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Abstract:The solvability of the problemwith local nonhomogeneous two-point in time conditions for a homo-
geneous PDEof the secondorder in time and infinite order in spatial variable in the casewhen the set of zeroes
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a solution of the problem in which the right-hand sides of the two-point conditions are quasi-polynomials is
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1 Introduction
Many physical, economic, demographic and medical-biological processes can be described by models with
multipoint in time conditions for PDEs and systems of them. The problemswith such conditions have a simple
interpretation of process observations at different points in time. For example, the two-point problem

∂2U
∂t2 − a

2 ∂2U
∂x2 = 0, t ∈ R, x ∈ R, a ∈ R∖{0}, (1)

U(0, x) = φ1(x), U(h, x) = φ2(x), x ∈ R, (2)

describes the process of oscillation of an infinite string when the profile of the string is given at twomoments
of time t = 0 and t = h > 0. Unlike the Cauchy problem for equation (1) with zero initial conditions

U(0, x) = ∂U∂t (0, x) = 0,

which has only a trivial solution, the two-point problem for equation (1) with zero two-point conditions

U(0, x) = U(h, x) = 0 (3)

has nontrivial solutions of the form
U(t, x) = sin πth cos πxah . (4)

Let us notice that the initial conditions, namely the conditions in which U(0, x) and ∂U
∂t (0, x) are given at

the one moment of time, are idealized. If a profile of a string for a oscillatory process is given at one moment
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of time and the speed of change of the profile is given at another moment of time (although very close), then
we obtain the problem for equation (1) with two-point conditions

U(0, x) = φ1(x),
∂U
∂t (h, x) = φ2(x) (5)

or
U(h, x) = φ1(x),

∂U
∂t (0, x) = φ2(x). (6)

Obviously, the two-point in time conditions (5) and (6) are a partial case of the following conditions

A1U(0, x) + A2
∂U
∂t (0, x) = φ1(x),

B1U(h, x) + B2
∂U
∂t (h, x) = φ2(x),

(7)

where A1, A2, B1, B2 ∈ C. Conditions (5) are obtained from (7) for A1 = 1, A2 = 0, B1 = 0, B2 = 1 and
conditions (6) if A1 = 0, A2 = 1, B1 = 1, B2 = 0.

Therefore, the study of the solvability of the problem for a PDE with multipoint in time conditions is
important for constructing a general theory of boundary-value problems and for practical problems.

Let us note the problems with multipoint in time conditions for PDEs are a generalization of problems
with n-point conditions for ODEs which are known in the literature as Valle-Poussin problems [1–3]. The for-
mulation and the first important results, which regard the solving of n-point problems for PDEs, are obtained
in [4]. More general results of the solvability of multipoint problems in bounded domains for PDEs and sys-
tems of them are obtained in many works (see, for example, [5–8] and the bibliographies in them). Papers
[9–11] are devoted to the establishment of the classes of uniqueness of the solution of the problems with
multipoint in time conditions in unbounded domains.

In recent years the multipoint in time conditions become more general and get a new content. In partic-
ular, in conditions (7) instead of constants A1, A2, B1, and B2 arbitrary differential polynomials of spatial
variables can be considered. Similar conditions are present in works [12, 13].

Many works of scientists [14–16] are devoted to constructing the polynomial and quasi-polynomial so-
lutions for the equations and boundary-value problems for them. Let us note that function (4), which is a
nontrivial solution to the homogeneous problem (1), (3) is quasi-polynomial, which can be written in the
form

U(t, x) = Aeαt(eβx + e−βx) − Ae−αt(eβx + e−βx),

where A = −0, 25i, α = iπh−1, β = iπa−1h−1, i2 = −1.
In unbounded domain of variables t ∈ (T0, T1), x ∈ Rs (s ∈ N), the differential-symbol method turned

out to be convenient for solving the problem of the form

∂nU
∂tn +

n∑︁
j=1

Aj
(︁ ∂
∂x

)︁∂n−jU
∂tn−j

= f (t, x), (8)

lkU(t, x) = φk(x), k = 1, n, (9)

in which A1( ∂∂x ), ..., An(
∂
∂x ) are differential polynomials in spatial variables, l1, ..., ln are linear functionals

in the variable t, −∞ ≤ T0 < T1 ≤ ∞. The ideas behind this method are described in [17]. This differential-
symbol method allows establishing the classes of entire functions as classes of existence and uniqueness
of the solution of problem (8), (9) in the form of actions of the differential expressions, whose symbols are
the right-hand sides of conditions (9) and the right-hand side of equation (8), onto some functions of the
parameter λ and the vector-parameter ν and after the actions the parameters are set to zero. It means the
solution of the problem can be found according to this method in the following form

