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Abstract: In this article, we propose an inertial extrapolation-type algorithm for solving split system of
minimization problems: finding a common minimizer point of a finite family of proper, lower semicon-
tinuous convex functions and whose image under a linear transformation is also common minimizer point
of another finite family of proper, lower semicontinuous convex functions. The strong convergence theorem
is given in such a way that the step sizes of our algorithm are selected without the need for any prior
information about the operator norm. The results obtained in this article improve and extend many recent
ones in the literature. Finally, we give one numerical example to demonstrate the efficiency and imple-
mentation of our proposed algorithm.
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1 Introduction

Throughout this article, unless otherwise stated, we assume that H1, H2 and H are real Hilbert spaces,
→A H H: 1 2 is nonzero bounded linear operator and I denotes the identity operator on a Hilbert space.

Assume Ci ( = …i N1, , ) and Qi ( = …i M1, , ) are nonempty closed convex subsets of H1 and H2, respec-
tively. The multiple-set split feasibility problem (MSSFP) which was introduced by Censor et al. [1] is
formulated as finding a point

∈ ⋂ ∈ ⋂

= =

x C Ax Q¯ such that ¯ .
i
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i

j

M
j

1 1
(1)

In particular, if = =N M 1, then the MSSFP (1) is reduced to the problem known as the split feasibility
problem (SFP) which was first introduced by Censor and Elfving [2] for modeling inverse problems in finite-
dimensional Hilbert spaces. The SFP and MSSFP arise in many fields in the real world, and numerous
methods have been proposed to solve the SFP, see for example [3–5] and references therein, and MSSFP,
see for example [6–8] and references therein. Moreover, there are some studies of fixed point problems in
the framework of the MSSFP, see for example [9–14].
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One of the most important problems in optimization theory and nonlinear analysis is the problem of
approximating a solution of the unconstrained minimization problem. This can be stated as follows. Find

∈x H¯ such that

( ) = ( )

∈

f x f x¯ min ,
x H (2)

where → ∪ {+∞}f H: � is proper, lower semicontinuous convex function. Our goal is to introduce a
strong convergence iterative algorithm with inertial effect solving the MSSFP (1), where Ci and Qj are
solution sets of minimization problems of the form (2) for proper, lower semicontinuous convex functions
fi and gj, respectively. We denote by farg min the set of all minimizers of f on H, i.e.,

= { ∈ ( ) ≤ ( ) ∀ ∈ } = { ∈ ( ) = ( )}

∈

f x H f x f x x H x H f x f xarg min ¯ : ¯ , ¯ : ¯ min .
x H

If f is a smooth function (mostly if f is twice continuously differentiable), one of the numerical methods for
finding approximate solutions of (2) is the Newton method, see [15,16]. Analogous method for solving (2)
with better properties for the non-smooth case is based on the notion of proximal mapping introduced by
Moreau [17], i.e., the proximal operator of the function f with scaling parameter >λ 0 is a mapping

→H Hprox :λf given by

( ) = ( ) + ∥ − ∥
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The minimizers of f (points solving problem (2)) are precisely the fixed points of the proximal operator of f.
Thus, solving the optimization problem (2) can be interpreted as finding fixed points of a proximal operator
of f and proximal operators are firmly nonexpansive operators. This immediately suggests the most popular
method

= ( )
+

x xprox ,n λf n1

which is called the proximal minimization or the proximal point algorithm introduced by Martinet [18,19]
and later by Rockafellar [20].

Let → ∪ {+∞}f H: 1 � , → ∪ {+∞}g H: 2 � be two proper, convex, lower-semicontinuous functions,
where gλ is the Moreau-Yosida approximate [17] of the function g of parameter λ given by ( ) =g yλ

( ) + ∥ − ∥
∈
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. In [21], Moudafi and Thakur introduced a weakly convergent algorithm solving

the following minimization problem:

{ ( ) + ( )}

∈

f x g Axmin ,
x H λ

1
(3)

in case ∩ ( ) ≠ ∅
−f A garg min arg min1 . It should be noted that (3) is equivalent to the split minimization

problem (SMP): finding a point ∈x H¯ 1 with the property

∈ ∈x f Ax g¯ arg min such that ¯ arg min . (4)

Operator norm is a global invariant and is often difficult to estimate, see for example the Theorem
of Hendrickx and Olshevsky in [22]. However, in the several split inverse problem types in the literature,
the implementation of the proposed iterative method requires the prior knowledge of operator norm
to determine the step sizes. To overcome this difficulty, López et al. [4] introduced a new way of select-
ing the step sizes for solving the SFP such that the information of the operator norm is not necessary.
Moudafi and Thakur [21] used the idea of López et al. [4] to introduce a new way of selecting the step sizes,
given by

( ) = ∥ ( − ) ∥ + ∥( − ) ∥
∗θ x A I Ax I xprox proxλμ λg λμf

2 2

with ( ) = ∥( − ) ∥h x I Axproxλ λg
1
2

2 and ( ) = ∥( − ) ∥l x I xproxλμ λμf
1
2

2, such that the implementation of the iterative
algorithm they proposed for solving (4) does not need any prior information about the operator norm. They
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proposed the following split proximal algorithm, which generates, from an initial point ∈x H1 1 assume that
xn has been constructed and ( ) ≠θ x 0λ n , then compute

+
xn 1 via the rule

= ( − ( − ) )
+

∗x x μ A I Axprox prox ,n λμ f n n λg n1 n (5)

where step size =

( ) + ( )

( )

μ ρn n
h x l x

θ x
λ n λμn n

λμn n2 with < <ρ0 4n and if ( ) =θ x 0λμ nn , then =
+

x xn n1 is a solution of SMP (4)
and the iterative process stops; otherwise, we set ≔ +n n 1 and go to (5). Based on Moudafi and Thakur [21]
many iterative algorithms are proposed for solving SMP (4), see for example those by Abbas et al. in [23],
Shehu et al. in [24], Shehu and Iyiola in [25–28] and Shehu and Ogbuisi in [29].

An inertial term is a two-step iterative method, and the next iterate is defined by making use of the
previous two iterates. An inertial extrapolation type algorithm, i.e., an algorithm combining an inertial term,
was first introduced by Polyak [30] as an acceleration process in solving a smooth convex minimization
problem. It is well known that combining an algorithmwith inertial term speeds up or accelerates the rate of
convergence of the sequence generated by the algorithm. Consequently, a lot of research interest is now
devoted to the inertial extrapolation-type algorithm, see [31–34] and references therein. Very recently,
Shehu and Iyiola [25] proposed an inertial extrapolation-type algorithm for solving the SMP (4) using
the setting

(a) ( ) = ∥( − ) ∥l x I xproxλf
1
2

2, ∇ ( ) = ( − )l x I xprox ,λf

(b) ( ) = ∥( − ) ∥h x I Axproxλg
1
2

2, ∇ ( ) = ( − )
∗h x A I Axproxλg and ( ) = ∥∇ ( ) + ∇ ( )∥θ x l x h x .n

They proposed the following weak convergence result.

