DE GRUYTER Demonstratio Mathematica 2020; 53: 121-130

Research Article

Snezhana G. Hristova* and Stepan A. Tersian

Scalar linear impulsive Riemann-Liouville fractional
differential equations with constant delay-explicit
solutions and finite time stability

https://doi.org/10.1515/dema-2020-0012
received January 30, 2020; accepted May 30, 2020

Abstract: Riemann-Liouville fractional differential equations with a constant delay and impulses are
studied in this article. The following two cases are considered: the case when the lower limit of the
fractional derivative is fixed on the whole interval of consideration and the case when the lower limit of
the fractional derivative is changed at any point of impulse. The initial conditions as well as impulsive
conditions are defined in an appropriate way for both cases. The explicit solutions are obtained and
applied to the study of finite time stability.
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1 Introduction

Fractional differential equations have been applied as more adequate models of real-world problems in
engineering, physics, finance, etc. ([1,2]). One of the main qualitative problems is connected with finite
time stability (FTS). FTS of linear fractional delay differential equations with controls was studied with the
help of an inequality of Gronwall type in [3-5]. For other related contribution, one can refer to [6-8].

The question about Riemann-Liouville (RL) fractional differential equations is still at the initial stage
of investigations (see, e.g., [9-11]). Li and Wang introduced the concept of a delayed Mittag-Leffler-type
matrix function, and then they presented the finite-time stability results by virtue of a delayed Mittag-
Leffler-type matrix in [12-14]. They study the case when the lower limit of the RL fractional derivative
coincides with the left side end of the initial interval. It is not only different than the idea of the initial
value problem (IVP) for delay equations but also it requires strong conditions for the initial function.

In this article, we study IVPs of systems of RL fractional differential equations with a constant delay and
impulses at the fixed initially given points 0 = to < ; < t, < ... < ty < ty;1 = T. We study the following two
cases: when the lower limit of the fractional derivative is fixed on the whole interval of consideration, i.e.,

N
RLDAx(t) = Ax(t) + Bx(t — 1) + F(t, x(t)) for t € | (t, tisas 1)
k=0

and the case when the lower limit of the fractional derivative is changed at any point of impulse, i.e.,

SDix(t) = Ax(t) + Bx(t — 7) + F(t, x(t)) for t € (ti, tis1), k = 0,1,..., N, @)

where A, B are constants, T > 0 is a constant delay and T < co.
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Similar to the case of the ordinary derivative, the differential equation is given to the right of the initial time
interval. It requires the lower bound of the RL fractional derivative to coincide with the right side end of the initial
interval (usually this point is zero). Note that in this case any solution of an IVP with RL fractional derivatives is
not continuous at the initial point. That is why RL fractional delay differential equations are convenient for the
modeling process with impulsive types of initial conditions. This type of process can be found in physics,
chemistry, engineering, hiology, and economics. To determine the law of the initial impulsive reaction we need
to add to the usual initial condition (e.g., x(t) = ¢(t) on the initial interval [-7, O], T > O is the delay) a fractional
condition. This conclusion is based on the results obtained in [1] and [8] concerning the physical interpretation
of the RL fractional derivatives and initial conditions which include derivatives of the same kind. Based on the
above, we set up appropriate IVPs for RL linear fractional differential equations with a lower limit of the RL
derivative equal to the right side point of the initial interval, i.e., we study the initial conditions of the type

x(t) = g(t) for t e [-1,0],

t
g L 1 X(s) o 3)
oli " Ix(t)le=0 = tlirgi Ta-a ! 5 ds = g(0).

Similarly, the impulsive conditions are given by
tkItl_qX(t)|t=[k :Dkx(tk - O)a k= 15 25'--’Na (4)

where Dy, k=1,2,...,N are constants.

In this article, we study scalar linear RL fractional differential equations with a constant delay and
impulses. The main contributions of the study are as follows:
1. Two types of fractional equations are studied:

— the equation in which the lower bound of the fractional derivative is fixed at the initial time point;
— the equation in which the lower limit of the fractional derivative is changing at each point of impulse.

2. The impulsive conditions are set up in both the aforementioned cases. It is connected with the presence
of RL fractional derivative and the delay.

3. Explicit formulas of the solutions are obtained in both the aforementioned cases.

4. The obtained explicit formulas for the solutions are applied to study the FTS.

The rest of this article is organized as follows. In Section 2, we outline some basic notations and results
from fractional calculus. In Section 3, the main two types of the interpretation of the presence in impulses
in RL fractional differential equations are presented. In Section 4, explicit solutions of IVPs (1), (3) and (4)
as well as of IVPs (2), (3) and (4) are given. In Section 5, the formulas for the exact solutions are applied to
the study of the FTS of both IVPs.

