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Abstract: Our main interest in this article is to introduce and study the class of θ-generalized demimetric
mappings in Hadamard spaces. Also, a Halpern-type proximal point algorithm comprising this class of mappings
and resolvents of monotone operators is proposed, and we prove that it converges strongly to a fixed point of a θ-
generalized demimetric mapping and a common zero of a finite family of monotone operators in a Hadamard
space. Furthermore, we apply the obtained results to solve a finite family of convex minimization problems,
variational inequality problems and convex feasibility problems in Hadamard spaces.
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1 Introduction

Let X be a metric space and C be a nonempty subset of X. We denote ( )F T to be the set of fixed points of a
nonlinear mapping →T C C: , that is, ( ) = { ∈ = }F T v C v Tv: . The mapping T is called:
(i) nonexpansive, if

( ) ≤ ( ) ∈d Tu Tv d u v u v C, , for all , ,

(ii) quasi-nonexpansive, if ( ) ≠ ∅F T and

( ) ≤ ( ) ∈ ( )   ∈d Tu v d u v v F T u C, , for all , ,

(iii) k-strictly pseudocontractive, if there exists ∈ [ )k 0, 1 such that

( ) ≤ ( ) + [ ( ) + ( )] ∈d Tu Tv d u v k d u Tv d u Tv u v C, , , , for all , ,2 2 2

(iv) nonspreading, if

( ) ≤ ( ) + ( ) ∈d Tu Tv d Tu v d Tv u u v C2 , , , for all , ,2 2 2
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(v) hybrid, if

( ) ≤ ( ) + ( ) + ( ) ∈d Tu Tv d u v d Tu v d Tv u u v C3 , , , , for all , ,2 2 2 2

(vi) generalized hybrid, if there exist �∈α β, such that

( ) + ( − ) ( ) ≤ ( ) + ( − ) ( ) ∈αd Tu Tv α d u Tv βd Tu v β d u v u v C, 1 , , 1 , for all , .2 2 2 2 (1)

The classes of both nonexpansive mappings and nonspreading mappings with ( ) ≠ ∅F T are contained in
the class of quasi-nonexpansive mappings.

Recently, Takahashi [1] introduced the class of k-demimetric mappings in a real Hilbert space, which
he defined as follows.

Let C be a nonempty subset of a real Hilbert space H. A mapping →T C H: is called k-demimetric, if
( ) ≠ ∅F T and there exists ∈ (−∞ )k , 1 such that

〈 − − 〉 ≥
−

∥ − ∥   ∈ ∈ ( )u v u Tu k u Tu u C v F T, 1
2

for all , .2

Demimetric mappings are of central importance in optimization since they contain many common types of
operators emanating from optimization. For instance, the class of k-demimetric mappings with ∈ (−∞ )k , 1
is known to cover the class of θ-generalized hybrid mappings, the metric projections and the resolvents of
maximal monotone operators (which are known as useful tools for solving optimization problems) in Hilbert
spaces (see [1,2] and references therein). Thus, many authors have studied this class of mappings in both
Hilbert and Banach spaces (see [1,3–5]). This was recently extended to Hadamard spaces by Aremu et al. [2].
They defined demimetric mappings in a Hadamard space as follows: let C be a nonempty subset of a CAT(0)
space X. A mapping →T C X: is called k-demimetric if ( ) ≠ ∅F T and there exists ∈ (−∞ )k , 1 such that

→ →
≥

−
( )uv uTu k d u Tu, 1

2
,2 (2)

for all ∈ ∈ ( )u C v F T, .
Furthermore, they gave an example of a demimetric mapping and established some basic results for

this class of mappings. Moreover, they proved a strong convergence theorem for approximating a fixed
point of demimetric mappings and a solution to a minimization problem in Hadamard spaces.

In 2018, Kawasaki and Takahashi [6] generalized the class of demimetric mappings as follows: let C be
a nonempty subset of a smooth Banach space E and ≠θ 0. A mapping →T C E: with ( ) ≠ ∅F T is said to
be θ-generalized demimetric (see also [7]), if

〈 − ( − )〉 ≥ ‖ − ‖θ u v J u Tu u Tu, 2 (3)

for all ∈u C and ∈ ( )v F T , where J is a duality mapping on E.
Fixed point problems of nonlinear mappings have been a very attractive area of research in nonlinear

analysis that has enjoyed a prosperous development due to its extensive applications in diverse
mathematical fields such as inverse problems, signal processing, game theory and fuzzy theory (see [8–20]
and references therein). The pioneer work of this study in Hadamard spaces is due to Kirk [21,22]. Later,
Dhompongsa and Panyanak [23], Khan and Abbas [24], Chang et al. [25] and other researchers (see
[26–32]) continued to obtain interesting results in this direction.