Theorem 1.1. Suppose the real parameters { }αn , { }βn and { }ρn satisfy the following conditions:

(c1) { }αn is non-increasing sequence and < ≤ ≤δ α0 n
1
2 ,

(c2) { }βn is non-increasing sequence and ≤ ≤ <

−β0 n
κ1

3
1
3 for some, ∈ ( )κ 0, 1 ,

(c3) < <ρ0 4n , ( − ) >

→∞

ρ ρlim inf 4 0
n n n .

Then the sequence { }xn generated by the iterative algorithm
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(6)

weakly converges to a point x̄ solving the SMP (4).

Note that the proximal operator is a natural extension of the notion of a metric projection onto a
closed convex set, i.e., = Pproxλf Q, where =f δQ (f is the indicator function of a closed convex
subset Q of H), and this perspective suggests various properties that we expect proximal operators
to obey. However, there is a property that holds for the case of projection operators but not for the
case of proximal operators in general. For example, consider a function h defined on H2 given by

( ) = ∥( − ) ∥h x I Axproxλf
1
2

2, where H1 and H2 are real Hilbert spaces, and → ∪ {+∞}f H: 2 � is proper lower

semicontinuous convex function. The function h is not differentiable at = ±x λ for the case = =H H1 2 �,
=A I and ( ) = | |f x x , see [26]. However, if f is the indicator function of closed convex subset Q of H2

( =f δQ), then h is convex and weakly lower semicontinuous on H1, and h is always differentiable and
∇ ( ) = ( − )

∗h x A I Axproxλf , see [35].
Motivated by the above theoretical views, and inspired by results in [1,21,25], in this article we introduce

the strong convergence theorem of an inertial extrapolation-type algorithm that incorporates a proximal
operator, a viscosity method and an inertial term to solve the so-called split system of minimization problem
(SSMP), given as a task finding a point ∈x H¯ 1 with the property
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∈ ⋂ ( ) ∈ ⋂ ( )

∈ ∈

x f Ax g¯ arg min such that ¯ arg min ,
i

i
j

j
Φ Ψ

(7)

where = { … }NΦ 1, , , = { … }MΨ 1, , , → ∪ {+∞}f H:i 1 � and → ∪ {+∞}g H:j 2 � are proper, lower semicon-
tinuous convex functions for ∈i Φ, ∈j Ψ.

Let Γ be the solution set of SSMP (7), i.e.,

= { ∈ ⋂ ( ) ∈ ⋂ ( )}

∈ ∈

x f Ax gΓ ¯ arg min : ¯ arg min .
i

i
j

j
Φ Ψ

Note that if =f fi for all ∈i Φ and =g gj for all ∈j Ψ, then problem (7) reduces to the SMP (4) that is the
problem considered in [21,23–29]. The aims of this study are twofold: to improve the weak convergence
result of an inertial extrapolation-type algorithm proposed by Shehu and Iyiola [25] to a strong convergence
result for an approximation of a solution of the SMP (4), and to accelerate and improve the results in [9,10]
in solving the SSMP (7).

This article is organized in the following way. In Section 2, we collect some basic and useful definitions,
lemmata, and theorems for further study. In Section 3, we propose an iterative method for the SSMP and
analyze the strong convergence theorem of the proposed iterative method. In Section 4, we give a numerical
example to discuss the performance of the proposed method. Finally, we give some conclusions.

2 Preliminary

In this section, in order to prove our result, we collect some facts and tools in a real Hilbert space H. The
symbols “⇀” and “→” denote weak and strong convergence, respectively. Let C be a nonempty closed
convex subset of H. The metric projection on C is a mapping →P H C:C defined by

( ) = {∥ − ∥ ∈ } ∈P x y x y C x Harg min : , .C

Lemma 2.1. Let C be a closed convex subset of H. Given ∈x H and a point ∈z C, then = ( )z P xC if and only
if 〈 − − 〉 ≤ ∈x z y z for all y C, 0, .

Definition 2.1. Let →T H H: . Then,
(a) T is L-Lipschitz if there exists >L 0 such that ∥ − ∥ ≤ ∥ − ∥ ∀ ∈Tx Ty L x y x y H, , . If ∈ ( )L 0, 1 , then we call

T a contraction with constant L. If =L 1, then T is called a nonexpansive mapping.
(b) T is firmly nonexpansive if

∥ − ∥ ≤ ∥ − ∥ − ∥( − ) − ( − ) ∥ ∈Tx Ty x y I T x I T y x y H, for all , ,2 2 2

which is equivalent to ∥ − ∥ ≤ 〈 − − 〉 ∈Tx Ty Tx Ty x y x y H, , for all , .2

If T is firmly nonexpansive, −I T is also firmly nonexpansive.
(c) T is strongly monotone if there exists a constant >α 0 such that

〈 − − 〉 ≥ ∥ − ∥ ∈Tx Ty x y α x y x y H, , for all , .2

(d) T is inverse strongly monotone if there exists a constant >α 0 such that

〈 − − 〉 ≥ ∥ − ∥ ∈Tx Ty x y α Tx Ty x y H, , for all , .2

Lemma 2.2. For a real Hilbert space H, we have
(i) ∥ + ∥ = ∥ ∥ + ∥ ∥ + 〈 〉 ∈x y x y x y for all x y H2 , , , ;2 2 2

(ii) ∥ + ∥ = ∥ ∥ + 〈 + 〉 ∈x y x y x y for all x y H2 , , , ;2 2

(iii) 〈 〉 ≤ ∥ ∥ + ∥ ∥ − ∥ − ∥ ∈x y x y x y for all x y H, , , .1
2

2 1
2

2 1
2

2
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A set-valued mapping →T H: 2H is called monotone if, for all ∈x y H, , ∈z Tx and ∈w Ty imply
〈 − − 〉 ≥x y z w, 0. Amonotone mapping →T H: 2H is maximal if its graph ( ) = {( ) ∈ ( ) ∈ }G F x y y F x x H, : ,
is not properly contained in the graph of any other monotone mapping. It is known that a monotone
mapping T is maximal if, and only if, for all ( ) ∈ ×x z H H, ,〈 − − 〉 ≥x y z w, 0 for all ( ) ∈ ( )y w G T, , implies

∈z Tx. If →T H: 2H is a maximal monotone set-valued mapping, then we define the resolvent operator

Jλ
T associated with T and >λ 0 as follows:

( ) = ( + ) ( ) ∈
−J x I λT x x H, .λ

T 1 (8)

It is well known that Jλ
T is single-valued, nonexpansive (see, for example [37,36]) and 1-inverse strongly

monotone (firmly nonexpansive). Moreover, ∈ ( )T x0 ¯ if and only if x̄ is a fixed point of the resolvent
operator Jλ