2 Preliminary notes on fractional derivatives and equations

Let 0 < tg < T < oo. In this article, we will use the following definitions for fractional derivatives and integrals:
— RL fractional integral of order q € (0,1) [15,16]

t
q 1 m(s)
i Ifm(t) = @ ;[ (t_s)l,qu, t € [to, T,

where I'(-) is the Gamma function when the integral exists.

This is called by some authors the left RL fractional integral of order g (because we integrate to t
from the left).

Note sometimes the notation , D;‘m(t) =, Im(t) is used.
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— RL fractional derivative of order g € (0,1) [15,16]

1 d
ra-gq) dt

t
Dim(t) = %(%I}’qm(t)) = I (t = s)y9m(s)ds, t e [to, T1, (5)
to

where m(t) is measurable on [tq, T].

This is also called the left RL fractional derivative. We will call the point ¢, a lower limit of the RL
fractional derivative.

We will give fractional integrals and RL fractional derivatives of some elementary functions which will
be used later.

Proposition 1. For t > ty and S > 0 the following equalities are true:

r'a+p) 3

Ripai¢ — ¢ =——" " P/ ¢ _ )8

tODt (t to) I‘(l + ﬁ _ q) (t tO) q’
_ N T'(B) _
qp o)1= — 7 (¢ t)P

I A (N () T+f-q) (t - to)P 4,

Bl It = )7 = T(g),
SDA(t - to)? ! = 0.
The definitions of the initial condition for fractional differential equations with RL-derivatives are
based on the following result.
Lemma 1. [17, Lemma 3.2] Letq € (0,1),0 < to < T < oo and m(t) be a Lebesgue measurable function on [ty, T].
(a) If there exists a.e. a limit lim,_,,[(t — to)4~'m(t)] = c, then there also exists a limit

tOItl_qm(t)lt:to = tlilg)l+ toIzl_qm(t) = cI(g).
(b) If there exists a.e. a limit tOI}'qm(t) li=t, = b and if there exists the limit lim;_,[(t — to)!~9m(t)], then

im (¢ — to)~ __b
Am (¢~ ()" Im(0)] = oo

Let 0 < a < T < 0o and consider the scalar RL fractional differential equation:
RLpix(t) = F(t, x(t)), t e (a, T]. (6)

Note that according to Lemma 1 and [17] the initial conditions to (6) could be one of the following forms:
— integral form (see (3.1.6) [17])

ol X(®)lr=a = B; %
- weighted Cauchy-type problem (see (3.1.7) [17])
lim((t - a)'~9x(t)) = C. (8)
t—a+

Remark 1. According to Lemma 1, if the function x(t) satisfies the initial conditions (8), then x(t) also
satisfies condition (7) with B = CT(q).

Remark 2. According to Lemma 1, it is enough to study one of the initial conditions (7) or (8). Following
this result we will study only the initial condition of type (7).

Let Ep 4(2) = z;?jo ﬁiq) be the Mittag-Leffler function with two parameters (see, e.g., [16]). In the case
of a scalar linear RL fractional differential equation, we have the following result.
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Proposition 2. [17, Example 4.1] The solution of the Cauchy-type problem
REDAX() = Ax(t) + f(8), oI X(B)leq = b

has the following form (formula 4.1.14 [17])

t
x(t) = #Eq,q(/l(t — )+ [ (- 9B A - 9 (5)ds. ©)

3 Interpretations of the impulses in the RL fractional equations

Let an increasing sequence of non-negative points {t‘,-},’-\ig1 be given with to = 0, T = ty,.

Remark 3. The points t, k = 1, 2,..., N, are called points of impulses.

The interpretation of the impulse in differential equations at a point 7 is that there is an instantaneous
jump of the solution x(t), which is determined by the value x(r + 0) = lim._o,x(7 + €) depending
significantly on the value of the solution x(7 — 0) = lim._,o,x(7 — €) before the jump. The presence of the
RL fractional derivative in the differential equation and the inequality ,Ifm(b) + JIdm(c) + Jim(b) with
a < c < b < oo (which is not true for the ordinary case g = 1) leads to two basic interpretations of the
solution (see, e.g., [10,18]):

— Fixed lower limit of the RL fractional derivative - in this case the lower limit of the fractional derivative is
kept equal to the initial time t, on the whole interval of consideration. At points of impulses the amount
of jump is taken into account.

