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Abstract: In this paper, we establish the existence and uniqueness of solutions for a class of initial value
problem for nonlinear implicit fractional differential equations with Riemann-Liouville fractional derivative,
also, the stability of this class of problem. The arguments are based upon the Banach contraction principle
and Schaefer’s fixed point theorem. An example is included to show the applicability of our results.
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1 Introduction
Fractional differential equations have recently proved to be useful tools in the modeling of many physical
phenomena. It draws a great application in nonlinear oscillations of earthquakes, many physical phenom-
ena such as seepage ow in porous media and in fluid dynamic traffic model. for more details on fractional
calculus theory, one can see [1–7].

Recently, by means of different tools such as the Banach contract principle, Schauder’s fixed point,
Schaefer’s fixed point, the Leray–Schauder nonlinear alternative, Monch fixed point and themeasure of non-
compactness, initial and boundary value problems for implicit fractional differential equations involving
Caputo type fractional derivatives have extensively been studied in the books [8–12] and the papers [13–22].

In [6, 7] the existence and uniqueness of solutions of the initial value problem

Dα0+u(t) = f (t, u(t)), for each, t > 0,

Dα−10+ u(0+) = u0,

was obtained under the assumption that f : (0, T] × R → R is Lipchitz continuous, by using the Banach
contractionmapping principle. In [23] by using the lower and upper solutionmethod, the authors proved the
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existence of iterative solutions for a class of fractional initial value problem with non-monotone term

Dα0+u(t) = f (t, u(t)), for each, t ∈ (0, h), 0 < h < +∞,

t1−αu(t)|t=0 = u0 ≠ 0.

Motivated by the work above, we focus our attention on the more general problem:

Dα0+y(t) = f
(︀
t, y(t), Dα0+y(t)

)︀
, for each , t ∈ (0, T], (1)

t1−αy(t)|t=0 = y0 ∈ R, (2)

where Dα0+ is the standard Riemann–Liouville fractional derivative, f : (0, T] × R × R → R is a continuous
function and 0 < α < 1.
In the literature, several different definitions of fractional integrals and derivatives are present. Some of them
such as the Riemann-Liouville integral, the Caputo and the Riemann-Liouville derivatives are thoroughly
studied and actually used in applied models. Hilfer has introduced a generalized form of the Riemann-
Liouville fractional derivative. In short, Hilfer fractional derivative Dα,β0+ is an interpolation between the
Riemann-Liouville and Caputo fractional derivatives.

The present paper is organized as follows. In Section 2, some notations are introduced and we recall
some concepts of preliminaries about fractional calculus and auxiliary results. In Section 3, two results for
the problem (1)-(2) are presented: the first one is based on the Banach contraction principle, the second one
on Schaefer’s fixed point theorem. In Section 4, we present Ulam-Hyers stability result for the problem (1)-(2).
Finally, in the last Section, we give an example to illustrate the applicability of our main results.

2 Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which are used throughout this
paper. Let 0 < T, J = [0, T]. By C(J,R) we denote the Banach space of all continuous functions from J into R
with the norm

‖y‖∞ = sup{|y(t)| : t ∈ J}.

And L1(J,R) is the space of Lebesgue-integrable functions w : J → R with the norm

‖w‖1 =
T∫︁

0

|w(s)|ds.

ACn(J) = {h : J → R : h, h′, . . . , h(n−1) ∈ C(J,R) and h(n−1) is absolutely continuous.}
In what follows 𝛾 > 0.
We consider the weighted space of continuous functions

C𝛾(J) =
{︀
y : (0, T] → R : t𝛾y(t) ∈ C(J,R)

}︀
,

with the norm
‖y‖C𝛾 = sup

t∈J

⃒⃒
t𝛾y(t)

⃒⃒
.

Clearly C𝛾(J) is a Banach space.
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Definition 2.1. [6, 24] The fractional (arbitrary) order integral of the function h ∈ L1([0, T],R+) of order α ∈ R+
is defined by

Iα0+h(t) =
1
Γ(α)

t∫︁
0

(t − s)α−1 h(s)ds,

where Γ(·) is the Euler gamma function defined by Γ(α) =
∞∫︁
0

tα−1e−tdt, α > 0.

