

T

1
m
o
n+l

s (i)

s
.
n+1

= —2(1 +n)’o (L) COS X / cos? Ld
- n+

I
()

/ i+ 0-iloe- 0] o

2 sin t cos x

1/p

p
) sin”? %dt = Ox(n + 1)_1"%.

1/p
P 3t
()

1/p

tPdt

i t
infp L
) sin 3 dt

= Ox(n + 1)’77%’ .

t
Cos 5

t
2

dt

t

0S 5
—2-dt
Sin 5

1 2
[
__2 B (T m__om 1l o
- w(“")“(nu)cosx 2 2+ 1) zsmn+1}'
We get
sup | T.af (%) —f(x, L)‘ > Ty af1 (X) -f (X, L)‘
feLr(@)p n+1 n+1

n
Z ap (1 +n)°%
k=2

T B-1~ s
(7n+ 1)cosx +n(n+ 1)@ (7n+ 1) Cos X

1 B~ s . ™
-1 = .
7T( +n) w(n+1)cosxsmn+1‘

Thus in a special case, for x = 0, we get

‘(1 +n)’o (%) [1 +

Hence, we finally obtain equation (12).

1

™ ™

2 2n+1) 2

sinnL} ’ > (1+n)°% (%) .

+1 +1

When x = xo, we can consider the function fx,(-) = fi(- - xo) instead of f;(-). Thus our proof is

complete.

O
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5.4 Proof of Theorem 4

Let us fix a point x and let us consider the class L?(w)g, with 5 < 1 -+, of all functions f e L such that
Waf (8)p <@ (6),(0 <46 <2m).
The Theorem 2 implies the estimate

Toaf 0 -Foo| <+ 175 (75,

n+1

1
p

sup
felP(@)p

On the other hand, the function
folx) = Z [kﬁ~ ( ) (k - 1)ﬁk 15 (ﬁ)} sin kx,
k=2

by Lemma 3 belongs to class LP (&) s if 8% (t) is a concave and nondecreasing function of ¢.
We can see that the function f; satisfies the condition (7) with % <y < B+ % and the condition (9).
Indeed, using the estimation (18) obtained in the proof of Lemma 3, we have

P20 = Ifolx + ) - folx = O < [t P T (t)) -

Thus, we easily get

- » 1/p . ) 1/p
O A St s t
— 21| sin”? =dt < / = B ) sinfP Zdt
ﬂ/( w(|t)) 2 J w ([t)) 2
sy n+l
- 1/p
< /t"wdt =0x(n+1)7_§
et
and
T RO ot " FTREIINY v
X sin”? Zdt < / L @lB ) ¢hp gy = Ox(n+1)7s.
0/ ( w (It)) ) 2 ) w ([t]) ¥

Hence, by Theorem 2 the estimation (11) holds for the function fj.
On the other hand using the fact

f(;(x) = Z {kﬂo? (%) - (k- 1)5k;k1& <k%1)} cos kx
k=2

we get

sup
felP(w)g

oo - . L
- kz_;an,kl_zk;lqlﬁw (7)‘(1 1)5 <1_1)}coslx) .

Thus in a special case, for x = 0, we get

« (3fo @~ fo 0))‘ Zank e (f) %Zankkﬂ ()

Using the inequality (18), we have
B~ 1 k+1 B~ 1 (k+1)(k—1) _ \B~ 1
k “(k) ? kD <k faken KoV e\

1 .
i(k+1) w( >

| T, afo ()~ fo (0)| = ‘Z i (Sifo 00~ fo ) ‘
k=2

\%



128 —— Radostawa Kranz, Aleksandra Rzepka, and Ewa Sylwestrzak-Maslanka DE GRUYTER

which implies

sup  |Tpaf ()~ f ()

feLpr(w)g

1 by (L by (L
> § ap ik +1)°G ( 1) > (n+1)°w (n+1>-
Hence, we finally obtain (13).

When x = xg, we can consider the function fx,(-) = fo(- - xo) instead of fy(-). Thus our proof is
complete. O

5.5 Proof of Theorem 5
Note that if f € LP(w)s, then Theorem 1implies

?”’Af(x)_f(x’ nZl)‘ <r+1)’@ (nZl)'

Thus, we easily get

‘ T

naf O=F (-

1)
n+1

by = {/ Tuaf 0 -F (x5 dx}p

—T

< UHl)Ba(nil) =O((n+1)ﬁa(n1rl))'

The conditions (6) and (7) from Theorem 1 are satisfied in the following form

1/p

mT 1/p
t t P || (£) sin® -1
/( 'jf(g)') Lat [ e tead T <o ()
0
Lp
1/p
7 - p y B 1/p
/ (%(t)(t)') sin?? %dt < {]}Tl %dt} =0 ((n + 1)7‘1%) .
ey 1
Hence our proof is complete. O

5.6 Proof of Theorem 6

Similarly to the previous proof, note that if f € L?(&)s, then Theorem 2 implies

Toaf (%) —f(x)] <M+ ( m ) .

n+1
Thus, we easily get

‘ T v {f o
We know by the previous proof that the condition (7) is satisfied and the condition (9), from Theorem 2, is
satisfied in the following form

waf ()= F ()

Tn,Af(X)‘f(X)‘de}; < (n+1)B&(L) =0((n+1)5&( ™ ))

n+1 n+1

1/p

/ (Qé'((tt)”)psinﬁp %dt s{
0

Lp

- 8P 1/p
Jir Leosn s dt} ~o(me1y3).

Hence, our proof is complete. O
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