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Abstract:We prove the “hot spots” conjecture on the Vicsek set. Specifically, we will show that every eigen-
function of the second smallest eigenvalue of the Neumann Laplacian on the Vicsek set attains its maximum
and minimum on the boundary.

Keywords: analysis on fractals, hot spots conjecture, Vicsek Set

MSC: 28A80, 47A75

1 Introduction
The “hot spots” conjecture studies whether a flat piece of metal that is given an initial heat distribution will
achieve its highest temperatures on its boundary given enough time. That is, the conjecture claims that in a
two-dimensional, bounded, connected domain D, the heat at point x at time t, u(x, t), achieves its maximum
value on the boundary of D. The “hot spots” conjecture was first posed by Rauch in 1974. An equivalent
formulation of the conjecture is as follows: every eigenfunction of the second eigenvalue of the Neumann
Laplacian attains its maximum andminimum on the boundary. The conjecture has been shown to be true for
some Euclidean domains [1–4] including recently for thin curved strips [5], but it has also been shown to fail
in others [6, 7].

There is now a notion of a Laplacian on many fractals, and the theory of eigenfunctions of the Laplacian
is well developed inmany cases. Therefore, one can formulate the “hot spot” conjecture on these fractals. We
are going to use the theory developed by Kigami [8], see also [9] that applies to the class of post critically finite
(p.c.f.) fractals. For many such fractals, eigenvalues and eigenfunctions of the Laplacian can be computed
explicitly via a method called spectral decimation [10–13]. The “hot spots” conjecture has been shown to
hold on the Sierpinski gasket and higher dimensional variants [14–16] but fail on the hexagasket fractal [17].
The hexagasket fractal is determined by an iterated function system consisting of six contractions. However,
the analytic boundary in the sense of Kigami studied in [17] consists of only three of the six fixed points of the
iterated function system.On the other hand, the boundary of the Sierpinski gasket and its higher dimensional
variants mentioned above consists of all of the fixed points of the iterated function system that determines
the gasket. Therefore, one might wonder whether the failure of the “hot spots” conjecture on the hexagasket
fractal might be due to the “smaller” boundary considered in [17]. The Vicsek set [18–20] is another type
of fractal that has been studied heavily. Zhou [21] described the spectral decimation on a family of Vicsek
sets, VSn, in terms of Chebyshev polynomials, and the authors of [22] used Zhou’s formulas to study the
Laplacian and spectral operators on the Vicsek set.We study in this paper the Vicsek set VS2 that is generated
by five contractions; however, its analytic boundary consists of only four of the five fixed points of the iterated
function systems. Our main theorem states that, unlike the hexagasket, the “hot spots” conjecture on the
Vicsek set is true. The proof of the main theorem is inspired by proofs in [15, 16] and [14]. It is, however, more
involved and technical.
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The organization of the paper is as follows: the second part of the introduction contains a background on
the Vicsek set VS2, and the energy and the Laplacian on the Vicsek set. In section 2, we review the Neumann
Laplacian on VS2, and show how to use the spectral decimation to determine the second smallest eigenvalue
of the Neumann Laplacian together with a basis of its eigenspace. Section 3 contains our main theorem. The
proof of the theorem follows relatively easily from Lemma 3.2 by an argument similar to the one in [15]. The
proof of the lemma, however, is very long and technical and occupies the entirety of Section 4. We placed the
statement and proof of some formulas used throughout the paper in the Appendix in order to help with the
readability of Section 4.

1.1 Background

We begin by reviewing several concepts in analysis on fractals as applied to the Vicsek set. First, an iterated
function system on a complete metric space X is a finite set of contraction mappings Fi : X → X, i = 1, . . . , n
[23, 24]. Given such an iterated function system there exists a unique compact invariant set K ⊆ X; that is, K
satisfies the following self-similar property,

K = F1(K)
⋃︁
F2(K)

⋃︁
· · ·
⋃︁
Fn(K).

The main object of study in this paper is the second order Vicsek set, VS2, which is the unique invariant
subset of R2 of the iterated function system defined by the following five similarities:

Fi(x) =
1
3(x − pi) + pi , (1)

where p1 = (0, 1), p2 = (1, 1), p3 = (1, 0), p4 = (0, 0), and p5 = (1/2, 1/2).
A picture of the Vicsek set is provided in the following figure.

Figure 1: Vicsek set.

TheVicsek setVS2 is an example ofwhat in the literature is called ap.c.f fractal and, thus, Kigami’s theory
[8] (see also [9]) applies to VS2. We describe next how this theory is applied to the Vicsek set in order to define
the standard energy and Laplacian on VS2. A useful feature of the Vicsek is that it can be approximated by an
increasing sequence of graphs, Γm as follows: the level zero graph approximation of the Vicsek set, Γ0, shown
below, consists of the set of vertices V0 at q1 = (0, 1), q2 = (1, 1), q3 = (1, 0), and q4 = (0, 0) connected as
in a complete graph. Note that Fi(qi) = qi, where i = 1, 2, 3, 4. The set V0 is also the boundary of the fractal
in the sense of [8, 21]. We call Γ0 the graph 0-cell. The level 1 graph approximation of the Vicsek set, Γ1 is
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Figure 2: Level 0 approximation.

Figure 3: Level 1 approximation.

constructed as follows: each of the five scaled versions of the level 0 Vicsek set which comprise Γ1 can be
obtained by applying F1(Γ0), F2(Γ0), etc. Therefore

Γ1 = F1(Γ0)
⋃︁
F2(Γ0)

⋃︁
F3(Γ0)

⋃︁
F4(Γ0)

⋃︁
F5(Γ0)

and, in particular, the set of vertices of Γ1 equals V1 = F1(V0)
⋃︀
F2(V0)

⋃︀
· · ·
⋃︀
F5(V0). We call the sets Fi(Γ0)

graph 1-cells. We note that there are five graph 1-cells.
In the general case, for m ≥ 1, the level m + 1 graph approximation Γm+1 is obtained from the level m graph
approximation Γm via

Γm+1 = F1(Γm)
⋃︁
F2(Γm)

⋃︁
· · ·
⋃︁
F5(Γm).

The image under themaps Fi of the graphm-cells form the graph (m+1)-cells.We note that each graphm-cell
contains five graph (m + 1)-cells. That is, when going from level m to level m + 1, a graph m-cell is going to
be replaced by five graph (m +1)-cells. We write Vm as the set of vertices at the levelm graph approximation.
Inductively, it can be shown that Vm ⊂ Vm+1, and that

⋃︀∞
m=0 Vm is a dense subset of VS2. Thus, it suffices to

study continuous functions on
⋃︀∞
m=0 Vm and extend them via continuity to VS2.

As detailed by [9], we can define graph energy at level m for the Vicsek set VS2 as follows:

Em(u) =
∑︁

{(x,y)|x∼y}

|u(x) − u(y)|2,

where x ∼ ymeans that x and y are neighboring vertices in Γm (that is, there is an edge in Γm joining x and y).
Energy generally requires renormalization with a given renormalization factor. For VS2, the renormalization
factor is equal to 3 [21]. Thus, for VS2, the renormalized graph energy is Em(u) = 3−mEm(u). One can define
the fractal’s energy, E(u), via

E(u) = lim
m→∞

Em(u),
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with the domain of the energy, domE, consisting of all continuous functions u on VS2 such that E(u) < ∞.
As detailed in [8, 9, 21], the choice of the renormalization constant in the definition of Em guarantees that
the domain of the energy is non-trivial. Now, knowing that the energy exists and can be written as above,
we know from [8, 9] that we can determine a fractal’s Laplacian. In domE, E extends via the polarization
formula to the bilinear function E(u, v). We consider the standard invariant measure µ on VS2; that is, the
unique measure that satisfies the following property (see [24] and [23] for details):∫︁

VS2

f (x) dµ(x) = 1
5

5∑︁
i=1

∫︁
VS2

f (Fi(x)) dµ(x).