U(t, x) = f
(︁ ∂
∂λ ,

∂
∂ν

)︁{︁
G(t, x, λ, ν)

}︁⃒⃒⃒
λ=0, ν=O

+
n∑︁
k=1

φk
(︁ ∂
∂ν

)︁{︁
Tk(t, x, ν)

}︁⃒⃒⃒
ν=O

,
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where G(t, x, λ, ν), T1(t, x, ν), . . . , Tn(t, x, ν) are functions which are especially constructed for each specific
problem, O = (0, . . . , 0). The problems for PDEs with conditions in time variables by using the differential-
symbol method were studied in [18–21].

Symbol calculus which is inherent for differential-symbol method we can see, for example, in papers
[22, 23]. In particular, for finding the definite integral

∫︀ b
a f (x)dx, the indefinite integral

∫︀ 0
−∞ f (x)dx, and for

Laplace’s transform L[f (x)] =
∫︀ +∞
0 e−xy f (y)dy authors propose formulas:

b∫︁
a

f (x)dx = lim
ε→0

f
(︂
∂
∂ε

)︂
eεb − eεa

ε , (10)

0∫︁
−∞

f (x)dx = lim
ε→0

f
(︂
∂
∂ε

)︂
1
ε ,

L[f (x)] = f
(︂
− ∂∂x

)︂
1
x .

We note that in ([17], p. 26) the formula (10) is presented in the following form
β2∫︁
β1

f (x)dx = f
(︁ ∂
∂ν

)︁ eνβ2 − eνβ1
ν

⃒⃒⃒⃒
⃒
ν=0

.

The present work continues the research of [24–27] and is devoted to the generalized problem (1), (7). The
question of existence of solutions of the problem for the equation of the second order in time and generally
infinite order in spatial variablewith two-point conditions (7) inwhichA1, A2, B1, B2 are operator coefficients
in the variable x is being studied.

2 Problem statement
In the domain (t, x) ∈ R2, we investigate the solvability of the following two-point problem

L
(︁ ∂
∂t ,

∂
∂x

)︁
U(t, x) ≡ ∂2U

∂t2 + a1
(︁ ∂
∂x

)︁∂U
∂t + a2

(︁ ∂
∂x

)︁
U = 0, (11)

lkU(t, x) ≡ bk1
(︁ ∂
∂x

)︁
U(kh, x) + bk2

(︁ ∂
∂x

)︁∂U
∂t (kh, x) = φk(x), k ∈ {0, 1}, (12)

where a1
(︀ ∂
∂x
)︀
, a2

(︀ ∂
∂x
)︀
are the differential expressions of finite or infinite orders, symbols of which are the

entire functions a1(ν), a2(ν) for ν ∈ C, b01
(︁
∂
∂x

)︁
, b02

(︁
∂
∂x

)︁
, b11

(︁
∂
∂x

)︁
, and b12

(︁
∂
∂x

)︁
are differential polyno-

mials with complex coefficients. Moreover, their symbols b01 (ν) , b02 (ν) , b11 (ν) and b12 (ν) , for each ν ∈ C
and k ∈ {0, 1}, satisfy the conditions |bk1 (ν)|2 + |bk2 (ν)|2 ≠ 0, where φ0(x), φ1(x) are given entire functions
(at least one of them is nonzero), h is an arbitrary positive number.

The solution of problem (11), (12) is an entire function of the form

U(t, x) =
∑︁
̃︀k∈Z2

+

ũ︀k tk0xk , ̃︀k = (k0, k), ũ︀k ∈ C,

in variables t and x which satisfies equation (11) in domain R2 and conditions (12) in R.
Let us write down corresponding ODE for the PDE (11)

L
(︁ d
dt , ν

)︁
T(t, ν) ≡ d2T

dt2 + a1(ν)
dT
dt + a2(ν)T = 0, (13)

where by {T0(t, ν), T1(t, ν)} we denote the normal at the point t = 0 fundamental system of solutions to the
ODE (13).
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Let us consider the determinant of the form

∆ (ν) =

⃒⃒⃒⃒
⃒⃒⃒ b01(ν) b02(ν)

b11 (ν) T0(h, ν) + b12 (ν)
dT0
dt (h, ν) b11 (ν) T1(h, ν) + b12 (ν)

dT1
dt (h, ν)

⃒⃒⃒⃒
⃒⃒⃒ . (14)

The solvability of problem (11), (12) depends on the values of the determinant ∆ (ν). This determinant is
called the characteristic determinant of problem (11), (12).