Lemma 2.2. [25] For t > 0, we have[︁
Iα0+ tβ−1

]︁
(t) = Γ(β)

Γ(α + β) t
β+α−1, α ≥ 0, β > 0,

[︁
Dα0+ tα−1

]︁
(t) = 0, 0 < α < 1.

Definition 2.3. [6, 24] For a function h ∈ ACn(J), the Riemann–Liouville fractional order derivative of order α
of h, is defined by

Dα0+h(t) =
1

Γ(n − α)

(︂
d
dt

)︂n t∫︁
0

(t − s)n−α−1 h(s)ds,

where n = [α] + 1 and [α] denotes the integer part of the real number α.

We state the following generalization of Gronwall’s Lemma for singular kernels.

Lemma 2.4. [26] Let β > 0, ã(t) be nonnegative function locally integrable on [a, b) and g̃(t) is a nonnegative,
nondecreasing continuous function defined on g̃(t) < M, t ∈ [a, b), and suppose y(t) is nonnegative and locally
integrable on [a, b) with

y(t) ≤ ã(t) + g̃(t)
t∫︁

0

(t − s)β−1y(s)ds, t ∈ [a, b).

Then

y(t) ≤ ã(t) +
t∫︁

0

[︃ ∞∑︁
n=1

(g̃(t)Γ(β))n
Γ(nβ) (t − s)nβ−1ã(s)

]︃
ds, for every t ∈ [a, b).

Corollary 2.5. [26] Under the hypotheses of Lemma 2.4, assume further that ã(t) is a nondecreasing function
for t ∈ [a, b). Then

y(t) ≤ ã(t)Eβ
(︁
g̃(t)Γ(β)tβ

)︁
, t ∈ [a, b),

where Eβ(·) is the one parameter Mittag-Le�er function.

For the implicit fractional-order differential equation (1), we adopt the definition in Rus [27] for Ulam-Hyers
stability, generalizedUlam-Hyers stability, Ulam-Hyers-Rassias stability and generalizedUlam-Hyers-Rassias
stability.

Definition 2.6. The equation (1) is Ulam–Hyers stable if there exists a real number cf > 0 such that for each
ϵ > 0 and for each solution z ∈ C1−α(J) of the inequality⃒⃒

Dα0+ z(t) − f (t, z(t), Dα0+ z(t))
⃒⃒
≤ ϵ, t ∈ J,

there exists a solution y ∈ C1−α(J) of equation (1) with⃒⃒
z(t) − y(t)

⃒⃒
≤ cf ϵ, t ∈ J.
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Definition 2.7. The equation (1) is generalized Ulam–Hyers stable if there exists ψf ∈ C(R+,R+), ψf (0) = 0,
such that for each solution z ∈ C1−α(J) of the inequality⃒⃒

Dα0+ z(t) − f (t, z(t), Dα0+ z(t))
⃒⃒
≤ ϵ, t ∈ J, (3)

there exists a solution y ∈ C1−α(J) of the equation (1) with⃒⃒
z(t) − y(t)

⃒⃒
≤ ψf (ϵ), t ∈ J.

Definition 2.8. The equation (1) is Ulam–Hyers–Rassias stable with respect to ϕ ∈ C(J,R+) if there exists a
real number cf > 0 such that for each ϵ > 0 and for each solution z ∈ C1−α(J) of the inequality⃒⃒

Dα0+ z(t) − f (t, z(t), Dα0+ z(t))
⃒⃒
≤ ϵϕ(t), t ∈ J, (4)

there exists a solution y ∈ C1−α(J) of equation (1) with⃒⃒
z(t) − y(t)

⃒⃒
≤ cf ϵϕ(t), t ∈ J.