Define the weak formulation of the Laplacian as follows [8, 9]: we say that a function u ∈ domE belongs to
the domain dom ∆ of the Laplacian if there is a continuous function f on VS2 such that

E(u, v) = −
∫︁
fvdµ

for all v ∈ dom0E := {v ∈ domE : v|V0 = 0}. In this case we write ∆u = f . As proven in [21], there exists
an equivalent pointwise formula for the Laplacian on the Vicsek set. This formula is given as the normalized
limit of a series of graph approximations and is written as follows for VS2:

∆u(x) = lim
m→∞

15m∆mu(x)

for all x not in the boundary V0. Here the graph Laplacian of the graph Γm, denoted by ∆m, is defined by

∆mu(x) =
1

degx
∑︁
y∼x

(u(y) − u(x)) (2)

for all x ∈ Vm \ V0, where degx represents the number of neighbors of x in Γm. The degree of a vertex x in Γm
is either 3 or 6 for all m ≥ 1.

2 Neumann Laplacian and spectral decimation
We study the Neumann Laplacian in this paper. That is, the Laplacian as defined with Neumann boundary
conditions. Neumann boundary conditions behave such that Equation (2) holds for all x ∈ Vm, including the
boundary V0.

The Neumann Laplacian of the level 0 graph approximation Γ0 for VS2 is then given by the following
matrix:

∆0 =

⎡⎢⎢⎢⎣
1 −1/3 −1/3 −1/3
−1/3 1 −1/3 −1/3
−1/3 −1/3 1 −1/3
−1/3 −1/3 −1/3 1

⎤⎥⎥⎥⎦ .
The 1/3 scaling factor outside of thematrix is derived from the 1/degx that appears in front of the summation
in the equation for ∆mu(x).

In order to study eigenvalues and eigenfunctions on VS2, we use the process of spectral decimation as
described in [9, 21] that we review next. First, there is a local extension algorithm which shows a unique way
to extend a function u that satisfies the eigenvalue equation −∆mu = λmu on Vm \ V0 to a function that we
still denote by u that satisfies the eigenvalue equation −∆m+1u = λm+1u on Vm+1 \ V0. Moreover there exists a
rational function R(λ) such that λm = R(λm+1) if λm is not a forbidden eigenvalue. That is, a singularity of the
function R. It is "forbidden" to decimate to such eigenvalues. Because forbidden eigenvalues do not have a
predecessor, i.e. there is no λm−1 corresponding to λm, we say that forbidden eigenvalues are "born" at a level
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of approximation m. Spectral decimation for VS2 is performed as follows. First, define

f2(λ) = T2(3λ − 1) − 3T1(3λ − 1), (3)
g2(λ) = U1(3λ − 1) − U0(3λ − 1),
h2(λ) = U1(3λ − 1) − 3U0(3λ − 1),

where T2 and U2 represent the Chebyshev polynomials of the 1st and 2nd kind, i.e. T1(λ) = λ, T2(λ) = 2λ2−1,
U0(λ) = 1, and U1(x) = 2λ. Therefore, f2(λ) = 18λ2 − 21λ + 4, g2(λ) = 6λ − 3, and h2(λ) = 6λ − 5. Zhou proved
in [21] (see also [9, 22]) that the spectral decimation function R is

R(λ) = λg2(λ)h2(λ) = 36λ3 − 48λ2 + 15λ. (4)

Additionally, the forbidden eigenvalues of VS2 are 4/3 and the zeroes of f2 and g2, 0, 1/2, and (7 ± 170.5)/12.
The extension of eigenfunctions of VS2 from one level to the next is given by [22]:

−(X + λM)−1J = 𝛾

⎡⎢⎢⎢⎣
a b a c c d d c c c d c
c d c a a b d c c c d c
c d c c c d b a a c d c
c d c c c d d c c a b a

⎤⎥⎥⎥⎦
T

, (5)

where

a = 9 − 42λ + 36λ2, b = 6(1 − 4λ + 3λ2), c = 1, d = 2 − 3λ, 𝛾 = 1
3(4 − 29λ + 60λ2 − 36λ3) .

Note that a, b, c, d and 𝛾 are functions of λ. Hereafter λ is any number that is not a forbidden eigenvalue of
VS2. In Γ1, J is equal to the V0 × (V1 \ V0) adjacency matrix, X is the adjacency matrix of (V1 \ V0) with the
degrees of every vertex as its diagonal entries, andM is a diagonal matrix such thatMii = -Xii. Going from Γm
to Γm+1, this matrix is applied to the vertices of one graph m-cell to obtain the values on the five new graph
(m + 1)-subcells.

We follow the convention from [22, Figure 4] when it comes to the labeling of the columns of the matrix
(5). That is, the first column corresponds to the point q5 = F1(q2), the second column corresponds to the
point q6 = F1(q3) = F5(q1), the third column corresponds to q7 = F1(q4), the fourth column corresponds to
q8 = F2(q1) and so on. To better understand the meaning of the matrix (5), let λ0 be an eigenvalue of ∆0, and
let u be a λ0 eigenvector on V0. To simplify the notation, write u(qi) = ui, i = 1, 2, 3, 4. Let λ1 be a solution
of R(λ) = λ0. Then u is extended to a λ1 eigenvector on V1 using (5) as described next. First, u|V0 does not
change. The extension of u to q5 = F1(q2) is computed using the first column of (5) as follows:

u(q5) = 𝛾au1 + 𝛾cu2 + 𝛾cu3 + 𝛾cu4,

where 𝛾, a, and c are evaluated at λ1. The extension of u to q6 is computed using the second column of (5) as
follows:

u(q6) = 𝛾bu1 + 𝛾du2 + 𝛾du3 + 𝛾du4,

where 𝛾, b, and d are evaluated at λ1. The computation of the extension of u to the remaining vertices in V1
is computed based on the corresponding columns in (5).

The eigenvalue extension function R(λ) = 36λ3 − 48λ2 + 15λ has three local inverses [22]. Let ϕ1, ϕ2,
ϕ3 denote the inverse functions of R in increasing order; that is, ϕ1 is the inverse of R(λ) on the interval
(0, 8−19

0.5

18 ), ϕ2 is the inverse of R(λ) on (8−19
0.5

18 , 8+19
0.5

18 ), and ϕ3 is the inverse of R(λ) on (8+19
0.5

18 , 1). Observe
ϕ1(x) < ϕ2(y) < ϕ3(z) for all x, y, z in the corresponding domain, and ϕ2 is decreasing while ϕ1 and ϕ3 are
increasing. Let ρ2 = 15 be the renormalization factor for the Laplacian. The Neumann eigenvalues are non-
negative and they accumulate at∞. Then the rules for spectral decimation in the case of VS2 are summarized
as follows [22]:
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1. For each Neumann eigenvalue λ, there is an infinite word {ωj}∞j=1, where ωj ∈ {1, 2, 3} for all j ≥ 1, such
that λ equals

lim
m→∞

15mϕωm ∘ ϕωm−1 ∘ ... ∘ ϕω1 (0)

or

lim
m→∞

15m+kϕωm ∘ ϕωm−1 ∘ ... ∘ ϕω1 (4/3).

The existence of the limit is proven in [21]. In the first case, the eigenvalue is in the 0-series, and in the
second series the eigenvalue is in the 4/3 series born on level k.

2. All but a finite number of the ωm are equal to 1.
3. For the 0-series, the first ωj with ωj ≠ 1 must be an odd number, and for the 4/3 series, ω1 must be an

odd number but ω1 ≠ 3.
4. Themultiplicity of each eigenvalue in the 0-series is 1, while themultiplicity of each 4/3-series eigenvalue

on level k is 2(5)k + 1.

In the remainder of the paper, we use the spectral decimation as applied to the following setup. Let λ0 =
4/3 be the second smallest eigenvalue of ∆0. Then λ0 = 4/3 has multiplicity 3 and a basis for its eigenspace
on V0 is given by the following eigenvectors:

u1 =

⎡⎢⎢⎢⎣
1
0
0
−1

⎤⎥⎥⎥⎦ , u2 =
⎡⎢⎢⎢⎣

0
1
0
−1

⎤⎥⎥⎥⎦ , u3 =
⎡⎢⎢⎢⎣

0
0
1
−1

⎤⎥⎥⎥⎦ . (6)

Extend λ0 at all levels along ϕ1. That is, define

λm = ϕ1(λm−1) for all m ≥ 1 (7)

and define
λ(2) = lim

m→∞
15mλm . (8)

Figure 4: Extension of u1 to V2.