For a subset M of the space C we consider the following classes of quasi-polynomials:
— KM is the class of quasi-polynomials of the form

φ(x) =
m∑︁
j=1

Qj(x)eαjx , x ∈ R, m ∈ N, (15)

where α1, . . . , αm arepairwisedistinct complexnumbers inM andQ1(x), . . . , Qm(x) arenonzeropolynomials
with complex coefficients;
— KC,M is the class of quasi-polynomials of the form

f (t, x) =
m∑︁
j=1

N∑︁
l=1

Plj(t, x)eβl t+αjx , m, N ∈ N,

where P11(t, x), . . . , PNm(t, x) are nonzero polynomials in variables t, xwith complex coefficients, β1, . . . , βN
are pairwise distinct complex numbers and α1, . . . , αm are pairwise distinct complex numbers which belong
to M.

Let us denote
M = {ν ∈ C : ∆(ν) = 0}.

In this work we study the case M ≠ ∅ and M ≠ C, and the right-hand sides φ0(x) and φ1(x) of the two-
point conditions (12) can belong to KM. Note that the cases M = ∅ and M = C are investigated in [21, 24, 27].
Moreover, in [21] the existence of the unique solution of problem (11), (12) in the class KC,C∖M is proved when
φ0(x) and φ1(x) belong to KC∖M and the following formula is proposed for solving problem (11), (12):

U(t, x) =
1∑︁
k=0

φk
(︁ ∂
∂ν

)︁{︁̃︀Tk (t, ν) eνx}︁⃒⃒⃒
ν=0

, (16)

where ̃︀T0 (t, ν) , ̃︀T1 (t, ν) are functions of the form
̃︀T0 (t, ν) = e− 1

2 a1(ν)(t+h)
(︀
b11(ν) − 1

2a1(ν)b12(ν)
)︀
Sh−t(ν) + b12(ν)Ch−t(ν)

∆ (ν)
,

̃︀T1 (t, ν) = e− 1
2 a1(ν)t

(︀
b01(ν) − 1

2a1(ν)b02(ν)
)︀
St(ν) − b02(ν)Ct(ν)

∆ (ν)
,

(17)

in which Sh−t(ν) =
sinh

[︀
(h−t)D(ν)

]︀
D(ν) , Ch−t(ν) = cosh

[︀
(h − t)D(ν)

]︀
, D(ν) = 1

2

√︁
a21(ν) − 4a2(ν),

St(ν) =
sinh

[︀
t D(ν)

]︀
D(ν) , Ct(ν) = cosh

[︀
t D(ν)

]︀
.

It should be noted that, in formulas (16), the substituting ν = 0 and ν = αj is done after the action of the
differential expressions by the parameter ν.

The functions ̃︀T0 (t, ν) , ̃︀T1 (t, ν) are solutions of the ODE (13) and satisfy the conditions
bk1(ν)̃︀Tj (kh, ν) + bk2(ν)d̃︀Tjdt (kh, ν) = δkj , j, k ∈ {0, 1} ,

where δkj is the Kronecker delta.
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Also,wenote that the actionof thedifferential expressionφ
(︀ ∂
∂ν
)︀
, symbol ofwhich is thequasi-polynomial

φ(x) of the form (15), in formula (16) we understand as follows:

φk
(︁ ∂
∂ν

)︁{︁̃︀Tk (t, ν) eνx}︁⃒⃒⃒
ν=0

=
m∑︁
j=1

Qj
(︁ ∂
∂ν

)︁{︁̃︀Tk (t, ν) eνx}︁⃒⃒⃒
ν=αj

.

Obviously, if φ0(x) and φ1(x) belong to KC∖M, then we do not get zero ∆(ν).
This article is devoted to the case when at least one of the functions φ0(x) or φ1(x) belongs to KM . We

will prove that a solution of problem (11), (12) exists in the class KC,M for φ0, φ1 ∈ KM. This solution is not
unique in KC,M , since nontrivial solutions of equation (11) which satisfy the homogeneous conditions

lkU(t, x) = 0, k ∈ {0, 1} ,

exist in this class [24].
In the case φ0, φ1 ∈ KM, the question regarding the solvability of problem (11), (12) was not investigated.

