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Abstract: In this article, we prove the generalized Hyers-Ulam stability for the following additive-quartic
functional equation:

fO+3y) + fx = 3y) + f(x + 2y) + f(x = 2y) + 22f (x) + 24f (y) = B[f(x +y) + fx = y)] + 12f(2y),
where f maps from an additive group to a complete non-Archimedean normed space.
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1 Introduction

The study of stability problems for functional equations is one of the essential research in mathematics,
which originated in issues related to applied mathematics. The first question concerning the stability of
homomorphisms was given by Ulam [1] as follows.

Given a group (G, *), a metric group (G', ®) with the metric d, and a mapping f from G to G', does there
exist § > O such that

d(fx = y), f)ef(y)) <6
for all x, y € G, then there exists a homomorphism h : G — G’ such that
d(f(x), h(x)) <€

for all x € G?

The above question was solved in 1941 by Hyers [2] in the case of approximately additive mappings
between two Banach spaces. The method used in the investigation of Hyers is called the direct method. In
the same decade with the existing result of Hyers [2], Aoki [3] extended the Hyers’ stability result for
additive mappings by aiming an unbounded Cauchy difference. For almost 30 years later, the Hyers’
stability result was improved from an assiduousness of Rassias [4]. The approximately additive condition
of Hyers [2] was relaxed in his result as follows.

* Corresponding author: Wutiphol Sintunavarat, Department of Mathematics and Statistics, Faculty of Science and
Technology, Thammasat University, Phatum Thani 12120, Thailand, e-mail: wutiphol@mathstat.sci.tu.ac.th

Anurak Thanyacharoen: Department of Mathematics and Statistics, Faculty of Science and Technology, Thammasat University,
Phatum Thani 12120, Thailand, e-mail: ake_poiuy@yahoo.com

a Open Access. © 2020 Anurak Thanyacharoen and Wutiphol Sintunavarat, published by De Gruyter. This work is licensed under
the Creative Commons Attribution 4.0 Public License.


https://doi.org/10.1515/dema-2020-0009
mailto:ake_poiuy@yahoo.com
mailto:wutiphol@mathstat.sci.tu.ac.th

DE GRUYTER The new investigation of the stability of mixed type additive-quartic functional equations = 175

Theorem 1.1. [4] Let X and Y be two Banach spaces. Suppose that f : X — Y is a function satisfying the
following inequality:

Fx +y) = fOO = fFDI < e(lIxIP + llyllP) (L1

forsomee = 0, pwithO < p < 1and for all x,y € X. Then, there exists a unique additive function A : X - Y
such that

2e
2-2

IF(x) = ACOl < (1 (1.2)

for each x € X. If, in addition, f(tx) is continuous at t in a scalar field of X for each fixed x € X, then the
function A is linear.

The stability spectacle of Theorem 1.1 is called the generalized Hyers-Ulam stability. This glossary may
also be used in other functional equations. Subsequently, a large number of investigations have been
published in cohesion with several generalizations of stability results of Hyers [2], Aoki [3] and Rassias [4].
Moreover, many recent stability results had the inspiration from these fundamental stability results. For
instance, Rassias [5] investigated the Hyers-Ulam stability for the quartic functional equation:

fx+2y) +fx=2y) + 6f(x) = 4[f(x +y) + f(x —y) + 6f(Y)], (1.3)

where f maps from a normed space into a Banach space. He also named the function satisfying (1.3) as a
quartic function. The quartic functional equation (1.3) is one of the interesting topics in the stability theory
for functional equations. It was employed by several researchers (see [6—-10] and references therein).

Nowadays, the investigation of the stability in general content is essential and numerous. For
instance, Chang et al. [11] investigated the stability results of the cosine-sine functional equation with
involution in a commutative semigroup and a commutative group. Besides, Choi et al. [12] proved the
stability results for functional equations arising from number theory and are connected with the
characterizations of the determinant and permanent of two-by-two matrices. They considered a mapping
from R? into R by applying the important lemma of bounded mappings on a group.

Recently, Hengkrawit and Thanyacharoen [13] introduced the following additive-quartic functional
equation:

FOx+3y) + fx =3y) + fx +2y) + f(x = 2y) + 22f(x) + 24f () = BBf(x + y) + f(x - y)] + 12f2y), (1.4)

where f is a mapping from R to R. The general solution of (1.4) on the oddness (or the evenness) of an
unknown function is additive (or quartic). Based on this fact, the functional equation (1.4) is called a
mixed type additive-quartic functional equation. Moreover, they also gave the Hyers-Ulam stability result
of (1.4) on R.

On the other hand, a special function on Q named a p-adic, or an ultrametric or simply a non-
Archimedean absolute value on Q was first introduced by Hensel [14]. He also presented the idea of a non-
Archimedean field which is a set Q together with the p-adic absolute value. Also, this concept can be
extended to the general idea on the arbitrary field, and we can use this idea for defining the non-
Archimedean vector space and the non-Archimedean norm. Based on all aforementioned ideas, many
mathematicians investigated the stability results by applying such ideas. Here, we give some examples of
these results.

— Arriola and Beyer [15] considered the stability of approximate additive mappings from the completion of
a non-Archimedean field to R.
— Kaiser [16] proved the stability problem Cauchy functional equation:

fx+y)=fx) +f(y)

on normed spaces over fields with valuation.
— Moslehian and Rassias [17] proved the generalized Hyers-Ulam stability of the Cauchy functional equation

fx+y)=fx)+fy)
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and the quadratic functional equation
fx+y) +foe—y) =2f(x) + 2f(y)

in non-Archimedean normed spaces.
To the best of our knowledge, there is no discussion so far concerning the generalized Hyers-Ulam
stability for the functional equation

Fx+3y) + fx =3y) + fx + 2y) + f(x = 2¥) + 22f(x) + 24f (y) = B[f(x + y) + f(x = y)] + 12f(2y), (1.5)

for all x, y € G, where f maps from an additive group G to a complete non-Archimedean normed space. The main
goal of this article is first to investigate the mentioned discussion by using two techniques containing the direct
method and the fixed point method. Moreover, several particular cases of our main results are given.