Definition 2.9. The equation (1) is generalized Ulam–Hyers–Rassias stable with respect to ϕ ∈ C(J,R+) if
there exists a real number cf ,ϕ > 0 such that for each solution z ∈ C1−α(J) of the inequality⃒⃒

Dα0+ z(t) − f (t, z(t), Dα0+ z(t))
⃒⃒
≤ ϕ(t), t ∈ J, (5)

there exists a solution y ∈ C1−α(J) of equation (1) with⃒⃒
z(t) − y(t)

⃒⃒
≤ cf ,ϕϕ(t), t ∈ J.

Remark 2.10. It is clear that:

i) De�nition 2.6⇒ De�nition 2.7
ii) De�nition 2.8⇒ De�nition 2.9
iii) De�nition 2.8 for (ϕ(t) = ψ = 1)⇒ De�nition 2.6.

Remark 2.11. A function z ∈ C1−α(J) is a solution of the inequality (4) if and only if there is σ ∈ C1−α(J) (which
depends on z) such that

i) |σ(t)| ≤ ϵϕ(t), t ∈ J
ii) Dα0+ z(t) = f (t, z(t), Dα0+ z(t)) + σ(t), t ∈ J.

One can have similar remarks for inequalities (5) and (3).

Theorem 2.12. [28](Theorem of Ascoli-Arzelà) Let A ⊂ C1−α(J,R). A is relatively compact (i.e A is compact)
if:

1. A is uniformly bounded i.e, there exists M > 0 such that⃒⃒
f (x)

⃒⃒
< M for every f ∈ A and x ∈ J.

2. A is equicontinuous i.e, for every ϵ > 0, there exists δ > 0 such that for each x, x ∈ J, |x − x| ≤ δ implies⃒⃒
f (x) − f (x)

⃒⃒
≤ ϵ, for every f ∈ A.

Theorem 2.13. [29] (Banach’s fixed point theorem) Let C be a non-empty closed subset of a Banach space E,
then any contraction mapping T of C into itself has a unique fixed point.

Theorem 2.14. [29] (Schaefer’s fixed point theorem) Let E be a Banach space, and N : E −→ E completely
continuous operator. If the set E = {y ∈ E : y = λNy, for some λ ∈ (0, 1)} is bounded, then N has at least one
fixed point.
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3 Existence of solutions
To prove the existence of solutions to (1)-(2), we need the following auxiliary Lemma.

Lemma 3.1. [6] The linear initial value problem{︃
Dα0+y(t) + λy(t) = q(t), for each, t > 0,
t1−αy(t)|t=0 = y0,

(6)

where λ ≥ 0 is a constant and q ∈ L(0, T), has the following integral representation for a solution

y(t) = Γ(α)y0tα−1Eα,α(−λtα) +
t∫︁

0

(t − s)α−1Eα,α(−λ(t − s)α)q(s)ds,

where Eα,α(t) is the two-parameter Mittag-Le�er function. In particular, when λ = 0, then the initial value
problem (6) has a unique solution defined by

y(t) = y0tα−1 +
1
Γ(α)

t∫︁
0

(t − s)α−1q(s)ds.

Lemma 3.2. [23] For 0 < α ≤ 1; the Mittag–Le�er type function Eα,α(−λtα) satisfies

0 ≤ Eα,α(−λtα) ≤
1
Γ(α) , t ∈ [0,∞), λ ≥ 0,

and
lim
t→0+

Eα,α(−λtα) = Eα,α(0) =
1
Γ(α) .

The following assumptions will be used in our main results:

(H1) There exist constants K > 0 and 0 < L < 1 such that

|f (t, u, v) − f (t, ū, v̄)| ≤ K|u − ū| + L|v − v̄|

for any u, v, ū, v̄ ∈ R and t ∈ (0, T].

Theorem 3.3. Suppose (H1) holds. The function y solves problem (1)-(2) if and only if it is a fixed-point of the
operator N : C1−α(J) → C1−α(J) defined by

Ny(t) = y0tα−1 +
1
Γ(α)

t∫︁
0

(t − s)α−1g(s)ds, t ∈ (0, T], (7)

where g : (0, T] → R be a function satisfying the functional equation

g(t) = f (t, y(t), g(t)).