T for all >λ 0; see [38].
Let → ∪ {+∞}f H: � be a proper lower semicontinuous convex function. The domain of f is denoted

by dom f; that is, dom = { ∈ ( ) < ∞}f x H f x: . We denote the subdifferential of f at ∈x H by ∂ ( )f x , and is
given by ∂ ( ) = { ∈ ( ) ≥ ( ) + 〈 − 〉 ∀ ∈ }f x y H f z f x y z x z H: , , . If ∂ ( ) ≠ ∅f x , f is said to be subdifferentiable at x.
It is notable that a point ∈x H¯ minimizes f if and only if ∈ ∂ ( )f x0 ¯ . It is the classical result in operator theory
that the subdifferential ∂f is a maximal monotone operator and = ( + ∂ )

−I λ fprox ,λf
1 namely, for ∈x H we

have the following equivalence between the subdifferential and proximal operator:

( ) = ⇔ − ∈ ∂ ( )x y x y λ f yprox .λf

Consequently, a point x̄ minimizes f if and only if ( ) =x xprox ¯ ¯.λf Hence, the convex minimization problem
(2) can be formulated as finding fixed point of proximal operator.

Lemma 2.3. [39] Let { }cn and { }γn be sequences of nonnegative real numbers, { }βn be a sequence of real
numbers such that

≤ ( − ) + + ≥
+

c α c β γ n1 , 1,n n n n n1

where < <α0 1n and ∑ < ∞γn .
(i) If ≤β α Mn n for some ≥M 0, then { }cn is a bounded sequence.

(ii) If ∑ = ∞αn and ≤

→∞

lim sup 0
n

β
α

n

n
, then →c 0n as → ∞n .

Definition 2.2. Let { }Γn be a real sequence. Then we say { }Γn decrease at infinity if there exists ∈n0 � such
that ≤

+
Γ Γn n1 for ≥n n0. In other words, the sequence { }Γn does not decrease at infinity if there exists a

subsequence { } ≥
Γn t 1t of { }Γn such that <

+
Γ Γn n 1t t for all ≥t 1.

Lemma 2.4. [40] Let { }Γn be a sequence of real numbers that does not decrease at infinity. Also consider the
sequence of integers { ( )}

≥
φ n n n0 defined by ( ) = { ∈ ≤ ≤ }

+
φ n k k nmax : , Γ Γ .k k 1� Then { ( )}

≥
φ n n n0 is a nonde-

creasing sequence verifying ( ) = ∞

→∞

φ nlim
n

, and for all ≥n n0, the following two estimates hold:

≤ ≤
( ) ( )+ ( )+

andΓ Γ Γ Γ .φ n φ n n φ n1 1

Let D be a nonempty closed convex subset of H. Then we say that the bifunction × →h D D: � satisfies
Condition CO on D if the following assumptions are satisfied:
(A1) ( ) =h u u, 0, for all ∈u D;
(A2) h is monotone, i.e., ( ) + ( ) ≤h u v h v u, , 0, for all ∈u v D, ;
(A3) for each ∈u v w D, , , ( + ( − ) ) ≤ ( )

↓

h αw α u v h u vlim sup 1 , , ;
α 0

(A4) ( )h u, . is convex and lower semicontinuous on D for each ∈u D.

Lemma 2.5. [41] Let D be a nonempty closed convex subset of H and the bifunction × →h D D: � satisfies
Condition CO on D. Then, for each >r 0 and ∈u H , there exists ∈w D such that

( ) + 〈 − − 〉 ≥ ∈h w v
r

v w w u for all v D, 1 , 0, .
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The following lemma was given by Combettes and Hirstoaga in [42].

Lemma 2.6. [42] If D is a nonempty closed convex subset of H and × →h D D: � is a bifunction satisfying

Condition CO on D, then for each >r 0 and ∈u H , the mapping →T H:r
h � (called the resolvent of h), given by

( ) = ∈ ( ) + 〈 − − 〉 ≥ ∀ ∈T u w D h w v
r

v w w u v D: , 1 , 0,r
h 








satisfies the following conditions:

(a) Tr
h is single-valued and firmly nonexpansive;

(b) Fix( ) = { ∈ ( ) ≥ ∀ ∈ }T x D h x y y D¯ : ¯, 0,r
h , where Fix( )Tr

h is the set of fixed points of Tr
h;

(c) { ∈ ( ) ≥ ∀ ∈ }x D h x y y D¯ : ¯, 0, is closed and convex.

3 Main result

First we extend the settings introduced by Moudafi and Thakur [21]. Let >λ 0. Then, for ∈x H1,

(I) for each ∈i Φ, define ( ) = ∥( − ) ∥ ∇ ( ) = ( − )l x I x l x I xprox and prox ,i λf i λf
1
2

2
i i

(II) ( ) = ( )l x l xix and ∇ ( ) = ∇ ( )l x l xix , where ∈ { ( ) ∈ }i l x iarg max : Φ ,x i i.e., ( ) = { ( ) ∈ }l x l x imax : Φ ,i

(III) for each ∈j Ψ, define ( ) = ∥( − ) ∥ ∇ ( ) = ( − )
∗h x I Ax h x A I Axprox and prox ,j λg j λg

1
2

2
j j

(IV) for each ∈j Ψ, define ( ) = {∥∇ ( )∥ ∥∇ ( )∥}θ x h x l xmax , .j j

Remark. From (I)–(IV) given above,∥∇ ( )∥ ≤ ∥∇ ( )∥ = ∥∇ ( )∥ ( ) = ∥∇ ( )∥ ∥∇ ( )∥ ≤ ( ) ∥∇ ( )∥ ≤l x l x l x l x l x l x θ x h x, , andi i i i j j
1
2

2
x

( )θ xj ∈ifor all Φ and ∈jfor all Ψ.

Consider the parameter sequences satisfying the following conditions.

Assumption 1. Suppose { }αn , { }εn , { }ρn , { }
( )ξn
j

( ∈ )j Ψ be real sequences satisfying the following conditions:
(C1) < <α0 1n , =

→∞

αlim 0
n

n and ∑ = ∞
=

∞ αn n1 ;

(C2) >ε 0n and = ( )ε o αn n ;

(C3) < ≤ ≤
( )ξ ξ0 1n
j and ∑ =

∈

( )ξ 1j n
j

Ψ for each ≥n 1;
(C4) < <ρ0 2n and ( − ) >

→∞

ρ ρlim inf 2 0
n n n .

We have plenty of choices for αn and εn satisfying Conditions (C1) and (C2) of Assumption 1. For example,

take =αn n
1

2 , =εn n
1
2 . Thus, < <α0 1n , =

→∞

αlim 0
n

n and =

→∞

lim 0
n

ε
α

n

n
(i.e., = ( )ε o αn n ).

Using ∇li, li, l, ∇l, hj, ∇hj, θj given in (I)–(IV) and step sizes given in Assumption 1, we are now in a
position to state our inertial extrapolation-type algorithm and prove its strong convergence to the solution
of the SSMP (7) assuming that solution set Γ is nonempty.