2 Preliminaries
In this section, we will recall some basic concepts of non-Archimedean normed spaces.

Definition 2.1. [14] Let K be a field. A function |-| : K — [0, 0o) is called a non-Archimedean absolute
value (non-Archimedean valuation) on K if the following conditions hold for all a, b € K:

1. |a] = 0 if and only if a = 0;

2. |ab| = |al|bl;

3. la + b| < max{|al, |b|} (the strict triangle inequality).

Also, a field K with a non-Archimedean absolute value is called a non-Archimedean field.

In any non-Archimedean field K, we have |1| = |[-1] =1 and |n| < 1 for each integer n. We always
assume, in addition, that |-| is non-trivial, i.e., there exists an ay € K such that |ag| # O, 1.

Definition 2.2. [14] Let X be a vector space over a scalar field K with a non-Archimedean non-trivial
valuation |-|. A function || : X - R is called a non-Archimedean norm (valuation) if it satisfies the
following conditions:

1. |Ix]| = O for all x € X, and ||x|| = O if and only if x = 0;

2. |lrx|l = |rlllx]l for all r € K and all x € X;

3. the strong triangle inequality (ultrametric); namely, ||x + y|| < max {||x|, ||} for all x, y € X.

Also, (X, ||I-]) is called a non-Archimedean normed space.

Definition 2.3. [14] The sequence {x,} in a non-Archimedean normed space (X, |-|) is called convergent if
for a given € > O there are a positive integer N and an x € X such that

X, - xll <€

for alln > N and x is called a limit of the sequence {x,}, denoted by lim x, = x.

n—-oo

Definition 2.4. [14] The sequence {x,} in a non-Archimedean normed space (X, |-|) is called Cauchy if for
a given € > O there is a positive integer N such that

”Xn - Xm" <€
foralln,m > N.

In a non-Archimedean normed space (X, |||), we have

X = Xl < max{llx., - xll : m<j<n-1
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for n > m. This yields the following proposition.

Proposition 2.5. [14] A sequence {x,,} in a non-Archimedean space (X, |-||) is a Cauchy sequence if and only if
the sequence {|x,,1 — X,||} converges to zero.

Next, we present the useful theorem which is the main tool to consider the stability result by using the
fixed point method.

Theorem 2.6. [18] Let (X, d) be a complete generalized metric space and let J: X — X be a strictly
contractive mapping with some Lipschitz constant L with O < L < 1. Then, for each given element x € X,
either d(J"x, J"*1x) = oo for all nonnegative integers n or there exists a positive integer ny such that

1. d(J"x, J™x) < co for all n > ng;

2. the sequence {J"x} converges to a fixed point y* of J;

3. y* is the unique fixed point of ] in the set Y = {y € X|d(J™x, y) < co}; and

4. d(y,y*) < ﬁd(y, Jy) forally e Y.

3 Main results

Throughout this section, let G be an additive group, (Y, |-[ly) be a non-Archimedean normed space and
f: G — Y be a mapping. For each x,y € G, we will use the following symbol:

Df(x,y) = fOx + 3y) + f(x = 3y) + f(x + 2y) + f(x = 2y) + 22f(x) — 13f(x + y) = 13f(x — y) + 24f(y) - 12f(2y).

First, we give two auxiliary lemmas for proving the first stability result via the direct method.

Lemma 3.1. Let G be an additive group, (Y, ||-|ly) be a non-Archimedean normed space and f: G — Y be a
mapping. If f satisfies (1.5), then f is of the form

21f(x + 2y) + 21f(x — 2y) — 84f(x + y) — 84f(x — y) + 126f(x)

3.1
+70f(y) - 30f(<y) - 33/(2y) + 15f(~2y) ~ f(4y) = O G1)

forall x,y € G.

Proof. Suppose that f satisfies (1.5). Substituting x by x + 3y into (1.5), we get
fO+6y) +f(x) + f(x + 5y) + f(x + y) + 22f(x + 3y) — 13f(x + 4y) — 13f(x + 2y) + 24f(y) - 12f(2y) =0 (3.2)
for all x, y € X. Substituting x by x + 2y into (1.5), we get
fOoe+5y) + fx = y) + fOc+ 4y) + 00 + 22f (x + 2y) - 13f(x + 3y) - 13f(x + y) + 24f(y) - 12f(2y) =0 (3.3)
for all x, y € X. From (3.2) and (3.3), we obtain

fx + 6y) — 14f(x + 4y) + 35f(x + 3y) — 35f(x + 2y) + 14f(x +y) - f(x —y) =0 (3.4)
for all x, y € X. Substituting y by — y into (3.4), we get

fx = 6y) = 14f (x — 4y) + 35f(x - 3y) - 35f(x = 2y) + 14f(x - y) - f(x +y) = O (3.5)
for all x, y € X. From (3.4) and (3.5), we obtain

fx + 6y) + f(x — 6y) — 14f (x + 4y) — 14f (x — 4y) + 35f(x + 3y) + 35f(x — 3y)

—35f(x +2y) - 35f(x - 2y) + Bf(x +y) + 13f(x —y) = 0 (3:6)

for all x, y € X. Substituting y by 2y into (1.5), we have
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fx+6y) + f(x - 6y) + f(x + 4y) + f(x = 4y) + 22f(x) - 13f(x + 2y)