So, in this work we propose the differential-symbol method for constructing the solutions of problem (11),
(12), if φ0(x) or φ1(x) belongs to KM.

3 Main results
Let φ0, φ1 ∈ KM and have the form

φk(x) = Qk(x)eαkx , k ∈ {0, 1}, (18)

where α0, α1 ∈ M, that is α0, α1 are zeroes of ∆(ν) of multiplicities pα0 and pα1 respectively (pα0 , pα1 ∈ N),
Q0(x), Q1(x) are polynomials of powers n0 and n1 respectively (n0, n1 ∈ Z+).

Theorem 3.1. Let the right-hand sides φ0(x) and φ1(x) of conditions (12) belong to KM and have the form (18).
Then the solution of problem (11), (12) in the class of quasi-polynomials KC,M exists and it can be written in the
form

U(t, x) =
1∑︁
j=0

(︁ ∂
∂ν

)︁(nj+1)pαj ρj(t, x, ν)(︁ d
dν

)︁(nj+1)pαj ∆nj+1(ν)
⃒⃒⃒⃒
⃒
ν=αj

, (19)

where
ρj(t, x, ν) = ∆nj+1(ν)Qj

(︁ ∂
∂ν

)︁{︀̃︀Tj(t, ν)eνx}︀, j ∈ {0, 1}. (20)

Proof. It should be noted, that in the formula (20) the differential expressionQj( ∂∂ν ) is obtained from the poly-
nomial Qj(x) by substituting x with ∂

∂ν . First we note that the functions (20) are entire functions. Moreover,
these functions are solutions to equation (11). Really, for j ∈ {0, 1} we have

L
(︁ ∂
∂t ,

∂
∂x

)︁
ρj(t, x, ν) = ∆nj+1(ν)L

(︁ ∂
∂t ,

∂
∂x

)︁
Qj
(︁ ∂
∂ν

)︁{︀̃︀Tj(t, ν)eνx}︀
= ∆nj+1(ν)Qj

(︁ ∂
∂ν

)︁{︁
eνxL

(︁ d
dt , ν

)︁̃︀Tj(t, ν)}︁ = 0.

In this chain of equalities we used the fact that the functions ̃︀T0(t, ν), ̃︀T1(t, ν) are solutions to the ODE (13)
and the following equality

L
(︁ ∂
∂t ,

∂
∂x

)︁{︁̃︀Tj(t, ν)eνx}︁ = eνxL
(︁ d
dt , ν

)︁̃︀Tj(t, ν).
Let us now prove that the function which is defined by equality (19) satisfies the two-point conditions

(11). Really, for k ∈ {0, 1} we obtain
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lk∂xU(t, x) =
1∑︁
j=0

(︁ ∂
∂ν

)︁(nj+1)pαj lk∂xρj(t, x, ν)(︁ d
dν

)︁(nj+1)pαj ∆nj+1(ν)
⃒⃒⃒⃒
⃒
ν=αj

=
1∑︁
j=0

(︁ ∂
∂ν

)︁(nj+1)pαj(︁∆nj+1(ν)Qj(︁ ∂
∂ν

)︁
{δjkeνx}

)︁
(︁ d
dν

)︁(nj+1)pαj ∆nj+1(ν)
⃒⃒⃒⃒
⃒
ν=αj

=

(︁ ∂
∂ν

)︁(nk+1)pαk(︁∆nk+1(ν)Qk(x)eνx)︁(︁ d
dν

)︁(nk+1)pαk ∆nk+1(ν)
⃒⃒⃒⃒
⃒
ν=αk

= Qk(x)

(︁ ∂
∂ν

)︁(nk+1)pαk (︀∆nk+1(ν)eνx)︀(︁ d
dν

)︁(nk+1)pαk ∆nk+1(ν)
⃒⃒⃒⃒
⃒
ν=αk

=Qk(x)eαk(x) = φk(x).

In these equalities we use the fact that ( ddν )
s∆nj+1(ν)

⃒⃒
ν=αk

= 0 for arbitrary s ∈ {0, . . . , (nk+1)pαk −1}.