Algorithm 1. Initialization: Let →V H H: 1 1 be a contraction mapping with constant γ. Choose x0, ∈x H1 1.

Take arbitrary real numbers β and Θ such that ≤ <β0 1 and >Θ 0 . Let { }αn , { }εn , { }ρn , { }
( )ξn
j ( ∈j Ψ) be real

sequences satisfying Assumption 1.

Step 1. Given the iterates
−

xn 1 and xn ( ≥n 1), choose βn such that ≤ ≤β β0 ¯
n n, where

≔ ∥ − ∥

≠

−

−β
β ε

x x
if x x

β

¯ min , , ,

, otherwise.
n

n

n n
n n

1
1














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

Strong convergence of an inertial extrapolation method for SSMP  337



Step 2. Evaluate = + ( − )
−

y x β x xn n n n n 1 .
Step 3. For each ∈j Ψ find ( )l yn , ( )h yj n , ( )θ yj n and = { ∈ ( ) ≠ }j θ yΨ Ψ: 0n j n .

Step 4. For each ∈j Ψ evaluate =
( )

( ) + ( )

( )

μ ρn
j

n
h y l y

yΘ
j n n

j n
2 , where

( ) =

∉

( ) ∈

y j
θ y j

Θ Θ, if Ψ ,
, if Ψ .j n

n

j n n











Step 5. Evaluate

∑= − { (∇ ( ) + ∇ ( ))}

∈

( ) ( )z y ξ μ h y l y1
2

.n n
j

n
j

n
j

j n n
Ψ

Step 6. Evaluate = ( ) + ( − )
+

x α V y α z1 .n n n n n1
Step 7. Set ≔ +n n 1 and go to Step 1.

Remark. From Assumption 1 and Step 1 of Algorithm 1, we have that ∥ − ∥ → → ∞
−

x x n0, .β
α n n 1

n

n
Since { }αn

is bounded, we also have ∥ − ∥ → → ∞
−

β x x n0, .n n n 1

Note that Step 1 of Algorithm 1 is easily implemented in numerical computation since the value of
∥ − ∥

−
x xn n 1 is a prior known before choosing βn.

Remark. If = ∅Ψn , then

{∥∇ ( )∥ ∥∇ ( )∥} = ⇔ ∥∇ ( )∥ = = ∥∇ ( )∥ ∈

⇔ ∥∇ ( )∥ = = ∥∇ ( )∥ ∈ ∈

⇔ ( − ) = = ( − ) ∈ ∈
∗

h y l y h y l y j
h y l y i j

A I Ay I y i j

max , 0 0 , for all Ψ,
0 , for all Φ, Ψ,

prox 0 prox , for all Φ, Ψ.

j n n j n n

j n i n

λg n λf nj i

Remark. The solution set Γ of problem (7) is closed convex set, because the set of minimizers of any proper,
lower semicontinuous function is closed convex and A is bounded linear operator. Therefore, the metric
projection PΓ is well defined as we also assume that Γ is nonempty.

Lemma 3.1. For the sequences { }xn , { }yn and { }zn generated by Algorithm 1, we have

∑∥ − ∥ ≤ ∥ − ∥ + ( − )

( ( ) + ( ))

( )
∈

( )z x y x ρ ρ ξ
h y l y

y
ˆ ˆ 2

Θn n n n
j

n
j j n n

j n

2 2

Ψ

2

2














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for all ∈x̂ Γ. Moreover, { }xn , { }yn and { }zn are bounded sequences.

Proof. Let ∈x̂ Γ. From the definition of yn, we get

∥ − ∥ = ∥ + ( − ) − ∥ ≤ ∥ − ∥ + ∥ − ∥
− −

y x x β x x x x x β x xˆ ˆ ˆ .n n n n n n n n n1 1 (9)

Since proxλfi and proxλgj are firmly nonexpansive, −I proxλfi and −I proxλgj are also firmly nonexpansive,
and since x̂ verifies (7) (since minimizers of any function are exactly fixed points of its proximal mapping),
we have for all ∈x H1

〈∇ ( ) − 〉 = 〈∇ ( ) − 〉 = 〈( − ) − 〉 ≥ ∥( − ) ∥ = ( ) = ( )l x x x l x x x I x x x I x l x l x, ˆ , ˆ prox , ˆ prox 2 2i λf λf i
2

x ix ix x (10)

and

〈∇ ( ) − 〉 = 〈 ( − ) − 〉 = 〈( − ) − 〉 ≥ ∥( − ) ∥ = ( )

∈

∗h x x x A I Ax x x I Ax Ax Ax I Ax h x
j

, ˆ prox , ˆ prox , ˆ prox 2 ,
for all Ψ.

j λg λg λg j
2

j j j (11)
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Using the definition of zn and Lemma 2.2 (i), we have
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Noting ∥∇ ( )∥ ≤ ( )h y yΘj n j n and ∥∇ ( )∥ ≤ ( )l y yΘn j n and using the convexity of ∥ ∥. 2, we have
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From (10) and (11), we have
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In view of (12), (13) and (14), we have
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Next show that the sequences { }xn , { }yn and { }zn are bounded. From (15) and (C4) of Assumption 1, we have

∥ − ∥ ≤ ∥ − ∥z x y xˆ ˆ .n n (16)
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Using (9), (16) and the definition of
+

xn 1, we get
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Observe that by (C1) of Assumption 1 and Remark 3, we see that
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Then (17) becomes

∥ − ∥ ≤ ( − ( − ))∥ − ∥ + ( − )
+

x x α γ x x α γ Mˆ 1 1 ˆ 1 .n n n n1

Thus, by Lemma 2.3 the sequence { }xn is bounded. As a consequence, { }yn , { ( )}V yn and { }zn are also bounded.
□

We now have the following strong convergence theorem for an approximation of solution of a Problem (7).

Theorem 3.2. The sequence { }xn generated by Algorithm 1 converges strongly to ∈x̄ Γ, where = ( )x P V x¯ ¯Γ .

Proof of Theorem 3.2.
Claim 1: There exists a unique ∈x H¯ 1 such that = ( )x P V x¯ ¯Γ .

As a result of

∥ ( ) − ( )∥ ≤ ∥ ( ) − ( )∥ ≤ ∥ − ∥ ∈P V x P V y V x V y γ x y x y H, for all , ,Γ Γ 1

the mapping P VΓ is a contraction mapping of H1 into itself. Hence, by the Banach contraction principle
there exists a unique element ∈x H¯ 1 such that = ( )x P V x¯ ¯Γ . Clearly, ∈x̄ Γ and we have

= ( ) ⇔ 〈 − ( ) − 〉 ≥ ∈x P V x x V x y x y¯ ¯ ¯ ¯ , ¯ 0, for all Γ.Γ

Claim 2: The sequence { }xn converges strongly to ∈x Γ¯ , where = ( )x P V x¯ ¯Γ .