On the other hand, monotone inclusion problem (MIP) is one of the most important problems in
nonlinear and convex analyses because of its importance in optimization and other related mathematical
problems. The MIP is defined as:

∈ ( ) ∈x D A Ax0Find such that , (4)

where →A X: 2X⁎
is the monotone and ( ) = { ∈ ( ) ≠ ∅}D A x X A x: is the domain of A. We denote the

solution set of problem (4) by ( )−A 01 , which is known to be closed and convex.
The interest in the study of MIPs stems from the fact that many optimization and related mathematical

problems such as variational inequality problems (VIPs), minimization problems and convex feasibility
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problems can be posed as MIPs (see [10,31,33–36]). A well-known method for approximating solutions of
MIPs is the proximal point algorithm (PPA), introduced by Martinet [37] in Hilbert spaces and studied by
Rockafellar [38] in the same space as follows: let { }xn be given iteratively by

∈

= ≥+

x H
x J x n

,
, 0,n λ

A
n

0

1 n









(5)

where = ( + )−J I λ Aλ
A

n
1

n is the resolvent A and { }λn is a sequence of positive real numbers. Rockafellar [38]
established that Algorithm (5) converges weakly to a solution of MIP (4). Later, Bačák [8] studied the PPA
in Hadamard spaces and established the Δ-convergence of it when A is the subdifferential of a convex,
proper and lower semicontinuous function.

Recently, Khatibzadeh and Ranjbar [36] studied the PPA in Hadamard spaces when A is monotone. In
2017, Ranjbar and Khatibzadeh [31] studied both the Mann-type and Halpern-type PPA in Hadamard
spaces for approximating solutions of MIP:

∈

= ⊕ ( − ) ≥+

x X
x α x α J x n1 , 0n n n n λ n

0

1 n





(6)

and

∈

= ⊕ ( − ) ≥+

x X
x α u α J x n1 , 0,n n n λ n

0

1 n





(7)

where { } ⊂ ( ∞)λ 0,n and { } ⊂ [ ]α 0, 1n . They obtained Δ-convergence result and strong convergence result
using (6) and (7), respectively. Many other authors have also studied MIP in Hadamard spaces (see e.g.
[10,34,39]).

Motivated by the aforementioned results and the current interest in this research direction, we
introduce and study the class of θ-generalized demimetric mappings in Hadamard spaces. Also, a Halpern-
type PPA comprising this class of mappings and resolvents of monotone operators is proposed, and we
prove that it converges strongly to a fixed point of a θ-generalized demimetric mapping and a common
zero of a finite family of monotone operators in a Hadamard space. Finally, we apply the obtained results
to solve a finite family of convex minimization problems, VIPs and convex feasibility problems in
Hadamard spaces.

2 Preliminaries

We now recall some basic and useful results that will be required for our study. We shall simply write X for
a metric space ( )X d, .

Let X be a metric space and ∈x y X, . A geodesic path joining u to v is an isometry [ ( )] →r d u v X: 0, ,
such that ( ) =r u0 , ( ( )) =r d u v v, and ( ( ) ( ′) = − ′d r t r t t t, for all ′ ∈ [ ( )]t t d u v, 0, , . The image of a
geodesic path is called the geodesic segment, which is usually denoted as [ ]u v, whenever it is unique.

A metric space X is called a geodesic space if every two points of X are joined by a geodesic. A geodesic
metric space X is uniquely geodesic if every two points of X are joined by exactly one geodesic. Let ∈u v X,
and ∈ [ ]t 0, 1 , then we represent ⊕ ( − )tu t v1 as the unique point ∈ [ ]w u v, joining u to v such that

( ) = ( − ) ( ) ( ) = ( )d u w t d u v d w v td u v, 1 , and , , . (8)

A geodesic triangle ( )Δ u u u, ,1 2 3 in a geodesic metric space X consists of three points u u u, ,1 2 3 in X
(which are also called vertices of Δ) and a geodesic segment between each pair of these points (which are
also called edges of Δ). For any geodesic triangle ( )Δ u u u, ,1 2 3 , there is a comparison triangle

( ) ≔ ( )Δ u u u Δ u u u¯ , , ¯ , ¯ , ¯1 2 3 1 2 3 in the Euclidean plane �2 such that �( ) = ( )d u u d u u, ¯ , ¯i j i j2 for ∈ { }i j, 1, 2, 3 . Let
Δ be a geodesic triangle in X and Δ̄ be its comparison triangle, then Δ is said to satisfy the CAT(0)
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inequality if for all points ∈u v Δ, and ∈u v Δ¯, ¯ ¯, �( ) ≤ ( )d u v d u v, ¯, ¯2 . A geodesic space X is called a CAT(0)
space if all geodesic triangles satisfy the CAT(0) inequality. Complete CAT(0) spaces are often referred to
as Hadamard spaces. CAT(0) (Hadamard) spaces are examples of uniquely geodesic metric spaces.
Examples of CAT(0) spaces can be found in [40].