Proof. Firstly, we need to show that the operator N is well defined, i.e, for every y ∈ C1−α(J) and t > 0; the
integral

1
Γ(α)

t∫︁
0

(t − s)α−1g(s)ds,

belongs to C1−α(J). Under condition (H1),

|g(t)| ≤ K
1 − L |y(t)| + C, for each, t ∈ J,
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where
C =

supt∈J |f (t, 0, 0)|
1 − L .

By Lemma 3.2, for y ∈ C1−α(J), we have⃒⃒⃒⃒
⃒⃒ t1−αΓ(α)

t∫︁
0

(t − s)α−1g(s)ds

⃒⃒⃒⃒
⃒⃒ ≤ t1−α

Γ(α)

t∫︁
0

(t − s)α−1
⃒⃒
g(s)

⃒⃒
ds

≤ t1−α
Γ(α)

t∫︁
0

(t − s)α−1
[︂

K
1 − L |y(s)| + C

]︂
ds

≤ t1−α
Γ(α)

t∫︁
0

(t − s)α−1sα−1 K
1 − L |s

1−αy(s)|ds + t
1−αTαC
αΓ(α)

≤ t1−α‖y‖C1−α
K

1 − L I
α
0+ (tα−1) +

t1−αTαC
Γ(α + 1) .

By Lemma 2.2, we have ⃒⃒⃒⃒
⃒⃒ t1−αΓ(α)

t∫︁
0

(t − s)α−1g(s)ds

⃒⃒⃒⃒
⃒⃒ ≤ KΓ(α)tα‖y‖C1−α

Γ(2α)(1 − L) + TC
Γ(α + 1)

≤ KΓ(α)Tα‖y‖C1−α
Γ(2α)(1 − L) + TC

Γ(α + 1) .

That is to say that the integral exists and belongs to C1−α(J).
The above inequality implies that

lim
t→0+

t1−α
Γ(α)

t∫︁
0

(t − s)α−1g(s)ds = 0.

Combining with lim
t→0+

t1−α(Ny)(t) = y0. The above arguments combined with Lemma 3.1, imply that the fixed-
point of the operator N solves (1)-(2) and vice versa. The proof is complete.

Theorem 3.4. Suppose (H1) holds. If

KΓ(α)Tα
Γ(2α)(1 − L) < 1,

(8)

then, there exists a unique solution for the problem (1)-(2) in the space C1−α(J).

Proof. Let u, w ∈ C1−α(J). Then for t ∈ (0, T], we have

|Nu(t) − Nw(t)| ≤ 1
Γ(α)

t∫︁
0

(t − s)α−1|g(s) − h(s)|ds,

where g, h ∈ C1−α(J) be such that
g(t) = f (t, u(t), g(t)),

and
h(t) = f (t, w(t), h(t)).

By (H1) we have

|g(t) − h(t)| = |f (t, u(t), g(t)) − f (t, w(t), h(t))|
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≤ K|u(t) − w(t)| + L|g(t) − h(t)|.

Then
|g(t) − h(t)| ≤ K

1 − L |u(t) − w(t)|.

Therefore, for each t ∈ (0, T]

|Nu(t) − Nw(t)| ≤ K
Γ(α)(1 − L)

t∫︁
0

(t − s)α−1|u(s) − w(s)|ds

= K
Γ(α)(1 − L)

t∫︁
0

(t − s)α−1sα−1|s1−α(u(s) − w(s))|ds

≤ K
1 − L I

α
0+ (tα−1)‖u − w‖C1−α .

By Lemma 2.2, we have

|Nu(t) − Nw(t)| ≤ Γ(α)Kt2α−1
Γ(2α)(1 − L)‖u − w‖C1−α ,

which implies that

|t1−α(Nu(t) − Nw(t))| ≤ Γ(α)Ktα
Γ(2α)(1 − L)‖u − w‖C1−α

≤ Γ(α)KTα
Γ(2α)(1 − L)‖u − w‖C1−α .