Let ∈x̄ Γ, where = ( )x P V x¯ ¯Γ . Now

∥ − ∥ = ∥ + ( − ) − ∥ = ∥ − ∥ + ∥ − ∥ + 〈 − − 〉
− − −

y x x β x x x x x β x x β x x x x¯ ¯ ¯ 2 ¯, .n n n n n n n n n n n n n
2

1
2 2 2

1
2

1 (18)

From Lemma 2.2(iii), we have

〈 − − 〉 = ∥ − ∥ − ∥ − ∥ + ∥ − ∥
− − −

x x x x x x x x x x¯, 1
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1
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1
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From (18) and (19) and since ≤ <β0 1n , we get
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Using the definition of
+

xn 1 and Lemma 2.2(ii), we have
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Lemma 3.1 together with (20) and (21) gives
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Since the sequences { }xn and { ( )}V yn are bounded, there exists M1 such that 〈 ( ) − − 〉 ≤
+

V y x x x M2 ¯, ¯n n 1 1 for
all ≥n 1. Thus, from (22), we obtain
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Let us distinguish the following two cases related to the behavior of the sequence { }Γn , where = ∥ − ∥x xΓ ¯n n
2.

Case 1. Suppose the sequence { }Γn decreases at infinity. Thus, there exists ∈n0 � such that ≤
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≥n n0. Then, { }Γn converges and − →
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From (23) we have
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Γ Γ 0n n 1 alternatively − →
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Γ Γ 0n n1 and using (C1) of Assumption 1 and Remark 3 (noting
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Conditions (C1) and (C4) of Assumption 1 (i.e., < <α0 1n , →α 0n and ( − ) >
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In view of (26) and the restriction condition imposed on ( )ξn
j in (C3) of Assumption 1, we have
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for all ∈j Ψ.
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Now, using the definition of zn and the convexity of ∥ ∥. 2, we have
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Thus, (28) together with (26) gives
∥ − ∥ → → ∞y z n0, .n n (29)

Moreover, using the definition of yn and Remark 3, we have
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By (29) and (30), we get
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xn 1, (C1) of Assumption 1 and noting that { ( )}V yn and { }zn are bounded, we have

The results from (31) and (32) give
∥ − ∥ ≤ ∥ − ∥ + ∥ − ∥ → → ∞

+ +
x x x z z x n0, .n n n n n n1 1 (33)

For each ∈i Φ and for each ∈j Ψ, ∇ ( )h .j and ∇ ( )l .i are Lipschitz continuous with constant ∥ ∥A 2 and 1,
respectively. Since the sequence { }yn is bounded and
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Consequently, using (27), we have
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Let p be a weak cluster point of { }xn , there exists a subsequence { }xnk of { }xn such that ⇀x pnk as → ∞k .
Then, in view of ⇀x pnk and (30), we also see that ⇀y pnk

. The weak lower-semicontinuity of ( )h .j implies
that
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h p h y h y j0 lim inf lim 0, for all Ψ.j
k

j n n
j nk
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That is, ( ) = ∥( − ) ∥ =h p I Approx 0j λg
1
2

2
j for all ∈j Ψ, i.e., Ap is a fixed point of the proximal mapping of each

gj, or equivalently, ∈ ∂ ( )g Ap0 j for all ∈j Ψ. In other words, Ap is a minimizer of each gj for all ∈j Ψ.
Likewise, the weak lower-semicontinuity of ( )l .i implies that

≤ ( ) ≤ ( ) = ( ) = ∈

→∞ →∞

l p l y l y i0 lim inf lim 0, for all Φ.i
k

i n n
i nk

That is, ( ) = ∥( − ) ∥ =l p I pprox 0i λf
1
2

2
i for all ∈i Φ, i.e., p is a fixed point of the proximal mapping of each fi or

equivalently, ∈ ∂ ( )f p0 i for all ∈i Φ. In other words, p is a minimizer of each fi for all ∈i Φ. Thus, ∈p Γ.
Next, we show that 〈( − ) − 〉 ≤

→∞

I V x x xlim sup ¯, ¯ 0
n

n . Indeed, since = ( )x P V x¯ ¯Γ and ∈p Γ we obtain

〈( − ) − 〉 = 〈( − ) − 〉 = 〈( − ) − 〉 ≤

→∞
→∞

I V x x x I V x x x I V x x plim sup ¯, ¯ lim ¯, ¯ ¯, ¯ 0.
n

n
k

nk (34)

Since ∥ − ∥ →
+

x x 0n n1 from (33), by (34) we have

〈( − ) − 〉 ≤

→∞

+
I V x x xlim sup ¯, ¯ 0.

n
n 1

Using Lemma 3.1 (the fact that ∥ − ∥ ≤ ∥ − ∥z x y x¯ ¯n n , i.e., from (16)), we have

∥ − ∥ = 〈 ( ) + ( − ) − − 〉

= 〈 ( ) − ( ) − 〉 + ( − )〈 − − 〉 + 〈 ( ) − − 〉

≤ ∥ − ∥∥ − ∥ + ( − )∥ − ∥∥ − ∥ + 〈 ( ) − − 〉

≤ ( − ( − ))∥ − ∥∥ − ∥ + 〈 ( ) − − 〉

≤ ( − ( − ))

∥ − ∥

+

∥ − ∥

+ 〈 ( ) − − 〉

+ +

+ + +

+ + +

+ +

+

+

x x α V y α z x x x
α V y V x x x α z x x x α V x x x x
γα y x x x α z x x x α V x x x x

α γ y x x x α V x x x x

α γ
y x x x α V x x x x

¯ 1 ¯, ¯
¯ , ¯ 1 ¯, ¯ ¯ ¯, ¯

¯ ¯ 1 ¯ ¯ ¯ ¯, ¯
1 1 ¯ ¯ ¯ ¯, ¯

1 1
¯

2
¯

2
¯ ¯, ¯ .

n n n n n n

n n n n n n n n

n n n n n n n n

n n n n n

n
n n

n n

1
2

1

1 1 1

1 1 1

1 1
2

1
2

1










(35)

Therefore, from (35), we have

∥ − ∥ ≤

− ( − )

+ ( − )

∥ − ∥ +

+ ( − )

〈 ( ) − − 〉

= −

( − )

+ ( − )

∥ − ∥ +

+ ( − )

〈 ( ) − − 〉

+ +

+

x x α γ
α γ

y x α
α γ

V x x x x

α γ
α γ

y x α
α γ

V x x x x

¯ 1 1
1 1

¯ 2
1 1

¯ ¯, ¯

1 2 1
1 1

¯ 2
1 1

¯ ¯, ¯ .

n
n

n
n

n

n
n

n

n
n

n

n
n

1
2 2

1

2
1











(36)

Combining (36) and

∥ − ∥ = ∥ + ( − ) − ∥ ≤ ∥ − ∥ + ∥ − ∥
− −

y x x β x x x x x β x x¯ ¯ ¯ ,n n n n n n n n n1 1

it follows that

∥ − ∥ ≤ −

( − )