We extend u1, u2 and u3 to eigenvectors of λ(2) on the Vicsek set via the spectral decimation. Figure 4
presents the extension of u1 from V0 to V2 using the spectral decimation described above.
The following important fact follows from [22, Theorem 2.2].
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Proposition 2.1. λ(2) is the 2nd smallest eigenvalue of the Neumann Laplacian on the Vicsek set.

An important fact later in the paper is that λ1 = ϕ1(4/3) = 1/6. One can easily check that R(1/6) = 4/3.
The fact that 1/6 is the smallest preimage of 4/3 under R(λ) follows from numerically solving the equation
R(λ) = 4/3. For future reference, using Maxima approximation, we find that λ(2) is roughly

2.601813889315113780749839.

3 The "hot spots" conjecture for the Vicsek set
We are now able to state the main theorem. The proof of the theorem follows from the main lemma 3.2. The
proof of this lemma is long and technical, and it will occupy the entirety of the next section. Our main result
states that every eigenfunction of the second smallest eigenvalue of the Neumann Laplacian on the Vicsek
set attains its maximum and minimum on the boundary. Our approach is based on techniques from [15] and
[16]. Our computations, however, are much more involved due to the complexity of the spectral decimation
matrix (5).

Theorem 3.1 (Main Theorem). Let VS2 be the Vicsek set and ∆ be the Neumann Laplacian as described in the
previous section. Then every eigenfunction of the second smallest eigenvalue λ(2) of ∆ attains its minimum and
maximum value on the boundary V0.

In order to prove this theorem, we begin by recalling the space of finite words that the five iterated func-
tions (1) of the Vicsek set generate. Let Σ = {1, 2, 3, 4, 5} be the corresponding alphabet and let Σm =
{ω1 . . . ωj . . . ωm | j ∈ {1, 2, 3, 4, 5} } be the set of words of length m. Note that in order to simplify the nota-
tion we do not separate the letters in a word by commas. So, for example, we write 14 for the word of length 2
that is formed with the letters 1 and 4. Define Σ* =

⋃︀∞
m=0 Σ

m as the set of all finite words. For every ω ∈ Σm, we
write |ω| := m for the length of ω. Let ∅ denote the empty word and |∅| = 0. Furthermore, Σ0 = {∅}. If ω, ν ∈ Σ*

then we write ων for the word obtained by concatenating the two words ω and ν together. In particular, we
will create words by adding just one letter. For example, ωi is the word that adds the letter i at the end of ω. If
all the letters of ω are the same, say equal to i ∈ {1, 2, 3, 4, 5}, then we write ω as [i]m, wherem is the length
of ω.

Recall that V0 = {q1, q2, q3, q4} where Fi(qi) = qi, i = 1, 2, 3, 4. We let Σ* = Σ* × {1, 2, 3, 4}. For ω ∈
Σm, we write Fω = Fω1 ∘ Fω2 ∘ ... ∘ Fωm and for (ω, i) ∈ Σ* we write qω,i = Fω(qi). Notice that {qω,i}(ω,i)∈Σ* =⋃︀∞
m=0 Vm forms a dense subset of VS2.
Recall from (8) that λ(2) = limm→∞ λm is the second smallest eigenvalue of the Neumann Laplacianwhere

λm are defined in (7). Recall also that λ0 = 4/3, λ1 = 1/6, and they are related via λm = R(λm+1) for all m ≥ 0,
where R(λ) is the eigenvalue extension function (4). We let EF2 be the the eigenspace of λ(2). Then EF2 is a
three-dimensional vector space by the spectral decimation and we pick the bases given by u1, u2, u3 ∈ EF2
with u1(q1) = 1, u1(q2) = 0, u1(q3) = 0, u1(q4) = −1, u2(q1) = 0, u2(q2) = 1, u2(q3) = 0, u2(q4) = −1,
u3(q1) = 0, u3(q2) = 0, u3(q3) = 1, u3(q4) = −1. That is, we pick u1, u2, u3 to be the extensions via the
spectral decimation of the 4/3-eigenvectors on V0 defined in (6).

Following some ideas from [15], we use the bases that we picked to define a partition of unity on Σ*.
Specifically, we define the functions f , g, h, and k with domain Σ* via:

f (ω, i) = 3
4u1(qω,i) −

1
4u2(qω,i) −

1
4u3(qω,i) +

1
4 , (9)

g(ω, i) = −14u1(qω,i) +
3
4u2(qω,i) −

1
4u3(qω,i) +

1
4 , (10)

h(ω, i) = −14u1(qω,i) −
1
4u2(qω,i) +

3
4u3(qω,i) +

1
4 , (11)

k(ω, i) = −14u1(qω,i) −
1
4u2(qω,i) −

1
4u3(qω,i) +

1
4 . (12)
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Then they satisfy the following crucial lemma.

Lemma 3.2. We have 0 ≤ f (ω, i), g(ω, i), h(ω, i), k(ω, i) ≤ 1 and f (ω, i) + g(ω, i) + h(ω, i) + k(ω, i) = 1 for
every ω ∈ Σ* and for every i ∈ {1, 2, 3, 4}. Additionally, f (∅, i) = δ1i, g(∅, i) = δ2i, h(∅, i) = δ3i, k(∅, i) = δ4i
where δij is the Kronecker-Delta function.

As mentioned at the beginning of the section, the proof of the lemma is long, technical, and will occupy the
next section of this paper. From the lemma, the theorem is proven as follows.

Proof of Theorem 3.1. Notice that the functions f , g, h, and k are related as follows:

f (ω, i) − k(ω, i) = u1(qω,i),
g(ω, i) − k(ω, i) = u2(qω,i),
h(ω, i) − k(ω, i) = u3(qω,i).

Let u ∈ EF2. Then there exist constants c1, c2, c3 such that u(x) = c1u1(x) + c2u2(x) + c3u3(x) for all x ∈ VS2
because u1, u2, u3 form a basis for EF2. It follows that

u(qω,i) = c1f (ω, i) + c2g(qω, i) + c3h(ω, i) + (−c1 − c2 − c3)k(ω, i).

Lemma 3.2 implies that the maximum/minimum value of u on
⋃︀∞
m=0 Vm is given by themaximum/minimum

of the values c1, c2, c3 and (−c1 − c2 − c3), which are the values of u on the boundary V0. Since
⋃︀∞
m=0 Vm is

dense in VS2 and u is continuous the theorem follows.

4 Proof of Lemma 3.2
Theproof of Lemma3.2will occupy the rest of this paper.Weprovidefirst a short summary of theproof in order
to help the reader navigate through the many lemmas that follow. First, an easy proof shows that f (∅, i) = δ1i
(Lemma 4.1). We observe that it suffices to prove the statement for f for the words ω that begin only with the
letters 1, 2, and 5, because f restricted to words that begin with 3 and 4 equals a “rotation” of f restricted to
words that begin with 2 (see Remark 4.4). The crucial Lemma 4.2 proves recursive formulas for f (ω, j) when
one increases the length of ω by 1. Using these formulas we are able to compute explicitly f (ω, j) for words
of the form ω = [1]m (Lemma 4.5), ω = [2]m (Lemma 4.6), and ω = [5]m (Lemma 4.7). Recall that we write
[i]m for the word of length m consisting only on the letter i, i.e. [i]m = ii . . . i (m-times). Using these explicit
formulas, we prove in Proposition 4.8 that the minimum of f is 0 and the maximum of f is 1. We finish the
proof of Lemma 3.2 by describing how to recover the same results for g, h, and k from the results proved for f .
To improve the readability of this section, we leave the statements and proofs of some useful formulas until
the Appendix (see Lemma A.1).

We continue to use the notation described in the previous section. In particular, f , g, h and k are the
functions defined in (9), (10), (11), and (12). Recall that we do not separate the letters in a word ω ∈ Σ*.
Therefore, 123 is the word of length 3 that consists of the letters 1, 2 and 3 (we read this word “one, two,
three”, as opposed to “one hundred twenty three”). This wordwill correspond to the composition F1 ∘F2 ∘F3.

We break the proof of the main Lemma 3.2 into a series of lemmas. We begin with the easier part.