Remark 3.1. In Theorem 3.1, we consider the functions φ0(x) and φ1(x) as monomial polynomials of the form
(15) for m = 1. However, if these functions have the form (15) for m > 1, then by Theorem 3.1 we find the solution
to problem (11), (12) for each term of the polynomial and the sum of found solutions will also be a solution to
problem (11), (12).

Example 3.1. In domain (t, x) ∈ R2, to find the solutions of the two-point problem[︁ ∂2
∂t2 − 2

∂3
∂x2∂t +

∂4
∂x4

]︁
U(t, x) = 0, (21)

∂U
∂x (0, x) +

∂U
∂t (0, x) = x,

∂U
∂x (1, x) +

∂U
∂t (1, x) = 2e−x . (22)

For problem (21), (22), we have a1(ν) = −2ν2, a2(ν) = ν4, b01(ν) = b11(ν) = ν, b02(ν) = b12(ν) = 1.
The characteristic determinant of problem (21), (22) and the set M have the form

∆(ν) = ν2(ν + 1)2eν
2
, M = {0; −1}.

For the function φ0(x) = x ∈ KM we can write down Q0(x) = x, α0 = 0, pα0 = 2, n0 = 1. For the function
φ1(x) = 2e−x ∈ KM we have Q1(x) = 2, α1 = −1, pα1 = 2, n1 = 0.

For problem (21), (22) the functions ̃︀T0(t, ν), ̃︀T1(t, ν) have the following form
̃︀T0(t, ν) = eν2(t+1) (ν2 + ν)(1 − t) + 1∆(ν) ,

̃︀T1(t, ν) = eν2 t (ν2 + ν)t − 1∆(ν) .

Then we can write the functions ρ0(t, x, ν), ρ1(t, x, ν) down as

ρ0(t, x, ν) = ∆2(ν)
∂
∂ν

{︀̃︀T0(t, ν)eνx}︀,
ρ1(t, x, ν) = 2∆(ν)

{︀̃︀T1(t, ν)eνx}︀.
By formula (19), the solution of problem (21), (22) can be found as

U(t, x) =

(︁ ∂
∂ν

)︁4
ρ0(t, x, ν)(︁ d

dν

)︁4
∆2(ν)

⃒⃒⃒⃒
⃒
ν=0

+

(︁ ∂
∂ν

)︁2
ρ1(t, x, ν)(︁ d

dν

)︁2
∆(ν)

⃒⃒⃒⃒
⃒
ν=−1

= 1
6 x

3 + 2xt − x − 3 + t − t2 − 1
2 x

2 − 1
2 x

2t − x(x − 2t)et−x−1.
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This solution is not unique in the class KC,M, since in [24] it is proved that the two-point problem for
equation (21) with homogeneous conditions

∂U
∂x (0, x) +

∂U
∂t (0, x) = 0, ∂U

∂x (1, x) +
∂U
∂t (1, x) = 0

has nontrivial solutions of the form

U(t, x) = c1 + c2(x − t) + c3et−x + c4(x − t)et−x ,

where c1, c2, c3, c4 are arbitrary complex constants.

Remark 3.2. If φ0 ∈ KC∖M or φ0(x) = 0 and φ1 ∈ KM , moreover if φ1 has the form (18) for k = 1, then the
solution of problem (11), (12) in the class KC,C exists and can be found by the formula

U(t, x) = φ0
(︁ ∂
∂ν

)︁{︀̃︀T0(t, ν)eνx}︀⃒⃒⃒
ν=0

+

(︁ ∂
∂ν

)︁(n1+1)pα1 ρ1(t, x, ν)(︁ d
dν

)︁(n1+1)pα1 ∆n1+1(ν)
⃒⃒⃒⃒
⃒
ν=α1

. (23)

Similarly, if φ0 ∈ KM , moreover if φ0 has the form (18) for k = 0, φ1 ∈ KC∖M or φ1(x) = 0, then the solution to
problem (11), (12) in the class KC,C exists and can be found by the formula

U(t, x) =

(︁ ∂
∂ν

)︁(n0+1)pα0 ρ0(t, x, ν)(︁ d
dν

)︁(n0+1)pα0 ∆n0+1(ν)
⃒⃒⃒⃒
⃒
ν=α0

+ φ1
(︁ ∂
∂ν

)︁{︀̃︀T1(t, ν)eνx}︀⃒⃒⃒
ν=0

. (24)