Thus
‖Nu − Nw‖C1−α ≤

Γ(α)KTα
Γ(2α)(1 − L)‖u − w‖C1−α .

By (8), the operator T is a contraction. Hence, by Banach’s contraction principle, N has a unique fixed point
which is a unique solution of the problem (1)-(2).

Our second result is based on Schaefer’s fixed point theorem.

Theorem 3.5. Assume (H1) and

(H2) There exist p, q, r ∈ C(J,R+) with r* = supt∈J r(t) < 1 such that

|f (t, u, w)| ≤ p(t) + q(t)|u| + r(t)|w| for t ∈ J and u, w ∈ R.

If

q*Γ(α)Tα
Γ(2α)(1 − r*) < 1,

(9)

where q* = supt∈J q(t) then the problem (1)-(2) has at least one solution in the space C1−α(J).

Proof. Let the operator N defined in (7). We shall use Schaefer’s fixed point theorem to prove that N has a
fixed point. The proof will be given in several steps.
Step 1: N is continuous. Let (yn)n∈N be a sequence such that yn → y in C1−α(J), then for each t ∈ (0, T], we
have

|Nyn(t) − Ny(t)| ≤
1
Γ(α)

t∫︁
0

(t − s)α−1|gn(s) − g(s)|ds (10)

where gn , g ∈ C1−α(J) be such that
gn(t) = f (t, yn(t), gn(t)),
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and
g(t) = f (t, y(t), g(t)).

By (H1) we have

|gn(t) − g(t)| = |f (t, yn(t), gn(t)) − f (t, y(t), g(t))|
≤ K|yn(t) − y(t)| + L|gn(t) − g(t)|.

Then

|gn(t) − g(t)| ≤
K

1 − L |yn(t) − y(t)|. (11)

By replacing (11) in inequality (10), we find

|Nyn(t) − Ny(t)| ≤ K
Γ(α)(1 − L)

t∫︁
0

(t − s)α−1|yn(s) − y(s)|ds

= K
Γ(α)(1 − L)

t∫︁
0

(t − s)α−1sα−1|s1−α(yn(s) − y(s))|ds

≤ K
1 − L I

α
0+ (tα−1)‖yn − y‖C1−α

By Lemma 2.2, we have

|Nyn(t) − Ny(t)| ≤
Γ(α)Kt2α−1
Γ(2α)(1 − L)‖yn − y‖C1−α ,

which implies that

|t1−α(Nyn(t) − Ny(t))| ≤ Γ(α)Ktα
Γ(2α)(1 − L)‖yn − y‖C1−α

≤ Γ(α)KTα
Γ(2α)(1 − L)‖yn − y‖C1−α .

Thus
|t1−α(Nyn(t) − Ny(t))| → 0 as n →∞,

and hence
‖Nyn − Ny‖C1−α → 0 as n →∞.

Consequently, N is continuous.
Step 2: N maps bounded sets into bounded sets in C1−α. Indeed, it is enough to show that for any η* > 0,
there exists a positive constant ℓ such that for each

y ∈ Bη* = {y ∈ C1−α(J) : ‖y‖C1−α ≤ η
*},

we have ‖Ny‖C1−α ≤ ℓ. For each t ∈ (0, T], we have

Ny(t) = y0tα−1 +
1
Γ(α)

t∫︁
0

(t − s)α−1g(s)ds, (12)

where g ∈ C1−α(J) be such that
g(t) = f (t, y(t), g(t)).

By (H2), we have for each t ∈ (0, T],

|g(t)| = |f (t, y(t), g(t))| ≤ p(t) + q(t)|y(t)| + r(t)|g(t)|.
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Hence, we get

|t1−αg(t)| ≤ t1−αp(t) + q(t)|t1−αy(t)| + r(t)|t1−αg(t)|
≤ T1−αp* + q*η* + r*|t1−αg(t)|,

where p* = sup{p(t), t ∈ J}, Then, for each t ∈ (0, T], we have

|t1−αg(t)| ≤ T
1−αp* + q*η*

1 − r* := M.