(3.7)
- 13f(x - 2y) + 24f(2y) — 12f(4y) = O
for all x, y € X. From (3.6) and (3.7), we obtain
15f(x + 4y) + 15f(x — 4y) — 35f(x + 3y) — 35f(x — 3y) + 22f(x + 2y) + 22f(x — 2y) (3.8)
- 13f(x +y) - 13f(x — y) + 22f (x) + 24f(2y) — 12f(4y) = 0O )
for all x, y € X. Substituting x by x + y into (1.5), we get
fOc+4y) + fx = 2y) + f(x + 3y) + f(x — y) + 22f(x +y) — 13f(x + 2y) (3.9)
- 13f(x) + 24f(y) - 12f(2y) = O
for all x, y € X. Substituting y by — y into (3.9), we have
fx—4y) + fox +2y) + f(x = 3y) + f(x + y) + 22f(x - y) — 13f(x - 2y) (3.10)
- 13f(x) + 24f (~y) - 12f(-2y) = O
for all x, y € X. From (3.9) and (3.10), we obtain
fOc+4y) + f(x = 4y) + f(x + 3y) + f(x = 3y) = 12f(x + 2y) - 12f(x = 2y) + 23f(x + y) 3.11)
+23f(x — y) — 26f(x) + 24f (y) — 12f(2y) + 24f(-y) — 12f(-2y) = O, '
thus
15f(x + 4y) + 15f(x — 4y) + 15f(x + 3y) + 15f(x — 3y) — 180f(x + 2y) — 180f (x — 2y) + 345f(x + y) (.12)
+ 345f(x — y) — 390f(x) + 360f(y) + 360f(-y) — 180f(2y) — 180f(-2y) = O ’
for all x, y € X. From (3.8) and (3.12), we obtain
50f(x + 3y) + 50f(x — 3y) — 202f(x + 2y) — 202f (x — 2y) + 358f(x + y) + 358f(x — y) — 412f (x) (3.13)
+ 360f(y) + 360f(-y) — 204f(2y) — 180f(-2y) + 12f(4y) = O .
for all x, y € X. From (1.5), we get
50f(x + 3y) + 50f(x — 3y) + 50f(x + 2y) + 50f(x — 2y) — 650f(x + y) (3.14)
— 650f(x — y) + 1100f(x) + 1200f(y) — 600f(2y) = O '
for all x, y € X. From (3.13) and (3.14), we have
252f(x + 2y) + 252f (x — 2y) — 1008f(x + y) — 1008f(x — y) + 1512f (x) (3.15)
+ 840f(y) — 360f(-y) — 396f(2y) + 180f(=2y) — 12f (4y) = O, )
thus
21f(x + 2y) + 21f (x — 2y) — 84f(x + y) — 84f(x — y) + 126f(x) (3.16)
+70f(y) - 30f(-y) - 33f(2y) + 15f(=2y) - f(4y) = O ’
for all x,y € X. (|

Lemma 3.2. Let G be an additive group, (Y, |-lly) be a non-Archimedean normed space and f: G — Y be a
mapping satisfying (1.5). Then, the following assertions hold:

(1) fis even if and only if f is quartic;

(2) fis odd if and only if f is additive.

Proof. Replacing x and y by 0 in (1.5), we have f(0) = 0.
(1) For the first implication, we suppose that fis even. By Lemma 3.1, fis of the form (3.1). Putting x = 0 in
(3.1), since fis even and f(0) = 0, we obtain
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24f(2y) - 128f(y) - f(4y) = O
for all y € X. It follows the proof of Lemma 3.1 that

15f(x + 4y) + 15f(x — 4y) — 35f(x + 3y) — 35f(x — 3y) + 22f (x + 2y) + 22f(x — 2y)
- 1Bf(x +y) - Bf(x —y) + 22f(x) + 24f2y) — 12f(4y) = 0

for all x, y € X. Putting x = 0 in (3.18), since f is even and f(0) = 0, we obtain
30f(4y) — 70fBy) + 44f(2y) — 26f(y) + 24f(2y) — 12f(4y) = O,
thus
9f(4y) — 35f(3y) + 34f(2y) - 13f(y) = O

for all y € X. From (3.17), we get

216f(2y) — 1152f(y) — 9f(4y) = O
for all y € X. From (3.19) and (3.20), we have

- 35f(3y) + 250f(2y) — 1165f(y) = O
for all y € X. Letting x = 0 in (1.5), since f is even and f(0) = 0, we obtain
fBy) - 5f2y) - f(y) = 0,

thus

35f(3y) - 175f(2y) - 35f(y) = O
for all y € X. From (3.21) and (3.22), we get

f2y) = 16f(y)

for all y € X. From (3.1), we have

fx+2y) + fx = 2y) - 4f(x + y) - 4f (x = y) + 6f(x) - 24f(y) = O

— 179

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

forall x, y € X, so fis a quartic mapping. Finally, it is easy to prove that the second implication holds.

This completes the proof.