— Changed lower limit of the RL fractional derivative at each time of impulses — this is based on the fact that
the value of the solution is changed at each impulsive point and it is determined by the differential
equation on each interval between two consecutive impulsive points. In this case, the impulsive time is
considered as an initial time of the fractional differential equation. Then, the lower limit of the RL
fractional derivative, being equal to the initial time, is changed at each impulsive time.

For some explanations about the presence of impulses in the fractional differential equation without
any delays and Caputo fractional derivative we refer to [18,19]. In the case of the RL fractional derivative,
impulses and no delays, a discussion about the interpretation of the solutions is given in [10].

Define the set PL°([0, T],R) = {u: [0, T] = R : u € L{®((t, tr,1], R), k=0,1,...,N} with u(t) =
u(ty — 0) =limg_o.u(ty — €), u(ty + 0) = lim,_, o, u(ty + €).

4 Explicit formulas for the solutions

In this section, we will study the case F(t, x) = F(t).

4.1 Fixed lower limit of the RL fractional derivative at the initial time

Consider the IVP for the scalar linear RL fractional differential equations with a fixed lower bound of the
RL fractional derivative at the given initial time and impulses (1), (3) and (4), where g € (0, 1), A, B are real
constants, F € C([0, T],R), g : [-T,0] — R be an integrable function.
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Theorem 1. The IVP for the linear scalar RL fractional differential equation with impulses (1), (3) and (4) has
an exact solution x € PLI°([to, T], R) given by

k
x(t) = Dix(ty = O x(s — T) + F(s) + Z hy(s) |ds

t
)Eq,q(A(t - t)9) . J‘ Eqq(A(t - S)")[B

(t — ) (t —s)l = (10)
tx J=
for t e (t, ts1l, k=0,1,2,...,N,
where Dy = 1, t, = 0,
Egq(A(s — ti-1)7)
h(t) = _[ Dy_1x(ty_1 — 0) —24
W) = F(l 2 {Die-1x(ty1 )(s T
(11)

k-1
J = EaqAls - §)7) {Bx({— 0+ FE)+ Y hj(g))dg}ds, te(tuT), k=1,2,..,N.

)1 q(t )1+q ]

Proof. We apply induction to prove the claim. Let t € (0, t;]. Then, from Proposition 2 and Eq. (1) we have

x(t) = g(0)

t
Faddth) I Fad A =9 g (s 1) + F(s))ds, (12)

ti-q (t —s)i-4

i.e., equality (10) holds for k = 0.
Let t € (t, t,]. From definition (5) of the RL fractional derivative and Eq. (12) we get

1
ra - )dt

1
ra - )dt

RDix(t) = I (t - s)9x(s)ds + I (t - s)9x(s)ds

0) q,q(ASq) " -[ Eq,q(A(S - f)q)F(f)df

1
“Ta-gdt j (t =5 8 si-a (s = &)ta

t
B I Eq (A - 6 X(& - T)dE |ds + — q)% I (t - 5)9x(s)ds

- ra- 13)
_ q E, 4(As?)
- I - q) {g(O) (t - S)HqSl*q
0
Eqq(Als — §)7) _ RLpyq
O [F(§) + Bx(§ - 7)]d¢ ¢ds + ", D/x(t)
= — hy(t) + NDx(0).
From Egs. (1), (13) and (3), we get the following IVP
FeDIx(t) = Ax(t) + Bx(t - 7) + F(t) + hy(t), te (b, b], oI} Ix(t)|—y = Dix(t - 0). (14)

According to Proposition 2 and Eq. (14) fora = t;, f(t) = Bx(t — ) + F(t) + hy(t) for t € [t;, t,], and b = B; we
obtain

t
X(t) = Dix(t, — 0) LadAL— 0D I Eqq(A(t - 5)9)

TN T (F(s) + Bx(s — T) + hy(s))ds, te(t,t],
4

i.e., Eq. (10) holds for k = 1.
Continuing this process to the intervals (t, tis1], k = 2,..., T we prove the claim. O
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4.2 Changed lower limit of the RL fractional derivative at each time of impulses

Consider the IVP for the scalar linear RL fractional differential Egs. (2), (3) and (4), where g € (0, 1), A, B
are real constants, f € C([0, T],R), g : [-7, 0] — R be an integrable function.