Thus, (12) implies

|Ny(t)| ≤ tα−1|y0| +
M
Γ(α)

t∫︁
0

(t − s)α−1sα−1ds

≤ tα−1|y0| +
MΓ(α)
Γ(2α) t

2α−1.

Therefore
|t1−αNy(t)| ≤ |y0| +

MΓ(α)
Γ(2α) T

α .

Thus
‖Ny‖C1−α ≤ |y0| +

MΓ(α)
Γ(2α) T

α := ℓ.

Step 3: N maps bounded sets into equicontinuous sets of C1−α(J). Let 0 < t1 < t2 ≤ T, Bη* be a bounded set
of C1−α(J) as in Step 2, and let y ∈ Bη* . Then

|t1−α2 Ny(t2) − t1−α1 Ny(t1)| = 1
Γ(α)

⃒⃒⃒⃒
⃒⃒
t2∫︁
0

t1−α2 (t2 − s)α−1g(s)ds −
t1∫︁
0

t1−α1 (t1 − s)α−1g(s)ds

⃒⃒⃒⃒
⃒⃒

= 1
Γ(α)

⃒⃒⃒⃒
⃒⃒
t1∫︁
0

t1−α2 (t2 − s)α−1sα−1(s1−αg(s))ds +
t2∫︁
t1

t1−α2 (t2 − s)α−1sα−1(s1−αg(s))ds

−
t1∫︁
0

t1−α1 (t1 − s)α−1sα−1(s1−αg(s))ds

⃒⃒⃒⃒
⃒⃒

≤ 1
Γ(α)

t1∫︁
0

⃒⃒⃒
t1−α2 (t2 − s)α−1sα−1 − t1−α1 (t1 − s)α−1sα−1

⃒⃒⃒
|s1−αg(s)|ds

+ 1
Γ(α)

t2∫︁
t1

t1−α2 (t2 − s)α−1sα−1|s1−αg(s)|ds

≤ M
Γ(α)

t1∫︁
0

⃒⃒⃒
t1−α2 (t2 − s)α−1 − t1−α1 (t1 − s)α−1

⃒⃒⃒
sα−1ds

+ M
Γ(α)

t2∫︁
t1

t1−α2 (t2 − s)α−1sα−1ds.

As t1 → t2, the right-hand side of the above inequality tends to zero. That is to say that T(Bη* ) is equicontin-
uous. As a consequence of Step 1 to Step 3 together with the Ascoli–Arzela theorem, we can conclude that
T : C1−α(J) → C1−α(J) is completely continuous.
Step 4: A priori bounds. Now it remains to show that the set

E = {y ∈ C1−α : y = λN(y) for some 0 < λ < 1},
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is bounded. Let y ∈ E, then y = λNy for some 0 < λ < 1. Thus, for each t ∈ (0, T], we have

y(t) = λy0tα−1 +
λ
Γ(α)

t∫︁
0

(t − s)α−1g(s)ds. (13)

And by (H2), we have for each t ∈ (0, T],

|g(t)| ≤ p(t) + q(t)|y(t)| + r(t)|g(t)|.

Thus, we get

|t1−αg(t)| ≤ t1−αp(t) + q(t)|t1−αy(t)| + r(t)|t1−αg(t)|
≤ T1−αp* + q*‖y‖C1−α + r

*|t1−αg(t)|,

then
|t1−αg(t)| ≤ T

1−αp*
1 − r* + q*

1 − r* ‖y‖C1−α .

This implies, by (13) and Lemma 2.2, that for each t ∈ (0; T] we have

|y(t)| ≤ |y0|tα−1 +
T1−αp*

(1 − r*)Γ(α)

t∫︁
0

(t − s)α−1sα−1ds + q*‖y‖C1−α
(1 − r*)Γ(α)

t∫︁
0

(t − s)α−1sα−1ds

≤ |y0|tα−1 +
T1−αp*Γ(α)
(1 − r*)Γ(2α) t

2α−1 + q*Γ(α)
(1 − r*)Γ(2α) t

2α−1‖y‖C1−α .