For the first implication, we suppose that f is odd. By Lemma 3.1, f is of the form (3.1). Substituting y

by - y into (1.5), since f is odd, we get
fOx+3y) + fx = 3y) + f(x +2y) + f(x = 2y) + 22f(x) - 1Bf(x + y) - 13f(x — y)
- 24f(y) + 12f(2y) = 0
for all x, y € X. From (1.5) and (3.25), we obtain
fQy) =2f(y)
for all y € X. From (3.1) and (3.26), we have
fe+2y) + fx = 2y) - 4f (x + y) = 4f(x - y) + 6f(x) = O
for all x, y € X. Substituting x by 2x into (3.27) and using (3.26), we get
Ax+y)+2Af(2x-y) - fx+y) - fx-y) - 6f(x) =0
for all x, y € X. Interchanging x into y in (3.27), we have
fx+y) - fx -y) - 4f(x+y) + 4f(x - y) + 6f(y) = 0
for all x, y € X. Substituting y by — y into (3.29), we get
fx-y) - fx +y) - 4f(x —y) + 4f (x +y) - 6f(y) = O

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)
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for all x, y € X. Replacing x by 2x in (3.28) and using (3.31), we get

Alx+y)+2f(bx-y) - fx+y) - fx -y) - 12f(x) = 0 (3.31)
for all x, y € X. From (3.28) and (3.31), we obtain
4f(bx +y) + 4f(4x - y) - f(x +y) - f(x - y) - 30f(x) = O (3.32)

for all x, y € X. Substituting y by y + 2x into (3.28), we have
4f (4x +y) - 4f(y) - 2fBx +y) + 2f(x + ¥) — 12f(x) = O (3.33)
for all x, y € X. Replacing y by - y in (3.33), we get
4f(ax —y) + 4f(y) - Bx - y) + 2f(x - y) - 12f(x) = 0 (3.34)
for all x, y € X. From (3.33) and (3.34), we obtain
4f(bx +y) + 4f(bx —y) = 2fBx +y) - 2fBx - y) + 2f(x + ¥) + 2f(x — ¥) — 24f(x) = O (3.35)
for all x, y € X. From (3.32) and (3.35), we obtain
ABx+y)+2Bx-y) - 3fx+y) -3fx-y) - 6f(x) =0 (3.36)

for all x, y € X. Substituting y by x — y into (3.28), we have

ABx—y) +2fx+y) - fx - y) - f(y) - 6f(x) = O (3.37)
for all x, y € X. Substituting y by x + y into (3.28), we get
ABx+y)+2Ax-y) - fx +y) + f(y) - 6f(x) =0 (3.38)
for all x, y € X. From (3.37) and (3.38), we obtain
ABx+y)+ 2ACx-y) - fx+y) - fx-y) + 2f(x +y) + 2f(x - y) - 12f(x) = 0 (3.39)
for all x, y € X. From (3.28) and (3.39), we have
4fBx+y) +4fBx—y) +3f(x+y) + 3f(x —y) - 30f(x) =0 (3.40)
for all x, y € X. From (3.36) and (3.40), we have
fe+y) +fx-y) - 2f(x) =0 (3.41)
for all x, y € X. Interchanging x into y in (3.41), we get
fx+y) - flx-y)-2f(y) =0 (3.42)
for all x, y € X. From (3.41) and (3.42), we obtain
fx+y)=f00 +f(y) (3.43)
for all x,y € X, so fis an additive mapping. Finally, it is easy to prove that the second implication
holds. This completes the proof. O

Next, we are going to consider the stability of the additive-quartic functional equation (1.5).

Theorem 3.3. Let G be an additive group, (Y, |-|ly) be a complete non-Archimedean normed space and
¢ : G> — [0, co) be a function such that

n n:
lim 2@ 2") _

n—co n

0 (3.44)

for all x,y € G, and the following limits exist for each x € G:
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;
lim maX{M :0<j< n} (3.45)
n—oo 2
and
h()
lim max{@ :0<j< n}, (3.46)
n—.oo

where P(x, y) = max {¢(x, y), p(-x, —=y)} for all x,y € G and

P(0, 2x)
2 b

lﬁ(x) = max {lp(Bx, x), Y(2x, x), 9(x, x), 22Y(0, x)} (3.47)

for all x € G. Suppose that f: G — Y is a mapping satisfying f(0) = 0 and
IDf(x, Yy < p(x,y) (3.48)

for all x,y € G. Then, there exist a unique quartic function Q : G — Y and a unique additive function
A : G — Y such that

fOO +f(=x) 1. px) .
H -5 Qx) ’ < 960 nlirllo max{ T 0<j< n}, (3.49)
H M — A(X) < i hm max{w : 0 S] < n} (3.50)
2 Y 48n—co y

and

n—oo 16/ n—oo

Ife0) = Qx) — AX)|ly < max{%% lim max{lp(zj?() :0<j< n}, 1 lim max{% :0<j< n}} (3.51)

for all x € G. Moreover, if

b
tim Tim max! 22 . 0 <ci<j<n+ib=0 (3.52)
i—ocon—oo 16/
and
, 2 . .
lim lim max{—l‘b(ozj X) :0<i<j<n+ 1} =0 (3.53)
1— 00 N—00

for all x € G, then Q and A are the unique quartic and additive functions satisfying (3.49) and (3.50),
respectively.

Proof. Let fi : G —» Y be the function defined by fi(x) = w for all x € G. Then, fi(0) = 0 and
fix) = fi(=x) for all x € G. Replacing x by — x and y by — y into (3.48), we have