+ ( − )

(∥ − ∥ + ∥ − ∥)

+

+ ( − )

〈 ( ) − − 〉

= −

( − )

+ ( − )

(∥ − ∥ + ∥ − ∥

+ ∥ − ∥∥ − ∥) +

+ ( − )

〈 ( ) − − 〉

≤ −

( − )

+ ( − )

∥ − ∥ + ∥ − ∥

+ ∥ − ∥∥ − ∥ +

+ ( − )

〈 ( ) − − 〉

+ −

+

−

− +

−

− +

x x α γ
α γ

x x β x x

α
α γ

V x x x x

α γ
α γ

x x β x x

β x x x x α
α γ

V x x x x

α γ
α γ

x x β x x

β x x x x α
α γ

V x x x x

¯ 1 2 1
1 1

¯

2
1 1

¯ ¯, ¯

1 2 1
1 1

¯

2 ¯ 2
1 1

¯ ¯, ¯

1 2 1
1 1

¯

2 ¯ 2
1 1

¯ ¯, ¯ .

n
n

n
n n n n

n

n
n

n

n
n n n n

n n n n
n

n
n

n

n
n n n n

n n n n
n

n
n

1
2

1
2

1

2 2
1

2

1 1

2 2
1

2

1 1































(37)

Since { }xn is bounded there exists >M 02 such that ∥ − ∥ ≤x x M¯n 2 for all ≥n 1. Thus, in view of (37), we have

≤ −

( − )

+ ( − )

+ ∥ − ∥( ∥ − ∥ + ) +

+ ( − )

〈 ( ) − − 〉

= ( − ) +

+ − − +

α γ
α γ

β x x β x x M α
α γ

V x x x x

δ δ

Γ 1 2 1
1 1

Γ 2 2
1 1

¯ ¯, ¯

1 Γ ϑ ,

n
n

n
n n n n n n n

n

n
n

n n n n

1 1 1 2 1








 (38)
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where =

( − )

+ ( − )

δn
α γ

α γ
2 1

1 1
n

n
and

=

+ ( − )

( − )

∥ − ∥ { ∥ − ∥ + } +

−

〈 ( ) − − 〉
− − +

α γ
γ

β
α

x x β x x M
γ

V x x x xϑ 1 1
2 1

2 1
1

¯ ¯, ¯ .n
n n

n
n n n n n n1 1 2 1











From (35), (C1) of Assumption 1 and Remark 3, we have∑ = ∞
=

∞ δn n1 and ≤

→∞

lim sup ϑ 0
n

n . Thus, using Lemma
2.3 and (38), we get →Γ 0n as → ∞n . Hence, →x x̄n as → ∞n .

Case 2. Assume that { }Γn does not decrease at infinity. Let →φ : � � be a mapping for all ≥n n0 (for some n0
large enough) defined by

( ) = { ∈ ≤ ≤ }
+

φ n k k nmax : , Γ Γ .k k 1�

By Lemma 2.4, { ( )}
=

∞φ n n n0 is a nondecreasing sequence, ( ) → ∞φ n as → ∞n and

≤ ≤ ≥
( ) ( )+ ( )+

n nΓ Γ and Γ Γ , for all .φ n φ n n φ n1 1 0 (39)

In view of ∥ − ∥ − ∥ − ∥ = − ≤
( ) ( )+ ( ) ( )+

x x x x¯ ¯ Γ Γ 0φ n φ n φ n φ n
2

1
2

1 for all ≥n n0 and (23), we have for all ≥n n0

∑( − ) ( − )

( ( ) + ( ))

( )

≤ ( − ) + + ( − ) ( − )

+ ( − ) ∥ − ∥

≤ + ( − ) ( − ) + ( − ) ∥ − ∥

≤ + ( − ) ∥ − ∥ +

+ ( − ) ∥ − ∥

( ) ( ) ( )

∈

( )

( )
( ) ( )

( )

( ) ( )+ ( ) ( )
( )

( ) ( )−

( )
( )

( ) ( )−

( ) ( )
( )

( ) ( )− ( )
( )

( ) ( )−

( ) ( )
( )

( ) ( )− ( ) ( )−

( )
( )

( ) ( )−

α ρ ρ ξ
h y l y

y

α M α β

α β x x

α M α β α β x x

α M α β x x

α β x x

1 2
Θ

Γ Γ 1 Γ Γ

2 1

1 Γ Γ 2 1

1 Γ Γ

2 1 .

φ n φ n φ n
j

φ n
j j φ n φ n

j φ n

φ n φ n φ n φ n φ n φ n φ n

φ n φ n φ n φ n

φ n φ n φ n φ n φ n φ n φ n φ n φ n

φ n φ n φ n φ n φ n φ n φ n

φ n φ n φ n φ n

Ψ

2

2

1 1 1

1
2

1 1 1
2

1 1 1

1
2



























(40)

Thus, from (40) together with (C1) and (C2) from Assumption 1 and Remark 3, we have for each ∈j Ψ,

( ( ) + ( ))

( )

→ → ∞

( ) ( )

( )

h y l y
y

n
Θ

0, .
j φ n φ n

j φ n

2

2 (41)

Using a similar procedure to that in Case 1, we have

∥ − ∥ = ∥ − ∥ =

→∞

( ) ( )

→∞

( )+ ( )
x y x xlim lim 0.

n
φ n φ n n

φ n φ n1

Since { }
( )

xφ n is bounded, there exists a subsequence of { }
( )

xφ n , still denoted by { }
( )

xφ n which converges
weakly to p. By a similar argument to that in Case 1, we conclude immediately that ∈p Γ. In addition,
by the similar argument to that in Case 1, we have 〈( − ) − 〉 ≤

→∞

( )
I V x x xlim sup ¯, ¯ 0

n
φ n . Since ∥ −

→∞

( )+
xlim

n
φ n 1

∥ =
( )

x 0φ n , we get 〈( − ) − 〉 ≤

→∞

( )+
I V x x xlim sup ¯, ¯ 0

n
φ n 1 . From (38), we have

≤ ( − ) +
( )+ ( ) ( ) ( ) ( )

δ δΓ 1 Γ ϑ ,φ n φ n φ n φ n φ n1 (42)

where =
( )

( − )

+ ( − )

( )

( )

δφ n
α γ

α γ
2 1

1 1
φ n

φ n
and

=

+ ( − )

( − )

∥ − ∥ { ∥ − ∥ + } +

−

〈 ( ) − − 〉
( )

( ) ( )

( )

( ) ( )−
( )

( ) ( )− ( )+

α γ
γ

β
α

x x β x x M
γ

V x x x xϑ
1 1

2 1
2 1

1
¯ ¯, ¯ .φ n

φ n φ n

φ n
φ n φ n φ n φ n φ n φ n1 1 2 1











Using − ≤
( ) ( )+

Γ Γ 0φ n φ n 1 for all ≥n n0 and >
( )

ϑ 0φ n , the last inequality gives

≤ − +
( ) ( ) ( ) ( )

δ δ0 Γ ϑ .φ n φ n φ n φ n

Since >
( )

δ 0φ n , we obtain ∥ − ∥ = ≤
( ) ( ) ( )

x x̄ Γ ϑ .φ n φ n φ n
2 Moreover, since ≤

→∞

( )
lim sup ϑ 0

n
φ n , we have ∥ −

→∞

( )
xlim

n
φ n

∥ =x̄ 0. Thus, ∥ − ∥ =

→∞

( )
x xlim ¯ 0

n
φ n together with ∥ − ∥ =

→∞

( )+ ( )
x xlim 0

n
φ n φ n1 gives =

→∞

( )+
lim Γ 0

n
φ n 1 . Therefore,

from (39), we obtain =

→∞

lim Γ 0
n

n , that is, →x x̄n as → ∞n .