Lemma 4.1. f (∅, i) = δ1i, g(∅, i) = δ2i, h(∅, i) = δ3i, k(∅, i) = δ4i, where ∅ is the empty word and δij is the
Kronecker-Delta function.
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Proof. From the definition of the functions, it is clear that f (ω, i) + g(ω, i) + h(ω, i) + k(ω, i) = 1. Notice that

f (∅, 1) = 3
4u1(q1) −

1
4u2(q1) −

1
4u3(q1) +

1
4 = 3

4 + 1
4 = 1,

f (∅, 2) = 3
4u1(q2) −

1
4u2(q2) −

1
4u3(q2) +

1
4 = 1

4 −
1
4 = 0,

f (∅, 3) = 3
4u1(q3) −

1
4u2(q3) −

1
4u3(q3) +

1
4 = 1

4 −
1
4 = 0,

f (∅, 4) = 3
4u1(q4) −

1
4u2(q4) −

1
4u3(q4) +

1
4 = 1

4 −
1
4 = 0.

Hence, f (∅, i) = δ1,i. Similar statements hold for g and h by symmetry, and similar computation shows that
the result also holds for k.

The hard part that remains is to prove that each of these functions is between 0 and 1. First, we begin by
proving that f (ωi, i) = f (ω, i) and describe recursive relations satisfied by f .

f (ωi, i) = 3
4u1(Fωi(qi)) −

1
4u2(Fωi(qi)) −

1
4u3(Fωi(qi)) +

1
4

= 3
4u1(Fω(Fi(qi))) −

1
4u2(Fω(Fi(qi))) −

1
4u3(Fω(Fi(qi))) +

1
4

= 3
4u1(Fω(qi)) −

1
4u2(Fω(qi)) −

1
4u3(Fω(qi)) +

1
4

= f (ω, i)

because Fi(qi) = qi. So f (ωi, i) = f (ω, i) for all i ∈ {1, 2, 3, 4}.
For the rest of the paper we write am, bm, cm, dm for the elements of the extension matrix (5) evaluated

at λm for all m ≥ 0 and

αm := 𝛾mam = 9 − 42λm + 36λ2m
3(4 − 29λm + 60λ2m − 36λ3m)

, (13)

βm := 𝛾mbm = 6(1 − 4λm + 3λ2m)
3(4 − 29λm + 60λ2m − 36λ3m)

, (14)

χm := 𝛾mcm = 1
3(4 − 29λm + 60λ2m − 36λ3m)

, (15)

δm := 𝛾mdm = 2 − 3λm
3(4 − 29λm + 60λ2m − 36λ3m)

. (16)

Lemma 4.2. The following formulas hold for all ω ∈ Σ*:

f (ω1, 2) = f (ω1, 4) = αm+1f (ω, 1) + χm+1f (ω, 2) + χm+1f (ω, 3) + χm+1f (ω, 4) +
1
4(1 − αm+1 − 3χm+1), (17)

f (ω2, 1) = f (ω2, 3) = χm+1f (ω, 1) + αm+1f (ω, 2) + χm+1f (ω, 3) + χm+1f (ω, 4) +
1
4(1 − αm+1 − 3χm+1), (18)

f (ω3, 2) = f (ω3, 4) = χm+1f (ω, 1) + χm+1f (ω, 2) + αm+1f (ω, 3) + χm+1f (ω, 4) +
1
4(1 − αm+1 − 3χm+1), (19)

f (ω4, 1) = f (ω4, 3) = χm+1f (ω, 1) + χm+1f (ω, 2) + χm+1f (ω, 3) + αm+1f (ω, 4) +
1
4(1 − αm+1 − 3χm+1), (20)

f (ω5, 1) = f (ω1, 3) = βm+1f (ω, 1) + δm+1f (ω, 2) + δm+1f (ω, 3) + δm+1f (ω, 4) +
1
4(1 − βm+1 − 3δm+1), (21)

f (ω5, 2) = f (ω2, 4) = δm+1f (ω, 1) + βm+1f (ω, 2) + δm+1f (ω, 3) + δm+1f (ω, 4) +
1
4(1 − βm+1 − 3δm+1), (22)

f (ω5, 3) = f (ω3, 1) = δm+1f (ω, 1) + δm+1f (ω, 2) + βm+1f (ω, 3) + δm+1f (ω, 4) +
1
4(1 − βm+1 − 3δm+1), (23)

f (ω5, 4) = f (ω4, 2) = δm+1f (ω, 1) + δm+1f (ω, 2) + δm+1f (ω, 3) + βm+1f (ω, 4) +
1
4(1 − βm+1 − 3δm+1). (24)
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Proof. Let ω ∈ Σm for some m ≥ 0. That is, |ω| = m. We prove the case of f (ω4, 3) as follows:

f (ω4, 3) = 3
4u1(Fω4(q3)) −

1
4u2(Fω1(q3)) −

1
4u3(Fω4(q3)) +

1
4

= 3
4[χm+1u1(Fω(q1)) + χm+1u1(Fω(q2)) + χm+1u1(Fω(q3)) + αm+1u1(Fω(q4))]

−14 [χm+1u2(Fω(q1)) + χm+1u2(Fω(q2)) + χm+1u2(Fω(q3)) + αm+1u2(Fω(q4))]

−14 [χm+1u3(Fω(q1)) + χm+1u3(Fω(q2)) + χm+1u3(Fω(q3)) + αm+1u3(Fω(q4))]

+14 .

Therefore,

f (ω4, 3) = χm+1f (ω, 1) + χm+1f (ω, 2) + χm+1f (ω, 3) + αm+1f (ω, 4) +
1
4(1 − αm+1 − 3χm+1).

The fact that f (ω4, 1) = f (ω4, 3) follows from the fact that the corresponding columns in the extensionmatrix
(5) are identical. Therefore (20) holds. The remaining formulas follow by similar computation. The fact that
f (ω5, 1) = f (ω1, 3), f (ω5, 2) = f (ω2, 4), f (ω5, 3) = f (ω3, 1), and f (ω5, 4) = f (ω4, 2) follows from the fact
that F5(q1) = F1(q3), F5(q2) = F2(q4), F5(q3) = F3(q1) and F5(q4) = F4(q2).

As an immediate consequence of Lemma 4.2, we obtain the following.

Lemma 4.3. Let ω ∈ Σ*.

1. If f (ω, 1) = f (ω, 2) = f (ω, 3) then

f (ω1, 2) = f (ω1, 4) = f (ω2, 1) = f (ω2, 3) = f (ω3, 2) = f (ω3, 4)

and f (ω1, 3) = f (ω2, 4) = f (ω3, 1).
2. If f (ω, 1) = f (ω, 2) = f (ω, 4) then

f (ω1, 2) = f (ω1, 4) = f (ω2, 1) = f (ω2, 3) = f (ω4, 1) = f (ω4, 3)

and f (ω1, 3) = f (ω2, 4) = f (ω4, 2).
3. If f (ω, 2) = f (ω, 3) = f (ω, 4), then

f (ω2, 1) = f (ω2, 3) = f (ω3, 2) = f (ω3, 4) = f (ω4, 1) = f (ω4, 3)

and f (ω2, 4) = f (ω3, 1) = f (ω4, 2).

Remark 4.4. Using Lemma 4.2 and Lemma 4.3, one can prove inductively the following symmetries (“rota-
tions”) of the function f :

1. Let R1 : Σ → Σ be the permutation that flips 2 and 4, R1 = (2, 4). We denote by R1 its extension to Σ* as
well. Then f (ω, i) = f (R1(ω), R1(i)) for all (ω, i) ∈ Σ*.

2. Let R2 : Σ → Σ be the permutation defined by R2 = (1, 2, 3, 4). Then f (2ω, i) = f (3R2(ω), R2(i)) for all
ω ∈ Σ* and i ∈ {1, 2, 3, 4}.

We call R1 and R2 “rotations” since, if we view f defined on VS2 via the projection π : Σ* → VS2 defined
by π(ω, i) := qω,i, then R1 flips ∪m≥0Vm around the diagonal going from q1 to q3, and R2 rotates the 2-cell
F2(∪m≥0Vm) by 90∘ and moves it into the 2-cell F3(∪m≥0Vm).

There is a permutation that rotates F2(∪m≥0Vm) and moves it into the 2-cell F4(∪m≥0Vm). As a conse-
quence, in the following we will only consider words ω ∈ Σ* whose first letter is either 1, 2 or 5.