IDF %, V)l < $(x, ) (3.54)
for all x, y € G. From (3.48) and (3.54), we obtain
1A, Pl < 5 max e, ), dl-x, -y} = L2V (3.55)
for all x, y € G. Letting x = 3y in (3.55) and using f;(0) = 0, we get
W69 + oY) - 13(4y) + 230) - 252 + 5y < YY) (3.56)

for all y € G. Letting x = 2y in (3.55) and using f;(0) = 0, we have
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i5y) + fi4y) - 13hGy) + 10A2) + 126y < @ (3.57)
for all y € G. From (3.56) and (3.57), we obtain
Ifi(6y) — 14fi(4y) + 35A(3y) - 35(2y) + Bi(Ylly < % max {3y, y), Y2y, y)} (3.58)
for all y € G. Letting x = 0 in (3.55), we get
126y - 106@) - iy < YO, (3.59)
that is,
IAGY) - SH@) - Yl < %0, ) (3.60)

for all y € G. Replacing y by 2y in (3.60), we obtain

Loy - 5itay) - finly < L2 G.6)
for all y € G. From (3.58) and (3.61), we obtain
I-9fi(4y) + 35A3y) - 34f2y) + AWy < % maX{'lJ(By, ¥), Y2y, y), M} (3.62)
for all y € G. Letting x = y in (3.55), we get
Wi4y) + Gy - 24:0) + 47l < P22, (3.63)
thus
I9(4y) + 93) - 21612) + 42l < L) (3.64)

for all y € G. From (3.62) and (3.64), we obtain

(0, 2y)
2 bl

44, (3y) — 250f1(2y) + 436fi(y)ly < % maX{l/J(By, ¥), Y2y, y), IY(y, y)} (3.65)

for all y € G. From (3.60), we get
l44f(3y) — 220f1(2y) - 44fi(y)lly < 11(0, y) (3.66)

for all y € G. From (3.65) and (3.66), we obtain

(0, 2y)

1-30£1(2y) + 480fi(Y)ly < % maX{ll)Gy, V), W2y, y), , (y, y), 224(0, y)} (3.67)

for all y € G. Thus, we have

‘ fi2y)

16
for all y € G. Replacing y by 2*"ly in (3.68) and dividing by 16", we get

‘ A@Y) A || 1 pEY)
AQ%)

161 16" ||, ~ 960 16!
for all y € G. It follows from (3.68) and (3.69) that the sequence {W} is a Cauchy sequence in Y. Since Y
is complete, there exists a function Q : G — Y such that

Y(0, 2y)

Ay) - 5

<L max{zl)ey, V)Y, ), L 9P(Y, y), 2240, y)} - 971043@) (3.68)

y 960

(3.69)
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@)
= li 3.70
Qly) = lim === o (3.70)
for all y € G. From (3.69) and the strong triangle inequality, we obtain
fily f1(2y) sima l[)(y) :0<j<n (3.71)
16" |y 960 16/
for all n e N and all y € G. Taking n — oo in the above inequality, it yields that
1
1A(y) - QW) < ey lim maX{lp( 6y ).0o <j< n} (3.72)
for all y € G. By (3.44) and (3.48), we get
Dhi(2,2%) || _1 H Df(2"x, 2"y) + Df(=2"x, -2"y)
16" y 2 16" v
1 {IIDf ™%, 2%y IDF(=2"x, =2"y) Iy
T2 16" ’ 16"
< l ma (l)(an, zn)/) , ¢(_2HX’ —2")/)
2 16™ 16"
for all x, y € G. From the last inequality, letting n — co, we obtain
DQx,y) =0 (3.73)
for all x, y € G. Since f;(0) = 0, we obtain Q(0) = 0. Since f; is even,
. =2"x 2"x
100) - Q-0 = lim H Qu) - LEZ0 11 _ i H Qo - 220 |-
n—oo 16 n—oo 6 Y

for all x € G and so Q is even. By Lemma 3.2, we get Q is a quartic mapping.
Let f,:G — Y be the function defined by fo(x) = {0/ f ™ for all x € G. Then, /»,(0) =0 and
fr(=x) = —fr(x) for all x € G. From (3.48), we obtain

X,
DG Pl < LY (3.74)
for all x, y € G. Letting x = 0 in (3.74), and using f, is odd and £,(0) = 0, we have
0,
240) - 2h@ly < YO, (3.75)
that is,
2 0,
Hf( - fz( y) || ¥O.y) (376)
v 48
for all y € G. Replacing y by 2*"ly in (3.76) and dividing by 2", we get
n-1 n n-1
LQ7Y) _ L£@Y) | _ 1 ¥(0,2"7y) 3.77)
|, T 48 2!

for all y € G. It follows from (3.76) and (3.77) that the sequence {fz(z Y )} is a Cauchy sequence in Y. Since Y
is complete, there exists a function A : G — Y such that

A(y) = lim f2(2 y) (3.78)

n—oo

for all y € G. From (3.77) and the strong triangle inequality, we have



184 —— Anurak Thanyacharoen and Wutiphol Sintunavarat DE GRUYTER

£2%)
2n

Hfz(Zy) - =8

1 max{w :0<j< n} (3.79)

for alln € N and all y € G. Taking n — co in the above inequality, it yields that

1 . 0,2 ,
I1£2y) — A(Y)lly £ — lim max u :0<j<n (3.80)
48n—c0 2
for all y € G. By (3.44) and (3.48), we have
Df(2"x, 2) _1 Df(2"x, 2"y) + Df (-2"x, -2"y)
on y 2 on v
n n- _on _n.
1 1225 2%) Iy IDF(-2"%, -2yl
2 2n 2"
n n. _9n, _9n
1 e[ 2202 B2, 2)
2 2" 2n
for all x, y € G. From the last inequality, letting n — co, we get
DA(x,y) =0 (3.81)

for all x, y € G. Since f,(0) = 0, we obtain A(0) = 0. Since f, is odd,

=0

JAG) + A=0ly = lim H A0 + @
n—oo ;

= lim H Alx) -

Yy n—oo

£(2")
2n

for all x € G and so A is odd. By Lemma 3.2, we have A is an additive mapping. Since f(x) = fi(x) + f2(x) for
all x € G, from (3.72) and (3.80) it follows that

IF G0 = Q) = Ay = Iix) + £o(x) - Qx) — Al
<max {[fi(x) - QWlly, IL(x) - AX)ly}

o . (3.82)
J )
smax{L lim max{m :0<j< n}, 1 lim max{M :0<j< n}}
9 16’ 48 2

n—-oo n—.oo

for all x € G.
Next, we will claim the uniqueness of Q and A. Suppose that there exist a quartic mappingQ’' : G —» Y
satisfying (3.49) and an additive mapping A’ : G — Y (3.50). By using (3.49) and (3.52), we have

Q2x) Q'
16! 16!