This completes the proof. □
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Remark.
(I). Our iterative scheme has relatively low computational complexity compared to iterative schemes in

[9] and [10].
(II). The implementation of our algorithm does not need any prior information about the operator norm.

(III). We can also use ( ) = ∥∇ ( )∥ + ∥∇ ( )∥θ x h x l xj j
2 2 instead of ( ) = {∥∇ ( )∥ ∥∇ ( )∥}θ x h x l xmax ,j j perhaps the

proof for the strong convergence theorem is almost similar. It is clear to see that {∥∇ ( )∥h xmax ,j

∥∇ ( )∥} ≤ ∥∇ ( )∥ + ∥∇ ( )∥l x h x l x ,j
2 2 for ∈j Ψ.

Remark. One of the main advantages of our algorithm is that the algorithm can be used to solve problems
that can be converted to the fixed point problem of firmly nonexpansive mapping. The following are some
examples.
(1) The split system of inclusion problem: Let →T H: 2i

H
1 1, →U H: 2j

H
2 2 be maximal monotone mappings

for all ∈i Φ and ∈j Ψ. The split system of inclusion problem is to find ∈x H¯ 1 such that

∈ ( ) ∈

∈ ( ) ∈

T x i
U Ax j

0 ¯ , for all Φ,
0 ¯ , for all Ψ.

i

j





(43)

Replacing the proximal mappings of the convex functions fi and gj in Algorithm 1 by the resolvent

operators Jλ
Ti and Jλ

Uj to the maximal monotone operators, and following the method of proof in Theorem
3.2, we obtain an inertial extrapolation-type algorithm with a strong convergence result for approxima-
tion of solution of a consistent split system of inclusion problem (43); see the resolvent operator defined
in (8).

(2) The MSSFP: By taking =f δi Ci and =g δj Qj (the indicator functions) for ∈i Φ, ∈j Ψ, and replacing

proxλfi by projection mapping PCi, and proxλgj by the projection mapping PQj in Algorithm 1, we obtain

an inertial extrapolation-type algorithm with strong convergence for an approximation of solution of
the MSSFP (1).

(3) The split system of equilibrium problem: Let × →f H H:i 1 1 � and × →g H H:j 2 2 � be bifunctions,

where ∈i Φ, ∈j Ψ. Assume each bifunction fi and gj satisfy Condition CO on H1 and H2, respectively.

The split system of equilibrium problem involves finding ∈x H¯ 1 such that

( ) ≥ ∈ ∈

( ) ≥ ∈ ∈

f x x x H i
g Ax u u H j

¯, 0, for all , Φ,
¯, 0, for all , Ψ.

i

j

1

2





(44)

Our result solves (44) by replacing the proximal mappings by the resolvent operators Tλ
fi and Tλ

gj in Algo-
rithm 1 and then following the method of proof in Theorem 3.2; see the resolvent operator defined in
Lemma 2.6.

It is worth mentioning that our approach also works for approximation of solution of SMP (4). Let
Ω denote the solution set of (4), i.e., = { ∈ ∈ }x f Ax gΩ ¯ arg min : ¯ arg min , and assume that Ω is nonempty.

Set ( ) = ∥( − ) ∥l x I xproxλf
1
2

2, ∇ ( ) = ( − )l x I xproxλf , ( ) = ∥( − ) ∥h x I Axprox λg
1
2

2, ∇ ( ) = ( − )
∗h x A I Axprox λg and

( ) = {∥∇ ( )∥ ∥∇ ( )∥}θ x h x l xmax , . The following is an immediate consequence of our result.

Algorithm 2. Initialization: Let →V H H: 1 1 be a contraction with constant γ. Choose x0, ∈x H1 1 and take

arbitrary real numbers β andΘ such that ≤ <β0 1 and >Θ 0 . Let { }αn , { }εn , { }ρn be real sequences satisfying
the following conditions:
(a) < <α0 1n , =

→∞

αlim 0
n

n and ∑ = ∞
=

∞ αn n1 ;

(b) >ε 0n and = ( )ε o αn n ;
(c) < <ρ0 2n and ( − ) >

→∞

ρ ρlim inf 2 0
n n n .

Strong convergence of an inertial extrapolation method for SSMP  345



Step 1. Given the iterates
−

xn 1 and xn ( ≥n 1), choose βn such that ≤ ≤β β0 ¯
n n, where

≔ ∥ − ∥

≠

−

−β
β ε

x x
x x

β

¯ min , , if ;

, otherwise.
n

n

n n
n n

1
1

















Step 2. Evaluate = + ( − )
−

y x β x xn n n n n 1 .

Step 3. Evaluate =

( ) + ( )

( )

μ ρn n
h y l y

yΘ
n n

n
2 , where ( ) =

( ) =

( )

y θ y
θ y

Θ Θ, if 0;
, otherwise.n

n

n











Step 4. Evaluate = − (∇ ( ) + ∇ ( ))z y μ h y l y .n n n n n
1
2

Step 5. Evaluate = ( ) + ( − )
+

x α V y α z1 .n n n n n1

Step 6. Set ≔ +n n 1 and go to Step 1.

Corollary 1. The sequence { }xn generated by Algorithm 2 converges strongly to ∈x̄ Ω, where = ( )x P V x¯ ¯Ω .

Proof. Setting =f fi for all ∈i Φ and =g gj for all ∈j Ψ in Theorem 3.2, we obtain the desired result. □

Remark. The result in Corollary 1 is an improvement on inertial extrapolation-type algorithms in the sense that
instead of weak convergence result proposed by Shehu and Iyiola in [25] we get strong convergence result.

4 Numerical results

In this section, we consider an example of the SSMP involving quadratic optimization problems. We study
the behavior of our algorithm and compare with the proximal-type algorithms of [9] and [10]. The algorithm
has been coded in MATLAB and is performed on a HP laptop with Intel(R) Core(TM) i5-7200U CPU @
250GHz 2.70GHz and RAM 4.00GB.