We begin by proving that 0 ≤ f ([1]m , j), f ([2]m , j), f ([5]m , j) ≤ 1 for all j ∈ {1, 2, 3, 4}. We have already shown
that f ([1]m , 1) = 1 for all m ≥ 0, so we now prove that 0 ≤ f ([1]m , j) ≤ 1 for all j ∈ {2, 3, 4}. We accomplish
this by determining explicit formulas for f ([1]m , j) in the following lemma.
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Lemma 4.5. Wehave f ([1]m , 2) = f ([1]m , 4) = 1and f ([1]m , 3) = 1−9 λm4 for all m ≥ 1. Therefore0 ≤ f ([1]m , j) ≤
1 for all j ∈ {2, 3, 4} since 0 < λm ≤ 1/6 for all m ≥ 1, and limm→∞ f ([1]m , j) = 1 for all j ∈ {1, 2, 3, 4}.

Proof. We prove the lemma by induction. First, consider ω = ∅ in (17); that is, if m = 1 then:

f (1, 2) = f (1, 4) = α1f (∅, 1) + χ1f (∅, 2) + χ1f (∅, 3) + χ1f (∅, 4) +
1
4(1 − α1 − 3χ1)

= α1 +
1
4(1 − α1 − 3χ1)

= 1
4(1 + 3α1 − 3χ1)

= 1
4
2λ1 − 3
2λ1 − 1

by Lemma A.1 and

f (1, 3) = β1f (∅, 1) + δ1f (∅, 2) + δ1f (∅, 3) + δ1f (∅, 4) +
1
4(1 − β1 − 3δ1)

= 1
4(1 + 3β1 − 3δ1) =

1
4
2λ1 − 2
2λ1 − 1

by Lemma A.1. By plugging in λ1 = 1/6 we obtain that f (1, 2) = f (1, 4) = 1 and f (1, 3) = 5
8 = 1− 9

4 λ1. Assume
that the claims holds for m ≥ 1. Then, using the induction hypothesis, (13), (15), (17) and Lemma A.1, we
obtain:

f ([1]m+1, 2) = αm+1f ([1]m , 1) + χm+1f ([1]m , 2) + χm+1f ([1]m , 3) + χm+1f ([1]m , 4) +
1
4
(︀
1 − αm+1 − 3χm+1

)︀
= (9 − 42λm+1 + 36λ2m+1)χm+1 + χm+1 + χm+1

(︂
1 − 9

4 λm
)︂
+ χm+1 −

1
4
(︀
3R(λm+1)

)︀
χm+1

which, by factoring out χm+1 and using the fact that R(λm+1) = λm, equals

χm+1
(︀
12 − 42λm+1 + 36λ2m+1 − 3λm

)︀
which by replacing λm with R(λm+1) equals

χm+1
(︀
12 − 87λm+1 + 180λ2m+1 − 108λ3m+1

)︀
= χm+1 · 3

(︀
4 − 29λm+1 + 60λ2m+1 − 36λ3m+1

)︀
= 1.

Hence f ([1]m+1, 2) = f ([1]n+1), 4) = 1. Now, by using the induction hypothesis, (14), (16), (21) and Lemma A.1,
we obtain

f ([1]m+1, 3) = βm+1f ([1]m , 1) + δm+1f ([1]m , 2) + δm+1f ([1]m , 3) + δm+1f ([1]m , 4) +
1
4
(︀
1 − β1 − 3δ1)

= βm+1 + δm+1 + δm+1
(︂
1 − 9

4 λm
)︂
+ δm+1 +

1
4
18 · 3λm+1(λm+1 − 1)(1 − 2λm+1)

3(1 − 2λm+1)f2(λm+1)
.

Next, by using the fact that 3λm+1(1 − 2λm+1) = R(λm+1)/(5 − 6λm+1), we observe that f ([1]m+1, 3) equals

χm+1
(︂
6(1 − 4λm+1 + 3λ2m+1) + 2 − 3λm+1 + (2 − 3λm+1)

(︀
1 − 9

4 λm
)︀
+ 2 − 3λm+1 +

1
4
18(λm+1 − 1)λm

5 − 6λm+1

)︂
= χm+1

(︂
18λ2m+1 − 33λm+1 + 12 −

9
4 λm

(︀
2 − 3λm+1 +

2(λm+1 − 1)
5 − 6λm+1

)︀)︂
.

We simplify next the last parenthesis in the above expression:

9
4 λm

(︀
2 − 3λm+1 +

2(λm+1 − 1)
5 − 6λm+1

)︀
= 9
4 λm

12 − 29λm+1 + 18λ2m+1
5 − 6λm+1

= 9
4 λm

8 − 8λm+1
5 − 6λm+1

+ 9
4 λm

f2(λm+1)
5 − 6λm+1

.
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Replacing λm with R(λm+1) = 3λm+1(1 − 2λm+1)(5 − 6λm+1), we obtain

9
4 λm

(︀
2 − 3λm+1 +

2(λm+1 − 1)
5 − 6λm+1

)︀
= 27λm+1(1 − 2λm+1)(1 − λm+1) +

9
4 λm+13(1 − 2λm+1)f2(λm+1).

Hence, since 3(1 − 2λm+1)f2(λm+1) = 1/χm+1, and after multiplying through the remaining terms and simpli-
fying, we obtain

f ([1]m+1, 3) = χm+1(12 − 87λm+1 + 180λ2m+1 − 108λ3m+1) −
9
4 λm+1 = 1 − 9

4 λm+1.

The induction is now complete and the lemma is proved.

Next, we consider f ([2]m , j), where j ∈ {1, 2, 3, 4}. We have already shown that f ([2]m , 2) = 0 for all m ≥ 0,
so we now prove that 0 ≤ f ([2]m , j) ≤ 1 for all j ∈ {1, 3, 4}.

Lemma 4.6. Wehave f ([2]m , 1) = f ([2]m , 3) = 0 and f ([2]m , 4) = 3
4 λm for all m ≥ 1. Therefore0 ≤ f ([2]m , j) ≤ 1

for all j ∈ {1, 3, 4} since 0 < λm ≤ 1/6 for all m ≥ 1. Moreover, limm→∞ f ([2]m , i) = 0 for all i ∈ {1, 2, 3, 4}.

Proof. We prove the lemma by induction. First, consider ω = ∅ in (18) and (22), and, hence,m = 1. We obtain

f (2, 1) = f (2, 3) = χ1f (∅, 1) + α1f (∅, 2) + χ1f (∅, 3) + χ1f (∅, 4) +
1
4(1 − α1 − 3χ1)

= χ1 +
1
4(1 − α1 − 3χ1)

= 1
4(1 − α1 + χ1)

= 1
4

1 − 6λ1
3(1 − 2λ1)

and

f (2, 4) = δ1f (∅, 1) + β1f (∅, 2) + δ1f (∅, 3) + δ1f (∅, 4) +
1
4(1 − β1 − 3δ1)

= 1
4(1 − β1 + δ1)

= 1
4

2 − 6λ1
3(1 − 2λ1)

.

Since λ1 = 1/6 it follows that

f (2, 1) = f (2, 3) = 1
4

1 − 6λ1
3(1 − 2λ1)

= 0

and
f (2, 4) = 1

4
2 − 6λ1

3(1 − 2λ1)
= 3
24 = 3

4 λ1

Assume now that f ([2]m , 1) = f ([2]m , 3) = 0 and that f ([2]m , 4) = 3
4 λm. We prove that f ([2]m+1, 1) =

f ([2]m+1, 3) = 0 and that f ([2]m+1, 4) = 3
4 λm+1. Using (22) we have

f ([2]m+1, 4) = δm+1f ([2]m , 1) + βm+1f ([2]m , 2) + δm+1f ([2]m , 3) + δm+1f ([2]m , 4) +
1
4(1 − βm+1 − 3δm+1)

= 3
4 λmδm+1 +

1
4
18λm+1(λm+1 − 1)3(1 − 2λm+1)

3(1 − 2λm+1)f2(λm+1)
.

Recall from (16) and A.1 that
δm+1 =

2 − 3λm+1
3(1 − 2λm+1)f2(λm+1)

.