Y

= iliTo 1%" 1Q2X) - fi(2x) = Q'2X) + f1(2X) |y

< llirilo 1%, max {[1Q2%) - fi(2X) Iy, 1Q'(2%) - A(2%) Iy}

i—ocon—oo

b
SLlim limmax{%:0§i§j<n+i}

for all x € G. Since the right-hand side of the above inequality converges to 0, we obtain Q(x) = Q'(x) for
all x € G, that is Q = Q'. Similarly, we get A = A’. |

Corollary 3.4. Let G be a normed space, (Y, ||-|y) be a complete non-Archimedean normed space. Suppose
that f : G — Y is a mapping satisfying f(0) = O and there are a positive real number A and a real number
s < 1 such that

IDf x, Y)lly < ACIXIE + llyll)
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for all x,y € G — {0}. Then, there exist a unique quartic mapping Q : G — Y and a unique additive mapping
A : G — Y such that

x) + f(-x
H [0 + £ _
2 I
S js S s jS S S9js S )jS S )jS s
< A lim max] G DI @0 D 22 218 22 L
960 n—co 16/ 16/ 16/ 16/ 16/
— f(-= iS|| IS
HM—A(X) silimmax 2”).(" :0<j<n
2 e n—o0 2
and
A (S + D2x|s (25 + D2S|x|S  252%||x|I*
- Q) — AX)|ly £ max{—— lim max . s . s —,
IF0) = Q) - AWl {960’1%0 { o o o
s s js S js s
218".)(” ,222||.X” :0<j<ny, ilimmax M:Osj<n
16’ 16/ 48n-00 2
for all x € G — {0}.
Proof. Define a mapping ¢ : G*> — [0, co) by
o, if x=0 or y=0;
d(x,y) = s s
A(IXIE + llyl*), other
for all x,y € G.
From the definition of ¢, for each x € G, we obtain
b))
lim max{M :0<j< n} (3.83)
n—oco 2
and
(D
lim max{m :0<j< n} (3.84)
n—oo 2
exist.
For x =0 or y = 0, we get
n n-
lim 2% 2Y) _ o (3.85)
n—oo "

For each x, y € G — {0}, we have

L P, 2y) AR+ 112"Y)°) - 2%+ lIyl)
lim ———— = lim —n:AhmT

n—oo n—oo n—oo

= A(IxI® + llyl*) lim 25°)" =0. (3.86)
n—-oo

From (3.85) and (3.86), we have

lim 2E02Y) (3.87)

n—oco 2n

for all x,y € G.
For x = 0, we have

i—»ocon—oo

b
lim limmax{%:OSigj<n+z}:0 (3.88)
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and
0,2 . ;
lim lim max{u:OS1s1<n+l}=0. (3.89)
i—oon—co 2
For x # 0, we have
Vx
lim lim max {lp( ) O<1<)<n+l}
i—»oon—oo 16/
s JS|| x|IS s Sl lIS 95|y |IS
C A i i max ] BT D2 @5+ D2 22
i—»ocon—oo 16/ 16/ 16/ (3 90)
2s18||x[s  222||x]° .. .
— - :0<i<j<n+i
16/ 16/
is S
= L lim lim % =0
i—oon—co 16!

and

lim lim max

i—oon—oco

Y(0, 2x)
b))

iS|| v IS
:Osisj<n+i}:ilimlimmax{2|2¢

:Osisj<n+i}

i—oon—oo

(3.91)
S
A"X” lim lim (2571 =
l"OOYl"OO
From (3.88)-(3.91), we can obtain that
(D
lim lim max{‘l’(zf‘) c0<i<j<n+ i} -0 (3.92)
i—»oon—oo 16/
and
)]
lim lim max{w 0<i<j<n+ z} ~0 (3.93)
100 NnN—00
for all x € G.
Now, all hypotheses of Theorem 3.3 hold. Therefore, we get this result. O

Corollary 3.5. Let G be a normed space and (Y, |-lly) be a complete non-Archimedean normed space.
Suppose that f : G — Y is a mapping satisfying f(0) = 0 and there are a positive real number A and a real
number s < 1 such that

IDF O Wl < AAXIEIVIE + X1 + Iyl°)

for all x,y € G — {0}. Then, there exist a unique quartic mapping Q : G — Y and a unique additive mapping
A : G — Y such that

_ is|| v |IS S|l IS
H fe) + 1) _ <A lim max| 2 ”X” 2 s + 35+ 1), 2 s 4 25 4 1),
2 960 1o 16/
]S+S S ]S S ]S S
2 .||x|| 2O s 5y, 22 o ]
162 16 16/
— f(— IS v IS
HM—A(X) silimmax M:Os;kn
2 y n—co P
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and

n—oo

IF () - QM) - AWy < max{g% lim max{ 21"6X"S G2 + 3 + 1),

jS+S S jS s
2 spispe + 25 4 1), Z AL 2O i 4 ),
161 1672 16/
)JS S js s
222”.)(" :0<j<n ,ilimmax 2 ”).(" :0<j<n
16/ 48n—c0 2
for all x € G - {0}.
Proof. Define a mapping ¢ : X> — [0, co) by
if x=0 or y=0;
POLY) = e ’
A(IIXII IylI* + IxI + llyl¥), other
for all x, y € G. By using the same technique with Corollary 3.4, we get this result. O

Next, we consider the stability result of (1.5) in non-Archimedean normed spaces by using the fixed
point method.