Theorem 2. The IVP for the linear scalar RL fractional differential equation with impulses (1), (3) and (4) has
an exact solution x € PL{°([to, T], R) given by

x(t) = Dix(ty — 0) (Bx(s — 1) + F(s))ds,

(t -9t (15)

El]:q(A(t B tk)q) j Eq,q(A(t - S)q)
(t - )

tk

for te (tk’ tk+l]’ k = 0, 1’ 2, ceey N9

where Dy =1, ty = O.

Proof. The proof follows from induction and Proposition 2 applied to each interval (t, t,1], k = 0,1,2,...,N. O

5 Finite time stability

In this section, we use the obtained above exact solutions to study the FTS of the IVP for linear RL
fractional differential equations with a constant delay and impulses.

In our further considerations, we will assume that F(t, 0) = 0, i.e., the linear RL fractional differential
equations with zero initial condition g(¢t) = 0, will have a zero solution.

Note that because of the singularities of t7-! at 0 and (t - )9 ! at t, we could prove the FTS on
intervals which do not contain the initial time O as well as the impulsive points .

Definition 1. The zero solution of IVPs (1), (3) and (4), respectively, and IVPs (2), (3) and (4) is a finite time
stable if there exists a positive number A such that for any real positive number § and € € (0, A] there exists
a positive number K depending on 6 and € such that the inequality max[_r,0Ig(¢)| < & implies |x(¢)| < K for
te U,’(V:O[tk + &, tx41], Where x(t) is the corresponding solution of IVPs (1), (3) and (4), respectively, and IVPs (2),
(3) and (4).

Remark 4. Let x*(t) is a nontrivial solution of IVPs (1), (3) and (4). Then, if we substitute y = x — x*(¢) we
get

N

RLpdy(t) = Ay(t) + By(t - T) + G(t,y) for t e U (t, tisl, (16)
k=0

y(t)=0 for te[-1,0], o %)l =0, 17)

W IO lg, = Dey(t - 0), k=1,2,..,N, (18)

where G(t, y) = F(t,y + x*(t)) — F(t, x*(t)) and G(t, 0) = 0.
Then, the FTS of zero solution of IVP (16)—(18) is equivalent to the FTS of the solution x*(¢) of IVPs (1),
(3) and (4).

5.1 Fixed lower limit of the RL fractional derivative

We will obtain sufficient conditions for FTS of the RL fractional differential Eq. (1) with a constant delay
and impulses.
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Theorem 3. Let the following conditions be satisfied:

1. The function F € C([0,T] x R, R) is bounded, i.e., sup, xe[o,)xr IF (£, X)| < K.
2. The function g € C([-T, 0], R), |g(0)| < co.
3. kg1 — <t fork=0,1, ..., N.

Then, the zero solution of IVPs (1), (3) and (4) is a finite time stable.

Proof. Let § be arbitrary positive number and the initial function g : maxye(_r,0;lg(t)| < 6. According to
Theorem 1, IVPs (1), (3) and (4) have a solution x(t) given by (10).

Denote M = supyeo, 1) |Eq,q(At7)].

Choose a positive number A: A < min{min;_1,, . N YIDiIM, ming-o1,, .., N(ts1 — t)}. Let € € (0, A]
be an arbitrary number.

Let t € [, t;]. Then, according to Theorem 1 and formula (10) we have

E, 4(At9) . j‘ Eq 4(A(t - s5)9)

Ix(®)] <| 6 pramn (6~ s)a (1B 1g(s = T)| + |F(s, x(s)))ds
. (19)
M M Mé 14
< 6@ + '([ mﬂBls + |F(S)|)ds = ﬁ + ;(|B|5 + K) = P().

Lett € [t + €, ;). Then, according to Theorem 1, formulas (10), (11), inequality (19) and t — s > € for s € [0, t]
we have
M4 Mr'+4

|h1(t)| < F(l — q)£1+q5 + F(l ~ q)81+q(1 N q) (B6 + I() = Ql

and

(Bx(s — T) + F(s, x(s)) + hy(s))ds}ds

Eqq(Alt - 1)7) j Eq,q(A(t - 5)7)

Ix(@t)| = ‘ Dix(t, - 0) (t— )4 (t —s)t4

4

M Mt 20
<IDi 1By 575 + - lIBIRy + K + Qi 20

q q
_p,|IDIM | IBIMTY ) MTY 00 =Py telt+ e b).
gl-a q q

Dy | M
el

DM | MI|B|1?