Example. Consider the problem (7) for =H p
1 � , =H q

2 � , a linear transformation →A : p q� � and functions

∑( ) = + ( ∈ = { … }) ( ) = ∥ ∥ ( ) = ( )

=

f x x B x x D i N g u u g u h u1
2

Φ 1, , , and ,i
T

i
T

i q
k

q

k1 2
1

where A is ×q p non-zero matrix, Bi is an invertible symmetric positive semidefinite ×p p matrix and Di
is the zero vector in p� for all ∈i Φ, = ( … ) ∈u u u, , q

q
1 � , ∥ ∥. q is the Euclidean norm in q� and ( ) =h uk

{| | − }umax 1, 0k for = …k q1, , .
In this example, it is clear to see that = { }Γ 0 . Now for =λ 1, the proximal operators are given by

( ) = ( + ) ( − ) = ( + ) ( ) ∈

( ) =

−

∥ ∥

∥ ∥ ≥

− −x I B x D I B x i

u u
u u

prox , Φ,

prox 1 1 , 1,

0, otherwise

λf i i i

λg q
q

1 1
i

1



















and ( ) = ( ( ) ( ) … ( ))u u u uprox prox , prox , , proxλg λh λh λh q1 22 , where

( ) =

| | <

( ) ≤ | | ≤

( − ) | | >

u
u u

u u
u u

prox
, if 1,

sign , if 1 2,
sign 1 , if 2.

λh k

k k

k k

k k







In this numerical experiment, we use =N 3, =p q, A is identity ×p p matrix and B1, B2 and B3 are
randomly generated invertible symmetric positive semidefinite ×p p matrices.
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Experiment 1 (Studying numerical behavior of Algorithm 1): Figures 1, 2 and 3 and Tables 1 and 2
describe the numerical results of our algorithm for this example, where →V : p p� � given by =Vx γx and

=γ 0.5, =αn n
1

2 t , =εn n
1
r , =

( )ξn
j j

3 , =β 0.9 and =β β̄n n for < ≤t0 1, >r t , ∈ = { }j Ψ 1, 2 .

Tables 1 and 2 illustrate the execution time in second (CPU(s)) and the number of iterations (Iter(n))
of our algorithm when applied to this particular example. The stopping criterion in Tables 1 and 2 is defined

as ≤ =

∥ − ∥

∥ − ∥

−− TOL 10 .x x
x x

4n n 1

2 1

Figure 1: For = =p q 6 and for randomly generated starting points x0 and x1.

Figure 2: For =t 0.1, =r 0.4 and for randomly generated starting points x0 and x1.

Figure 3: For =t 0.2, =r 0.5, = =p q 500, =x δx1 0, where ∈δ � and x0 is randomly generated starting point.
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Experiment 2 (Comparison):We now compare our result with non-inertial extrapolated (non-accelerated)
proximal-type algorithms [9] (ProxAL-A) and [10] (ProxAL-B). For this purpose, we use the following data:

Algorithm 1: →V : p p� � given by =Vx γx and =γ 0.5, =αn n
1 , =εn n

1
2 , =

( )ξn
j j

3 ( ∈ = { }j Ψ 1, 2 ), =β 0.8,

=β β̄n n and =ρn
1

10 .

ProxAL-A: = =V F I , =μ 1, =γ 0.5, =
( )δn
i i

6 ( ∈ = { }i Φ 1, 2, 3 ), =
( )ξn
j j

3 ( ∈ = { }j Ψ 1, 2 ), =
+

αn n
1

1 and

=ρn
1

10 , see [9].

ProxAL-B: =
( )δn
i i

6 ( ∈ = { }i Φ 1, 2, 3 ), =
( )ξn
j j

3 ( ∈ = { }j Ψ 1, 2 ) and =ρn
1

10 , see [10].

Figures 4 and 5 along with Table 3 present the numerical results of our algorithm (Algorithm 1) in
comparison with ProxAL-A and ProxAL-B. Figures 4 and 5 show the = ∥ ∥xerror n versus number of itera-
tions, while Table 2 shows the CPU time exclusion (CPU(s)) and the number of iterations (Iter(n)) of

Algorithm 1, ProxAL-A and ProxAL-B for the stopping criteria ≤ =

∥ − ∥

∥ − ∥

−− TOL 10 .x x
x x

3n n 1

2 1

From this preliminary numerical experiment, we observe that our algorithm crucially depends on step
sizes, starting points and dimensions. Moreover, our proposed algorithm is efficient and easy to implement
and outperforms the proposed algorithms in [9] and [10].

Table 1: For randomly generated starting points x0 and x1

= =p q 3 = =p q 20 = =p q 80

Iter(n) CPU(s) Iter(n) CPU(s) Iter(n) CPU(s)

=t 0.1, =r 0.2 17 0.0127 14 0.0169 16 0.0269
=t 0.95, =r 3 21 0.0136 17 0.0185 21 0.0304
=t 1, =r 10 21 0.0129 16 0.0164 24 0.0299

Table 2: For =t 0.55, =r 8, = =p q 4

= ( )x 1, 2, 3, 40 , = ( )x −4, 7, −5, 101 = ( )x 5, 6, 7, 80 , = ( )x 4, −7, 5, −101

Iter(n) CPU(s) ∥ ∥x x−n n−1 Iter(n) CPU(s) ∥ ∥x x−n n−1

1 12.2474 1 23.7486
2 5.6570 2 9.0177
3 3.5203 3 4.5572
4 1.9316 4 2.3349
5 1.1915 5 1.8997
. .
. .
. .
24 ×2.5606 10−4 24 ×5.1148 10−4

25 0.0438 ×1.3608 10−4 25 ×3.6416 10−4

26 ×3.1116 10−4

27 ×2.4828 10−4

28 ×2.0318 10−4

29 0.0613 ×1.1041 10−4
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5 Conclusions

In this article, we introduce a strong convergence theorem for an inertial extrapolation-type algorithm for
solving a SSMP (7). The problem we considered in this article is general for many of the problems con-
sidered in the literature concerning approximation of an unconstrained minimization problem, see for
example [25–28,24,23]. Our result can also be applied to find a solution of the split system of inclusion
problem, the MSSFP, and the split system of equilibrium problem. Furthermore, our result improves an
inertial extrapolation-type algorithm proposed in [25] and also improves and accelerates algorithms
in [9,10].

Figure 4: For = =p q 4 and = ( )x 1, 1, 1, 10 , =x x101 0.

Figure 5: For = =p q 80 and = ( )x 10,…, 100 , =x x101 0.

Table 3: For ∈x x, p
0 1 � with = ( )x −100, −100,…,−1000 and =x x−21 0

Algorithm 1 ProxAlg-A ProxAlg-B

Dimension Iter(n) CPU(s) Iter(n) CPU(s) Iter(n) CPU(s)

= =p q 2 7 0.0354 7 0.0401 9 0.0379
= =p q 10 12 0.0441 15 0.0616 21 0.1775
= =p q 50 27 0.1908 29 0.2168 29 0.1921
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