Therefore
|t1−αy(t)| ≤ |y0| +

Tp*Γ(α)
(1 − r*)Γ(2α) +

q*TαΓ(α)
(1 − r*)Γ(2α)‖y‖C1−α .

Finally, by (9) we have

‖y‖C1−α ≤
(1 − r*)Γ(2α)|y0| + Tp*Γ(α)
(1 − r*)Γ(2α) − q*TαΓ(α) .

This shows that the set E is bounded. As a consequence of Schaefer’s fixed point theorem, we deduce that N
has at least a fixed point y* ∈ C1−α(J) which is a solution of the problem (1)-(2).

4 Ulam–Hyers–Rassias stability
Now, we state the following Ulam–Hyers–Rassias stable result.

Theorem 4.1. Assume (H1), (8) and
(H3) there exists a nondecreasing function ϕ ∈ C(J,R+) and there exists λϕ > 0 such that for any t ∈ (0, T] :

ρ Iα0+ϕ(t) ≤ λϕϕ(t)

are satisfied, then, the equation (1) is Ulam–Hyers–Rassias stable with respect to ϕ.

Proof. Let z ∈ C1−α(J) be a solution of the inequality (4). Denote by y the unique solution of the initial value
problem:

Dα0+y(t) = f
(︀
t, y(t), Dα0+y(t)

)︀
, for each , t ∈ (0, T],

t1−αy(t)|t=0 = y0.

Using Theorem 3.3, we obtain for each t ∈ (0, T]

y(t) = t1−αy0 +
1
Γ(α)

t∫︁
0

(t − s)α−1g(s)ds,
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where g : (0, T] → R be a function satisfying the functional equation

g(t) = f (t, y(t), g(t)).

Since z solution of the inequality (4) and by Remark 2.11, we have

Dα0+ z(t) = f
(︀
t, z(t), Dα0+ z(t)

)︀
+ σ(t), for each , t ∈ (0, T], (14)

t1−αz(t)|t=0 = y0. (15)

Clearly, the solution of the problem (14)–(15) is given by

z(t) = t1−αy0 +
1
Γ(α)

t∫︁
0

(t − s)α−1(h(s) + σ(s))ds, t ∈ (0, T],

where h : (0, T] → R be a function satisfying the functional equation

h(t) = f (t, z(t), h(t) + σ(t)).

Hence for each t ∈ (0, T], it follows that

|z(t) − y(t)| ≤ 1
Γ(α)

t∫︁
0

(t − s)α−1|σ(s)|ds + 1
Γ(α)

t∫︁
0

(t − s)α−1|h(s) − g(s)|ds

≤ ϵ
Γ(α)

t∫︁
0

(t − s)α−1ϕ(s)ds + 1
Γ(α)

t∫︁
0

(t − s)α−1|h(s) − g(s)|ds

≤ ϵλϕϕ(t) +
1
Γ(α)

t∫︁
0

(t − s)α−1|h(s) − g(s)|ds,

where g, h ∈ C1−α(J) such that

g(t) = f (t, y(t), g(t)),
h(t) = f (t, z(t), h(t) + σ(t)).

By (H1), we have
|h(t) − g(t)| = |f (t, z(t), h(t) + σ(t)) − f (t, y(t), g(t))|

≤ K|z(t) − y(t)| + L|h(t) − g(t)| + L|σ(t)|.

Then,
|h(t) − g(t)| ≤ K

1 − L |z(t) − y(t)| +
L

1 − L |σ(t)|.

Therefore, for each t ∈ (0, T]

|z(t) − y(t)| ≤
ϵλϕϕ(t)
1 − L + K

(1 − L)Γ(α)

t∫︁
0

(t − s)α−1|z(s) − y(s)|ds.