From the choice of the numbers A, ¢ it follows that D;M > A-9 > gl-4, >1, S+ PR 1 and

M M|B|t4
P1>P0(ID1IE+ Bl j>P0.

Let t € [t + &, 5]. Then, apply the inequality t — s > € for s € [f, ;] we obtain

5]
-q) /

lha(O)] =

ra (s - t)'74(t - s)'*a

E, (A(s — &)1 .
(s _q,zr()l(:(t _‘f;)l)w (Bx(¢ - 1) + F(&, x(&)) + hy(&))dE +ds (21)
4

M4 Mrtl+a
S ——|D1|Py + B|IPy + K + =
T q)e“q' 11Po A+ T - q)£1+q(| |Po Q) =Q

and
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Eq,q(A(t - tk)q)

X1 = ‘ Dyx(t, - 0) € )

t
EpgAt=s)9)
+ I TS (Bx(s = T) + F(s, x(s)) + hy(s) + hy(s))ds

5] (22)

M Mrti
< |D2|P1F + T(|B|P1 +K+ Q1+ Q)

q
_ Pl(lDle , |BIMr

q
s M Q1 Q) =P telbe .
gl-a q q

Dy | M

From the choice of the numbers A, ¢ it follows that |[D,|M > A=9 > gl-4, = D2 1M, M|B|r?

>1, =5+ >1and
£ q

q
P, > P1(|D1|ll_ + MBIt ] > Py,
e q

Continue this process and obtain that

N
[x(t)| < Py for te | [t + €, trsil,
k=0

where Ry is defined recursively by

q q N
PN:PN—1[|DN|M . |BIMt j+ Mt [K+ ZQ]_} k=1,2,..,.N

gl-a q q ia

and Py = max;_i,, . nP:. =

5.2 Changed lower limit of the RL fractional derivative

We will obtain sufficient conditions for FTS of the RL fractional differential Eq. (2) with a constant delay
and impulses.

Theorem 4. Let the conditions of Theorem 3 be satisfied.
Then, the zero solution of IVPs (2), (3) and (4) is a finite time stable.

Proof. Let 6 be an arbitrary positive number and the initial function g : maxc[_g,0;1g(t)| < 8. According to
Theorem 2, IVPs (2), (3) and (4) have a solution x(t) given by (15).

Denote M = supye(o,1)|Eq,q(At9)|. Choose € : € < min{min;_; ., N‘\"/W, T}

Let t € [g, t;]. Then, according to the choice of the initial function and the condition of Theorem 4 we have

t
M M M Mr1
|X(t)| < 5@ + j m(|B|6 + I()ds < (Sﬁ + T(|B|6 + I() = Po. (23)
0

Lett € [4 + &, ,]. Then, according to formula (15), inequality (23) and s — T € (4 — T, 4] for s € (t, t] we have

Mt q q
o)l <|62L + Xpis 4 k) |1 2L MIBIT) M
e q el-q q

(24)

K =P.

M M|B|14 Mrt4
=Po(|D1|l—_ + L] 4 M
el q
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From the choice of the constant ¢ it follows that |D;|M >

_ D; | M D; | M M|B|14
elq,llll, 1|1| + MIBIT o 1 and
el-q -q q

M MBTq Mt4 M MBTq
Po[|D1| 1B] j [|D1| 1Bl j_Po-

+—K>PF
q

Let t € [t; + €, t,]. Then, according to formula (15), inequalities (23), (24) and s — T € (t — T, t;] for
s € (4 - T, 4] we have

[x(t)| = | Dyx(t, - 0

t
>Eq’q(Ag(f_; i | Eq’ft(f(i)l?q)wx(s — 1) + F(s, x(s)))ds
) 25)

M MBTq Mt4
<P1(|Dz| 'q' j

+ —K=P,.
q

1Dy | M >1, |D2|M M|B|1?

From the choice of the constants ¢ it follows that |D,|M > £'74, Tty 1 and

M M|B|t4
Pz > P1[|D2|1—q + | | jZ Pl.
€ q

Continuing the process we obtain that

N
Ix(t)| < Py, te Ul + ¢, teal, (26)
k=0

where the constant Py is defined recursively by

K

M MBTq MTt4
PN—PN1[|DN| 1B] j+7

and Py = max {P,k=1,2,...,N} O

Remark 5. In the case 7 = 0, i.e., the case of scalar linear delay RL fractional differential equations without
any delay, most of the obtained results are reduced to the ones in [9].
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