Then notice from Lemma A.1 that

3λm+1(1 − 2λm+1) =
R(λm+1)
5 − 6λm+1

= λm
5 − 6λm+1

.
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Therefore,

f ([2]m+1, 4) = 3
4 λm

2 − 3λm+1
3(1 − 2λm+1)f2(λm+1)

+ 1
4

18(λm+1 − 1)λm
3(1 − 2λm+1)f2(λm+1)(5 − 6λm+1)

.

Factoring out 3
4 λm and the denominator we obtain

f ([2]m+1, 4) = 3
4 λm

1
3(1 − 2λm+1)f2(λm+1)

(︂
2 − 3λm+1 +

6(λm+1 − 1)
5 − 6λm+1

)︂
.

We now use the following relationship

2 − 3λm+1 +
6(λm+1 − 1)
5 − 6λm+1

= f2(λm+1)
5 − 6λm+1

.

Therefore,

f ([2]m+1, 4) = 3
4 λm

1
3(1 − 2λm+1)f2(λm+1)

f2(λm+1)
5 − 6λm+1

= 3
4 λm

1
3(1 − 2λm+1)(5 − 6λm+1)

.

Finally, notice that
λm = R(λm+1) = 3λm+1(1 − 2λm+1)(5 − 6λm+1).

Therefore,
f ([2]m+1, 4) = 3

4 λm+1.

The proof that f ([2]m+1, 1) = f ([2]m+1, 3) = 0 follows as below:

f ([2]m+1, 1) = χm+1f ([2]m , 1) + αm+1f ([2]m , 2) + χm+1f ([2]m , 3) + χm+1f ([2]m , 4) +
1
4(1 − αm+1 − 3χm+1)

= 3
4 χm+1λm −

1
4

3R(λm+1)
3(1 − 2λm+1)(f2(λm+1))

= 1
4

3λm − 3R(λm+1)
3(1 − 2λm+1f2(λm+1)

= 1
4

3λm − 3λm
3(1 − 2λm+1)f2(λm+1)

= 0.

The induction is now complete and the lemma is proved.

We turn now to prove 0 ≤ f ([5]m , j) ≤ 1 for all j ∈ {1, 2, 3, 4}. Recall from Lemmas 4.2, 4.5 and 4.6 that
f (5, 1) = f (1, 3) = 1 − 9

4 λ1 and f (5, 2) = f (5, 3) = f (5, 4) = f (2, 4) =
3
4 λ1.

Lemma 4.7. We have

f ([5]m , 1) = 1
4 + 1

4
1

3m−1
m∏︁
k=1

1
1 − 2λk

(25)

and

f ([5]m , 2) = f ([5]m , 3) = f ([5]m , 4) = 1
4 −

1
4

1
3m

m∏︁
k=1

1
1 − 2λk

(26)

for all m ≥ 2. Therefore, {f ([5]m , 1)}m≥1 is a decreasing sequence and {f ([5]m , 2)}m≥1 is an increasing sequence.
The limit of both of these sequences equals 1/4.
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Proof. We begin with m = 2. Using (21) we have

f (55, 1) = f (51, 3) = β2f (5, 1) + δ2f (5, 2) + δ2f (5, 3) + δ3f (5, 4) +
1
4
(︀
1 − β2 − 3δ2

)︀
= β2

(︂
1 − 9

4 λ1
)︂
+ 3δ2

3
4 λ1 +

1
4
(︀
1 − β2 − 3δ2

)︀
= 1
4 + 3

4(β2 − δ2) −
9
4 λ1(β2 − δ2)

= 1
4 + 3

4(β2 − δ2)(1 − 3λ1)

= 3
4

1
3(1 − 2λ2)

(1 − 3λ1)

= 1
4 + 1

4
1
3

1
1 − 2λ1

1
1 − 2λ2

,

where in the last step we used Lemma A.1 and the fact that 1 − 3λ1 = 1
3

1
1−2λ1 since λ1 = 1/6.

Using equation (22) we obtain

f (55, 2) = f (52, 4) = δ2f (5, 1) + β2f (5, 2) + δ2f (5, 3) + δ2f (5, 4) +
1
4
(︀
1 − β2 − 3δ2

)︀
= δ2

(︂
1 − 9

4 λ1
)︂
+ β2

3
4 λ1 + 2δ2

3
4 λ1 +

1
4
(︀
1 − β2 − 3δ2

)︀
= 1
4 −

1
4(β2 − δ2)(1 − 3λ1) =

1
4 −

1
4
1
32

1
1 − 2λ1

1
1 − 2λ2

.

Since f (5, 2) = f (5, 3) = f (5, 4), the equations (22), (23), and (24) imply that f (55, 2) = f (55, 3) = f (55, 4).
Assume now that (25) and (26) hold for m ≥ 2. We prove the induction step:

f ([5]m+1, 1) = f ([5]m1, 3) =βm+1f ([5]m , 1) + δm+1f ([5]m , 2) + δm+1f ([5]m , 3) + δm+1f ([5]m , 4)

+ 1
4
(︀
1 − βm+1 − 3δm+1

)︀
=βm+1

(︃
1
4 + 1

4
1

3m−1
m∏︁
k=1

1
1 − 2λk

)︃
+ 3δm+1

(︃
1
4 −

1
4

1
3m

m∏︁
k=1

1
1 − 2λk

)︃

+ 1
4
(︀
1 − βm+1 − 3δm+1

)︀
which, after we cancel out 1

4βm+1 and
3
4 δm+1, and factor out the products (notice that the 3 in front of δm+1

reduces the power of 3 in the second product), equals

1
4 + 1

4
1

3m−1
m∏︁
k=1

1
1 − 2λk

(︀
βm+1 − δm+1

)︀
= 1
4 + 1

4
1
3m

m+1∏︁
k=1

1
1 − 2λk

,

where we used Lemma A.1 in the last equality.
Using now equation (22) we obtain

f ([5]m+1, 1) = f ([5]m1, 3) =δm+1f ([5]m , 1) + βm+1f ([5]m , 2) + δm+1f ([5]m , 3) + +δm+1f ([5]m , 4)

+ 1
4
(︀
1 − βm+1 − 3δm+1

)︀
=δm+1

(︃
1
4 + 1

4
1

3m−1
m∏︁
k=1

1
1 − 2λk

)︃
+ βm+1

(︃
1
4 −

1
4

1
3m

m∏︁
k=1

1
1 − 2λk

)︃

+ 2δm+1

(︃
1
4 −

1
4

1
3m

m∏︁
k=1

1
1 − 2λk

)︃
+ 1
4
(︀
1 − βm+1 − 3δm+1

)︀
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which, after canceling 1
4βm+1 and

3
4 δm+1, and simplifying the remaining two expressions involving δm+1 (no-

tice that the expression with a + in front of the big product needs to be multiplied by a 3 for the common
denominator) equals

1
4 + δm+1

1
4

1
3m

m∏︁
k=1

1
1 − 2λk

− βm+1
1
4

1
3m

m∏︁
k=1

1
1 − 2λk

= 1
4 −

1
4

1
3m

m∏︁
k=1

1
1 − 2λk

(︀
βm+1 − δm+1

)︀
= 1
4 −

1
4

1
3m+1

m+1∏︁
k=1

1
1 − 2λk

by using Lemma A.1 again. The induction is complete. The last part of the lemma follows from the fact that
{λm} is a decreasing sequence whose limit is 0 and λ1 = 1/6. In particular, limm→∞ 1

3m
∏︀m
k=1

1
1−2λk is decreas-

ing to 0.

Thus, 0 ≤ f ([i]m , j) ≤ 1 for all i ∈ {1, 2, 3, 4, 5} and j ∈ {1, 2, 3, 4}. The next step is to prove that 0 ≤ f (ω, j) ≤ 1
for all (ω, j) ∈ Σ*.We accomplish this by showing that, for a fixed i ∈ Σ, wehavemax(iω,j) f (iω, j) = maxj f (i, j)
and min(iω,j) f (iω, j) = minj f (i, j) (where iω is the word formed by the letter i followed by the word ω). By
Remark 4.4 we only need to prove the statement for i = 1, i = 2 and i = 5.

Proposition 4.8. With the notation as above, we have

max
{(iω,j) : ω∈Σ* ,j∈{1,2,3,4}}

f (iω, j) = max
j∈{1,2,3,4}

f (i, j)

and
min

{(iω,j) : ω∈Σ* ,j∈{1,2,3,4}}
f (iω, j) = min

j∈{1,2,3,4}
f (i, j)

for all i ∈ {1, 2, 3, 4, 5}. Therefore,max(ω,j)∈Σ* f (ω, j) = 1 andmin(ω,j)∈Σ* f (ω, j) = 0.