Example 3.2. Let us find the solutions of the two-point problem for the differential-functional equation

∂2U
∂t2 (t, x) −

(︁
1 + ∂

∂x

)︁2
U(t, x + 2) = 0, (t, x) ∈ R2, (25)

(︁
1 + ∂

∂x

)︁
U(0, x) + ∂2U

∂t∂x (0, x) = e
−x ,(︁

1 + ∂
∂x

)︁
U(h, x) + ∂2U

∂t∂x (h, x) = x, x ∈ R.
(26)

For problem (25), (26), we have a1(ν) = 0, a2(ν) = −(1 + ν)2 e2ν, b01(ν) = b11(ν) = 1 + ν, b02(ν) = b12(ν) = ν.
Let us write down the characteristic determinant of problem (25), (26) and the set of its zeroes in the form

∆(ν) = (ν + 1)
(︁
1 − ν2e2ν

)︁
e−ν sinh

[︀
(ν + 1) eνh

]︀
,

M =
{︁
ν ∈ C :

(︁
1 − ν2e2ν

)︁
sinh

[︀
(ν + 1) eνh

]︀
= 0

}︁
∪ {−1}.

The function φ0(x) = e−x belongs to KM, moreover α0 = −1, pα0 = 2, n0 = 0. The function φ1(x) = x
belongs to KC∖M .

The solution to problem (25), (26) we can find by formula (24):

U(t, x) =

(︁ ∂
∂ν

)︁2
ρ0(t, x, ν)(︁ d

dν

)︁2
∆(ν)

⃒⃒⃒⃒
⃒
ν=−1

+ φ1
(︁ ∂
∂ν

)︁{︀̃︀T1(t, ν)eνx}︀⃒⃒⃒
ν=0

,

where the functions ̃︀T0(t, ν), ̃︀T1(t, ν), ρ0(t, x, ν) are following:
̃︀T0(t, ν) = e−ν sinh[(h − t)(1 + ν)eν] + ν cosh[(h − t)(1 + ν)eν]∆(ν) ,

̃︀T1(t, ν) = e−νsinh[t(1 + ν)eν] − ν cosh[t(1 + ν)eν]∆(ν) ,

ρ0(t, x, ν) = ∆(ν){̃︀T0(t, ν)eνx} = (︁
e−ν sinh[(h − t)(1 + ν)eν] + ν cosh[(h − t)(1 + ν)eν]

)︁
eνx .
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Therefore,

U(t, x) =

(︁ ∂
∂ν

)︁2{︀(︀
e−ν sinh[(h − t)(1 + ν)eν] + ν cosh[(h − t)(1 + ν)eν]

)︀
eνx

}︀
(︁ d
dν

)︁2(︀
(ν + 1)

(︀
1 − ν2e2ν

)︀
e−ν sinh [(ν + 1) eνh]

)︀
⃒⃒⃒⃒
⃒
ν=−1

+ ∂
∂ν

(︀
e−νsinh[t(1 + ν)eν] − ν cosh[t(1 + ν)eν]

)︀
eνx

(ν + 1)
(︀
1 − ν2e2ν

)︀
e−ν sinh [(ν + 1) eνh]

⃒⃒⃒⃒
⃒
ν=0

= −x
2 + 2x(h − t) + 2x − e−2(h − t)2

2h(1 − e−2) e−x

+ 1
sinh h

[︁
(x − 1) sinh t + (2t − 1) cosh t − 2h sinh ttanh h

]︁
.

Let us note that the found solution of problem (25), (26) is not unique in the class KC,C, since, for example,
the functions

U1(t, x) = c1e−x , U2(t, x) = c2(1 − t − x)e−x , c1, c2 ∈ C,

are solutions to the corresponding homogeneous problem and the sum of each of these solutions with the
found solution U(t, x) is also a solution to problem (25), (26).

4 Conclusions
The solvability of the problem for the homogeneous partial differential equation of second order in time and
finite or infinite order in spatial variable (11) with nonhomogeneous two-point in time conditions (12) in the
case when the set of zeroes of the characteristic determinant of problem (11), (12) is not empty and does
not coincide withC is investigated. If the right-hand sides of the two-point conditions are quasi-polynomials
then the existence of solutions of the problem is proved and the formulas (19), (23), (24) for constructing these
solutions are found.We show the application of the proposed differential-symbol method for some two-point
problems (examples 3.1 and 3.2).
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