Applying Corollary 2.5, we get

|z(t) − y(t)| ≤
ϵλϕϕ(t)
1 − L Eα

(︂
Ktα
1 − L

)︂
≤

ϵλϕϕ(t)
1 − L Eα

(︂
KTα
1 − L

)︂
= ϵcϕϕ(t),
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where

cϕ =
λϕ
1 − L Eα

(︂
KTα
1 − L

)︂
.

Thus, the equation (1) is Ulam–Hyers–Rassias stable with respect to ϕ. The proof is complete.

Next, we present the following Ulam–Hyers stable result.

Theorem 4.2. Assume that (H1) and (8) are satisfied, then, the equation (1) is Ulam–Hyers stable.

Proof. Let z ∈ C1−α(J) be a solution of the inequality (3). Denote by y the unique solution of the initial value
problem:

Dα0+y(t) = f
(︀
t, y(t), Dα0+y(t)

)︀
, for each , t ∈ (0, T],

t1−αy(t)|t=0 = y0.

By the same way of the proof of Theorem 4.1, we can easily show that

|z(t) − y(t)| ≤ 1
Γ(α)

t∫︁
0

(t − s)α−1|σ(s)|ds + 1
Γ(α)

t∫︁
0

(t − s)α−1|h(s) − g(s)|ds

≤ ϵ
Γ(α)

t∫︁
0

(t − s)α−1ds + 1
Γ(α)

t∫︁
0

(t − s)α−1|h(s) − g(s)|ds

≤ ϵTα
Γ(α + 1) +

1
Γ(α)

t∫︁
0

(t − s)α−1|h(s) − g(s)|ds

≤ ϵTα
Γ(α + 1)(1 − L) +

K
Γ(α)(1 − L)

t∫︁
0

(t − s)α−1|z(s) − y(s)|ds.

Applying Lemma 2.4, we get

|z(t) − y(t)| ≤ ϵTα
Γ(α + 1)(1 − L)

⎡⎢⎢⎣1 +
t∫︁

0

∞∑︁
n=1

(︂
K

1 − L

)︂n
Γ(nα) (t − s)nα−1ds

⎤⎥⎥⎦

≤ ϵTα
Γ(α + 1)(1 − L)

⎡⎢⎢⎣1 + ∞∑︁
n=1

(︂
KTα
1 − L

)︂n
Γ(nα + 1)

⎤⎥⎥⎦
= ϵTα

Γ(α + 1)(1 − L)Eα
(︂
KTα
1 − L

)︂
= cϵ,

which completes the proof of the theorem.
Moreover, if we set ψf (ϵ) = cϵ;ψf (0) = 0, then, the equation (1) is generalized Ulam–Hyers stable.

5 An example
Consider the following initial value problem

D
1
2
0+y(t) =

1
10e−t+2

(︁
1 + |y(t)| +

⃒⃒⃒
D

1
2
0+y(t)

⃒⃒⃒)︁ + 1√
t
for each t ∈ (0, 1] (16)
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t
1
2 y(t)|t=0 =

3
2 . (17)

Set
f (t, u, v) = 1

10e−t+2(1 + |u| + |v|) +
1√
t
, t ∈ (0, 1], u, v ∈ R.

We have
C1−α([0, 1]) = C 1

2
([0, 1]) =

{︁
h : (0, 1] → R : t

1
2 h ∈ C([0, 1])

}︁
,

with α = 1
2 . Clearly, the function f ∈ C 1

2
([0, 1]).

For each u, ū, v, v̄ ∈ R and t ∈ (0, 1], we have

|f (t, u, v) − f (t, ū, v̄)| ≤ 1
10e (|u − ū| + |v − v̄|).

Hence, condition (H1) is satisfied with K = L = 1
10e .

The condition
KTαΓ(𝛾)

(1 − L)Γ(2α) =
√
π

10e − 1 < 1,

is satisfied with T = 1. It follows from Theorem 3.5 that the problem (16)-(17) has a unique solution in the
space C 1

2
([0, 1]). Moreover, Theorem 4.2 implies that the equation (16) is Ulam–Hyers stable.
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