Proof. We begin by proving the proposition for the case |ω| = 1. As noted above, it suffices to consider the
cases i = 1, 2 and 5. We begin with i = 1. Lemma 4.5 implies that minj∈{1,2,3,4} f (1, j) = 1 − 9λ1/4 and
maxj∈{1,2,3,4} f (1, j) = 1. Moreover, theminimum is attained at j = 3, and themaximum is attained at j = 1, 2
and 4. The second part of Lemma 4.3 with ω = 1 and Lemma 4.5 implies that

f (11, 2) = f (11, 4) = f (12, 1) = f (12, 3) = f (14, 1) = f (14, 3) = 1

and f (11, 3) = f (12, 4) = f (14, 2) = 1 − 9λ2/4. Recall also that f (11, 1) = f (1, 1) = 1, f (12, 2) = f (1, 2) = 1,
f (13, 3) = f (1, 3) = 1, f (14, 4) = f (1, 4) = 1 − 9

4 λ1, f (15, 1) = f (11, 3), f (15, 2) = f (12, 4), f (15, 3) = f (13, 1),
and f (15, 4) = f (14, 2). Therefore we only need to check that 1 − 9/4λ1 ≤ f (13, 2) = f (13, 4), f (13, 1) ≤ 1.
Using equation (19) we have

f (13, 2) = χ2f (1, 1) + χ2f (1, 2) + α2f (1, 3) + χ2f (1, 4) +
1
4
(︀
1 − α2 − 3χ2

)︀
= χ2 + χ2 + α2

(︀
1 − 9

4 λ1
)︀
+ χ2 −

3
4R(λ2)χ2.

Using (13) we have
α2 = (9 − 42λ2 + 36λ22)χ2 = χ2 + (8 − 42λ2 + 36λ22)χ2.

Therefore,

α2
(︀
1 − 9

4 λ1
)︀
= χ2

(︀
1 − 9

4 λ1
)︀
+ (8 − 42λ2 + 36λ22)χ2

(︀
1 − 9

4 λ1
)︀

< χ2
(︀
1 − 9

4 λ2
)︀
+ (8 − 42λ2 + 36λ22)χ2
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since 1 − 9λ1/4 < 1. Therefore,

f (13, 2) < χ2 + χ2 + χ2
(︀
1 − 9

4 λ1
)︀
+ (8 − 42λ2 + 36λ22)χ2 + χ2 −

3
4 λ1χ2

= χ2 + χ2 + χ2
(︀
1 − 9

4 λ1
)︀
+ α2 −

3
4 λ1χ2

= 1,

where we grouped a χ2 with (8 − 42λ2 + 36λ22)χ2 to obtain α2, and we used the proof of Lemma 4.5 to get the
last equality. A similar computation shows that

f (13, 4) = χ2 + χ2 + χ2
(︀
1 − 9

4 λ1
)︀
+ α2 − (8 − 42λ2 + 36λ22)χ2

(︀
1 − 9

4 λ1
)︀
− 3
4 λ1χ2

= 1 − (8 − 42λ2 + 36λ22)χ2
9
4 λ1

> 1 − 9
4 λ1.

For the last remaining vertex, we use (21). We have

f (13, 1) = δ2f (1, 1) + δ2f (1, 2) + β2f (1, 3) + δ2f (1, 4) +
1
4(1 − β2 − 3δ2)

= δ2 + δ2 + β2
(︀
1 − 9

4 λ1
)︀
+ δ2 +

1
4(1 − β2 − 3δ2).

Since β2 − δ2 = 1
3−6λ2 , we have β2 = δ2 +

1
3−6λ2 . Therefore,

f (13, 1) = δ2 + δ2 + δ2
(︀
1 − 9

4 λ1
)︀
+ 1
3 − 6λ2

(︀
1 − 9

4 λ1
)︀
+ δ2 +

1
4(1 − β2 − 3δ2)

< δ2 + δ2 + δ2
(︀
1 − 9

4 λ1
)︀
+ 1
3 − 6λ2

+ δ2 +
1
4(1 − β2 − 3δ2)

which, by combining a δ2 with 1
3−6λ2 , equals

β2 + δ2 + δ2 + δ2
(︀
1 − 9

4 λ1
)︀
+ 1
4(1 − β2 − 3δ2) = 1 − 9

2 λ2 < 1,

by the proof of Lemma 4.5. To prove that f (13, 1) > f (1, 3) we modify the above proof as follows:

f (13, 1) − f (1, 3) = δ2 + δ2 +
(︀
1 − 9

4 λ1
)︀
(β2 − 1) + δ2 +

1
4(1 − β2 − 3δ2)

which using that β2 = δ2 + 1
3−6λ2 equals(︀

1 − 9
4 λ1

)︀
δ2 +

(︀
1 − 9

4 λ1
)︀(︀ 1
3 − 6λ2

− 1
)︀
+ (δ2 +

1
3 − 6λ2

) − 1
3 − 6λ2

+ δ2 + δ2 + 1
4(1 − β2 − 3δ2).

Since β2 = δ2 + 1
3−6λ2 , by the proof of Lemma 4.5, and by factoring out 1

3−6λ2 , f (13, 1) − f (1, 3) equals

1 − 9
4 λ2 −

(︀
1 − 9

4 λ1
)︀
+
(︀
1 − 9

4 λ1 − 1
)︀ 1
3 − 6λ2

> −94 λ2 +
9
4 λ1 −

3
4 λ1 = −

9
4 λ2 +

6
4 λ1 > 0,

where we used the fact that 1
3−6λ2 > 1

3 and the fact that the inequality λ1 > 3
2 λ2 is clearly true. Therefore

f (13, 1) > f (1, 3) = 1 − 9
4 λ1.

We move now to the case i = 2 and |ω| = 1. We note that by Lemma 4.6, minj∈{1,2,3,4} f (2, j) = 0 and
maxj∈{1,2,3,4} f (2, j) = 3λ1/4. Moreover, the minimum is attained at j = 1, 2 and 3, and the maximum is
attained at j = 4. Therefore Lemma 4.6 and the first part of Lemma 4.3 applied to ω = 2 imply that

f (22, 1) = f (22, 3) = f (23, 2) = f (23, 4) = f (21, 2) = f (21, 4) = 0,
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and f (21, 3) = f (22, 4) = f (23, 1) = 3λ2/4 < 3λ1/4. Also, f (22, 2) = f (2, 2) = 0, f (23, 3) = f (2, 3) = 0,
f (24, 4) = f (2, 4) = 3λ1/4, f (25, 1) = f (21, 3), f (25, 2) = f (22, 4), f (25, 3) = f (23, 1), and f (25, 4) = f (24, 2).
Therefore, we only need to check that 0 < f (24, 1) = f (24, 3), f (24, 2) < 3/4λ1. We have

f (24, 1) = χ2f (2, 1) + χ2f (2, 2) + χ2f (2, 3) + α2f (2, 4) +
1
4
(︀
1 − α2 − 3χ2

)︀
= α2f (2, 4) +

1
4
(︀
1 − α2 − 3χ2

)︀
.

It follows that
f (24, 1) − f (2, 4) = f (2, 4)(α2 − 1) +

1
4(1 − α2 − 3χ2) < 0

since α2 − 1 < 0 and 1
4
(︀
1 − α2 − 3χ2

)︀
< 0 (see Lemma A.1). Hence f (24, 1) < f (2, 4) = 3λ1/4. Moreover, since

α2 > χ2 (see Lemma A.1), we have f (24, 2) > f (21, 3) = 3λ2/4 > 0 by comparing (20) against (21).
Using now equation (24), we obtain

f (24, 2) = β2f (2, 4) +
1
4(1 − β2 − 3δ2).

Hence
f (24, 2) − f (2, 4) = f (2, 4)(β2 − 1) +

1
4(1 − β2 − 3δ2) < 0

since β2 < 1 and 1 − β2 − 3δ2 < 0 (see Lemma A.1). Hence f (24, 2) < f (2, 4) = 3λ1/4. Moreover, since β2 > δ2
it follows that f (24, 2) > f (21, 3) = 3λ2/4 > 0 by comparing (24) against (21). So we are done with i = 2 and
|ω| = 1.