Theorem 3.6. Let G be an additive group, (Y, |-|ly) be a complete non-Archimedean normed space and
¢ : G> > Y be a function such that

d(2x, 2y) < Lo(x, y) (3.94)
forall x,y € G, where O < L < 2. Suppose that f: G — Y is a mapping satisfying f(0) = 0 and
IDF(x, Ylly < px,y) (3.95)

for all x,y € G. Then, there exist a unique quartic function Q : G — Y and a unique additive function
A : G — Y such that

fO) +f(=x)
H 3 Qx) =560 60L¢( X), (3.96)
fo) ~f(x) 1
H 5 A(x) ) < 15— 24Ll,b(x) (3.97)
and
1 .
If(x) = Qx) = AX)lly < max{mlﬁ(x) 48— 24Ll'b( )} (3.98)
for all x € G, where Y(x, y) == max {¢p(x, y), p(-x, -y)} for all x,y € G and
P(x) = max{l[)(Bx, x), Y(2x, X), ‘/’(02’ 2 , 9Y(x, X), 221(0, x)} (3.99)

forall x,y € G.

Proof. Let Q == {g: G — Y}. Define a generalized metric d on Q by
d(g, h) = inf{c e R* : |lg(x) — h(0)| < cz/)(x), Vx € G}.
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Since Y is a complete non-Archimedean normed space, (2, d) is a generalized complete metric space. Let
fi : G = Y be the function defined by fi(x) = W for all x € G. Then, f;(0) = 0 and fi(x) = fi(—x) for
all x € G. By following the proof of Theorem 3.3, we get

_ h@y)
16

IN

H fi(y) D) (3.100)

1
y 960
for all y € G. Define amap J, : Q —» Q by (Jog)(x) = fli—zx) for all x € G. Let g, h € Q and c a positive real
number with d(g, h) < c. Then,

82¥)  hx)

1 Cc = cL ~
16 = Ellg(ZX) - h2)ly < EIIJ(ZX) < EllJ(X)

10e8) (x) = Ueh) (X)lly —H

Y

for all x € X and so
L
d(]eg; ]eh) < _d(g, h)
16
forall g, h € Q. Slnce < 1, we get J, is strictly contractive and by (3.100), we have

dlefi, i) < 960

Hence, by Theorem 2.6, there is the unique fixed point Q of J, in Q such that {J}'f;} converges to Q in (Q, d) and

4@ 1) < (17 )0 ) < (17 Vot ~ 360 —eor (3.101)

161L /960 960 — 60L
for all x € X. By (3.95), we have

H DA™, 2) || 1 H Df(2"x, 2") + Df(-2", -2"y)
16" . 2 16" v
< 1 max {llDf(Z”X 2" )||y [IDf (2", —Z"Y)lly}
T2 16" 16"
- l {4)(2")(, 2%) (=2, —2"y)}
T2 16"’ 16"
I
mmax{tb(x 2 ¥)s P(=x, =y}

for all x, y € G. From the last inequality, letting n — co, we obtain
DQx,y) =0 (3.102)
for all x, y € G. Since f;(0) = 0, we obtain Q(0) = 0. Since f; is even, we obtain

Q) - Q(=x)ly = llm 1Q00) - Jefi(=x)lly = hm 1Q00) = Jefi)ly =0

for all x € G and so Q is even. By Lemma 3.2, we have Q is a quartic mapping. From (3.101), we get

H f(x) + f(=x) 1
2

. < ml[)(x) (3.103)

- Qx)

for all x € G.
Let fr: G — Y be the function defined by f(x) = [0S0 f ™) for all x € G. Then, £(0) =0 and
fo(=x) = —f,(x) for all x € G. From the proof of Theorem 3.3, we get

£Q2y)

l/J(O y) lp(y) (3.104)

Hf(y) ’ 48
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forally € G. Defineamap J, : @ — Q by (J,g)(x) = 2g(27x) for all x € X. Let g, h € Q and c a positive real
number with d(g, h) < c. Then,

g20  h2v

1068) (%) = Uoh) (lly = H 5

1 c - cL -
=—|g2x) — h(2X)|ly < —yp(2x) < —
T lg(2x) — h(2)lly < |2|1P( )< |2|l/1(X)

for all x € G and so
L
d(]og, ]oh) < Ed(g’ h)
for all g, h € Q. Since 27'L < 1, we get J, is strictly contractive and by (3.104), we have
1
d h) < —.
(of2s f2) 48

Hence, by Theorem 2.6, there is the unique fixed point A of J, in Q such that {J]'f,} converges to A in (Q, d)
and

A f) < (7 A0 < (1 )i = (3.105)

1-20)48 48 — 24L

for all x € G. By (3.95), we have

1 Df (2™, 2") + Df (-2, -2"
e s )
2 2 v
n n. _9ny _9n
p 1 max IDf (2", 2"y)lly ) IDf (2", =2"y)lly
2 n n
n n: _9ny _9n
< 1 x| 2@%2y)  $(-2%, -2y)
2 n n
n
STITR {pC, y) + p(=x, -y)}
for all x, y € G. Letting n — oo in the last inequality, we have
DA(x,y) =0 (3.106)

for all x, y € X. Since f,(0) = 0, so we obtain A(0) = 0. Since f, is odd,

1AG) + A(=0)lly = nle IAX) + Jo fo(=x)lly = nlim IAX) = Jo 200Ny =0

for all x € G and so A is odd. By Lemma 3.2, we have A is an additive mapping. From (3.105), we get

H fx) - f(=x) 1
2

Y

Ax)

for all x € G. Since f(x) = fi(x) + f2(x) for all x € G, from (3.103) and (3.107) it follows that

IFC0) = Q) = AN = 1) + /LX) = Qx) = AX)lly
<max {li(x) - QW)ly, 00 — AX)ly}

1 1 (3.108)
= max{%o ETTAGAIT TS lp(x)}

for all x € G.
To show the uniqueness of Q and A, suppose that there exist a quartic mapping Q' : G — Y satisfying
(3.97) and an additive A’ : G — Y satisfying (3.98). By using (3.97), we have
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1069 - @'l = lim H 0@y _ Q'@

16“ Y
= nlim 1—I|Q(2”X) Q™) - Q'(2") + fi(2™)lly
< nlirgo 1%1‘ max {[|Q(2") - A2y, 1Q'2™) - 2™y}
1

1
———— lim — ma 2"
= 960 — 60Lno 16" x (pa)

1
<— lim —y(x
960 — 60Ln— 0016"1'0()

for all x € G. Since the right-hand side of the above inequality converges to 0, we obtain Q(x) = Q'(x) for
all x € G, that is, Q = Q'. Similarly, we get A = A’. O

Corollary 3.7. Let G be a normed space and (Y, |-lly) be a complete non-Archimedean normed space.
Suppose that f: G — Y is a mapping satisfying f(0) = 0, and there are a positive real number A and a real
number s < 1 such that

IDf %, Ylly < ACIXIE + llyll)

for all x,y € G — {0}. Then, there exist a unique quartic function Q : G — Y and a unique additive mapping
A : G — Y such that

H fO) +f(=x) o 2 X
2 ~ 960 — 2560’

H fO) - f(=x) A || < 27 |Ix|J

2 v 48— 2524

and

Ifx) - Q(x) — AX)lly < ma { Al 2240 }

960 — 2560 48 — 2524
for all x € G - {0}.

Proof. Define a mapping ¢ : G2 — [0, c0) by

if x=0 or y=0;

peen - {/\(”X”SHI)/IIS) other

for all x,y € G.
Next, we will show that ¢(2x, 2y) < Lg(x, y) forall x, y € G, where L := 25 < 2. For x = O or y = 0, we get

$(2x, 2y) = 0 < Lo(x, ).
If x, y € G - {0}, we obtain
d(2x, 2y) = A2 + 12y1°) = A2°(IxI° + IyI°) = Lop(x, y).
So ¢(2x, 2y) < Lp(x, y) for all x,y € G.
Therefore, all hypotheses of Theorem 3.6 hold and so we get this result. O

Corollary 3.8. Let G be a normed space and (Y, ||ly) be a complete non-Archimedean normed space.
Suppose that f : G — Y is a mapping satisfying f(0) = 0 and there are a positive real number A and a real
number s < 1 such that

IDF e Wy < AAXIEIVIE + X1 + Iyl°)
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for all x,y € G — {O}. Then, there exist a unique quartic function Q : G — Y and a unique additive mapping
A : G — Y such that

— S
H FOOHFEO o ||« AP a5l + 35 + 1, 250 + 25 + 1, 9lxl° + 18, 22},
2 y 960 — 2560
— — S
H M - A(x) < M max{3%|x[° + 35 + 1, 25||x|I° + 25 + 1, 9|x|° + 18, 22}
2 Y 48 — 2524
and
If(x) = Qx) = Ay < max{M max{3%||x||5 + 35 + 1, 25||x|I° + 25 + 1, 9|x|¥ + 18, 22},
960 - 2560
S
M max{3%||x|°> + 35 + 1, 25||x|I° + 25 + 1, 9||x|° + 18, 22}}
48 — 2524

for all x € G - {0}.

Proof. Define a mapping ¢ : G2 — [0, co0) by

0, if x=y=0;

(x,y) =
oy {/\(IIXIISII)/IIS+|IXIIS+||y|I5), other

for all x, y € G. Next, we will show that ¢(2x, 2y) < L¢p(x, y) for all x,y € G, where L := 25 < 2. For x = 0 or
y =0, we get

b(2x,2y) = 0 < Lo(x, y).
If x,y € G — {0}, we obtain

(2, 2y) = Ad2FI2y1° + 12° + 12y1°) = AQ¥IxIP Iyl + 28Il + 2y Il)
<A2(IIxIFNyIE + 11 + lIylIP) = Lg(x, y).

So ¢(2x, 2y) < Lg(x,y) for all x,y € G.
Therefore, all hypotheses of Theorem 3.6 hold and so we get this result. |

4 Conclusion and recommendation

Two main generalized Hyers-Ulam stability results for the additive-quartic functional equation in the case
of an unknown function map from an additive group into a complete non-Archimedean normed space are
given based on the direct method and the fixed point method. Several stability results can be obtained
from two main results by choosing an appropriate control function ¢. In this article, the main second
result can be deduced from the fixed point theorem of Diaz and Margolis [18]. However, in 2012, Cieplifiski
[19] presented that how to use different fixed point theorems with Diaz and Margolis for proving Hyers-
Ulam stability of functional equations. The obtained stability results are simple consequences of some
new fixed point theorems. Consequently, we give the following challenge as the recommendation to the
reader:

Can we use the fixed point results of Cieplinski [19] to prove the stability results for the additive-quartic
functional equation whenever an unknown function maps from an additive group into a complete non-
Archimedean normed space?
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