Next we consider i = 5 and |ω| = 1. We have minj∈{1,2,3,4} f (5, j) = 3
4 λ1 and

maxj∈{1,2,3,4} f (5, j) = 1 − 9
4 λ1. Moreover, the maximum is attained at j = 1 and the minimum is attained at

j = 2, 3 and 4. Therefore, using the last part of Lemma 4.3 we obtain

f (52, 1) = f (52, 3) = f (53, 2) = f (53, 4) = f (54, 1) = f (54, 3)

and f (52, 4) = f (53, 1) = f (54, 2). Moreover, f (52, 4) = f (55, 2), f (53, 1) = f (55, 3), and f (54, 2) = f (55, 4);
all of these values are given by (26) with m = 2. We also know the value of f (55, 1) = f (51, 3) from (25).
Therefore, we only need to check that the value of f (52, 1) is between 3λ1/4 and 1 − 9λ1/4. Using (18) we
have

f (52, 1) = χ2f (5, 1) + α2f (5, 2) + χ2f (5, 3) + χ2f (5, 4) +
1
4(1 − α − 3χ2).

Therefore,

f (52, 1) − f (5, 2) = χ2f (5, 1) + (α2 − 1)f (5, 2) + χ2f (5, 3) + χ2f (5, 4) +
1
4(1 − α2 − 3χ2)

which, since α2 − 1 = 3(R(λ2) − 1)χ2 (see Lemma A.1), equals

χ2
(︀
1 − 9

4 λ1
)︀
+ 3(λ1 − 1)χ2

3
4 λ1 + χ2

3
4 λ1 + χ2

3
4 λ1 −

3
4 λ1χ2 = χ2

(︂
1 − 15

4 λ1 +
9
4 λ

2
1

)︂
> 0

by Lemma A.1. Hence f (52, 1) > f (5, 2). To prove that f (52, 1) is smaller than f (5, 1) we proceed as follows
using (18):

f (52, 1) − f (5, 1) = (χ2 − 1)f (5, 1) + α2f (5, 2) + χ2f (5, 3) + χ2f (5, 4) +
1
4(1 − α2 − 3χ2)

= (χ2 − 1)
(︀
1 − 9

4 λ1
)︀
+ α2

3
4 λ1 + χ2

3
4 λ1 + χ2

3
4 λ1 −

3
4 λ1χ2

= χ2
(︂
1 − 15

4 λ1 +
9
4 λ

2
1

)︂
− 1 + 9

4 λ1 < 0

since, by Lemma A.1, χ2
(︀
1 − 15

4 λ1 +
9
4 λ

2
1
)︀
< 0.22 and 1 − 9

4 λ1 = 0.625 (for n ≥ 3 we have 1 − 9
4 λn > 0.625).

Therefore f (52, 1) < f (5, 1), and so we proved the statement of the Proposition for |ω| = 1.
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Moving to |ω| > 1, we see that we can repeat the above arguments inductively when increasing
the length of |ω| from m to m + 1. This is because, by Lemma 4.2, f (iωk, j) depends only on the values
f (iω, 1), f (iω, 2), f (iω, 3) and f (iω, 4). If i = 1, then the possible combinations of these values are (see the
computations above): three of them are equal to 1 and the fourth equals 1 − 9

4 λm (by Lemma 4.5); one value
is 1 − 9

4 λm−1, one value is 1 −
9
4 λm, and the other two values are between 1 −

9
4 λm−1 and 1; and three values

equal 34 λm and one value equals 1 − 9
4 λm. Then the proof given for i = 1 and |ω| = 1 can be easily adapted to

prove the inductive step.
If i = 2, the possible values of f (2ω, 1), f (2ω, 2), f (2ω, 3) and f (2ω, 4) are: three of them equal 0, and

one equals 3λm/4; three of them equal 3λm/4 and the fourth one is between 3λm/4 and 3λm+1/4; and one of
the values is 3λi/4 for some 2 ≤ i ≤ m−1, and the other three values are between 3λm/4 and 3λi/4. Therefore,
the arguments given above for i = 2 and |ω| = 1 can be easily adapted to these cases to prove the inductive
step.

If i = 5 then the possible values of f (5ω, 1), f (5ω, 2), f (5ω, 3) and f (5ω, 4): all four are given by Lemma
4.7 and, in particular, three of them are equal; and three of them are equal and all of them are in between the
values provided by Lemma 4.7. Then the above argument for i = 5 and |ω| = 1 can also be adapted for the
induction step on the length of ω.

The last statement of Proposition 4.8 follows immediately since

max
i∈{1,2,3,4,5}

max
j∈{1,2,3,4}

f (i, j) = 1

and
min

i∈{1,2,3,4,5}
min

j∈{1,2,3,4}
f (i, j) = 0.

Proof of Lemma 3.2. The statement of Proposition 4.8 is true for g, h and k because g(ω, i), h(ω, i) and k(ω, i)
canbeobtained from f by shifting the letters. For example, g(ω, i) = f (R2(ω), R2(i)),whereR2 is the “rotation”
defined in Remark 4.4, and similar formulas hold for h and k. Therefore 0 ≤ f (ω, i), g(ω, i), h(ω, i), k(ω, i) ≤ 1
for every ω ∈ Σ* and for every i ∈ {1, 2, 3, 4}.

Appendix: A few facts used in the proofs
We now collect several relationships and formulas satisfied by α, β, χ and δ that we used throughout the
paper. The proofs of the following statements are straight computations and/or easy calculus problems.

Lemma A.1. 1. The map R(λ) can be factored out as

R(λ) = 36λ3 − 48λ2 + 15λ = 3λ(1 − 2λ)(5 − 6λ),

and it satisfies the relation
3R(λ) − 4 = (6λ − 1)f2(λ).

2. The following identities are true for all λ that are not forbidden values:

𝛾 = χ = 1
3(4 − 29λ + 60λ2 − 36λ3) =

1
3(1 − 2λ)f2(λ)

,

1 + 3α − 3χ = 2λ − 3
2λ − 1 ,

1 + 3β − 3δ = 2λ − 2
2λ − 1 ,

1 − β − 3δ = 18λ(λ − 1)3(1 − 2λ)
3(1 − 2λ)f2(λ)

= 18(λ − 1)R(λ)
3(1 − 2λ)f2(λ)(5 − 6λ)

,
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1 − α − 3χ = −3λ(5 − 6λ)3(1 − 2λ)3(1 − 2λ)f2(λ)
= − 3R(λ)

3(1 − 2λ)f2(λ)
,

β − δ = 1
3 − 6λ ,

α − 1 = 3(R(λ) − 1)χ2.

3. 0 < α < 1 and 0 < β < 1 for all 0 < λ < λ2, and 0 < δ < 1 for all 0 < λ < 1/6 = λ1. In particular,
0 < αn , βn , δn < 1 for all n ≥ 2.

4. 1 − α − 3χ < 0 and 1 − β − 3δ < 0.
5. β > δ and α > χ for all 0 < λ < 1/6. Therefore βn > δn and αn > χn for all n ≥ 2.
6. 0.08 < χ

(︀
1 − 15

4 λ +
9
4 λ

2)︀ < 0.22 for all 0 < λ <= 1/6.

Proof. 1. The formula for f2 is proved in [22] and follows immediately from its definition.
2. These formulas were also discussed and used in [22].
3. These formulas follow by direct computations. We also used the Maxima CAS [25] to double check our

computations. The Maxima code that we used is provided on our website.
4. This can be shown using standardmethods of calculus.We provide next pictures that illustrate our claim:

(a) α with 0 ≤ λ ≤ λ2. (b) α with 0 ≤ λ ≤ λ2. (c) δ with 0 ≤ λ ≤ λ1.

5. Once again we provide a picture instead of presenting the computation of the derivative of each expres-
sion:

(a) 1
4 (1 − α − 3χ) with 0 ≤ λ ≤ λ1. (b) 1

4 (1 − β − 3δ) with 0 ≤ λ ≤ λ1.

6. One more picture to illustrate the last statement:
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Figure 7: χ
(︀
1 − 15

4 λ +
9
4 λ

2)︀ with 0 ≤ λ ≤ λ1.
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