Definition 2.1. [41] Let X be a CAT(0) space and denote the pair ( ) ∈ ×u v X X, by →uv. Then, a mapping
�〈 〉 ( × ) × ( × ) →X X X X.,. : defined by

→ →
= ( ( ) + ( ) − ( ) − ( )) ∈uv wx d u x d v w d u w d v x u v w x X, 1

2
, , , , for all , , ,2 2 2 2 (9)

is a quasilinearization mapping.

It is easy to verify that → →
= ( )

→ →
= −

→ → → →
=

→ →
+

→ →uv uv d u v vu wx uv wx uv wx uy wx yv wx, , , , , , , , ,2 and
→ →

=
→ →uv wx wx uv, , for all ∈u v w x y X, , , , .

Lim [42] introduced the notion of Δ-convergence in metric spaces, and Kirk and Panyanak [43] extended this
concept to CAT(0) spaces. Recall that a bounded sequence { }xn in X is said to be Δ-convergent to a point ∈x X if

({ }) = { }A x xnk for every subsequence { }xnk of { }xn (we write − =→∞Δ x xlimn n ), where ({ }) ≔ { ∈A x x X:n

( { }) = ({ })}r x x r x, n n is the asymptotic center of { }xn , ({ }) ≔ { { }) ∈ }r x x x x Xinf , :n n is the asymptotic radius of {xn}
and (⋅ { }) → [ ∞)r x X, : 0,n is a continuous functional defined by ( { }) = ( )→∞r x x d x x, lim sup ,n n n .

Kakavandi and Amini [44] introduced the concept of the dual space of a Hadamard space as follows:
consider the map � �× × → ( )θ X X C X: , defined by

�( )( ) =
→ →

( ∈ ∈ )θ t u v x t uv ux t u v x X, , , , , , ,

where �( )C X, is the space of all continuous real valued functions on a Hadamard space X. A pseudometric
D on � × ×X X is defined by

�(( ) ( )) = ( ( ) − ( )) ( ∈ ∈ )D t u v s w y L θ t u v θ s w y t s u v w y X, , , , , , , , , , , , , , , .

The pseudometric space �( × × )X X D, is the subspace of the pseudometric space of all real valued
Lipschitz functions �( ( ) )X LLip , , . We know from [44] that (( ) ( )) =D t u v s w y, , , , , 0 if and only if

→ →
=

→ →
∈t uv xe s wy xe x e X, , for all , . Therefore, an equivalence relation on � × ×X X is induced by

D, where the equivalence class of ( )t u v, , is defined by:

[
→

] ≔ {
→

(( ) ( )) = }tuv swy D t u v s w y: , , , , , 0 .

Thus, �= {[
→

] ( ) ∈ × × }X tuv t u v X X: , ,⁎ endowed with ([
→

] [
→

]) ≔ (( ) ( ))D tuv swy D t u v s w y, , , , , , is the dual
space of X. In a real Hilbert space H, ( − ) ≡ [

→
]t v u tuv for all �∈   ∈t u v H, , (see [44]). Note also that X⁎ acts

on ×X X by

→
=

→ →
( = [

→
] ∈ ∈ )x wx t uv wx x tuv X w x X, , , , , .⁎ ⁎ ⁎

Using the same notation as in [45, p. 1649], we denote the zero element of X⁎ by 0. That is, the (unique)
element of X⁎ such that the evaluation 〈 ⋅〉0, vanishes for all elements in ×X X . In fact, ≡ [

→
]txx0 for any

�∈t and ∈x X (see [31,36]).
Let X⁎ be the dual space of a Hadamard space X. An operator →A X: 2X⁎

is monotone if and only if

−
→

≥ ∈ ( ) ∈ ∈x y yx x y D A x Ax y Ay, 0, for all , , , .⁎ ⁎ ⁎ ⁎

A monotone operator A is called a maximal monotone operator if the graph ( )G A of A defined by

( ) ≔ {( ) ∈ × ∈ ( )}G A x x X X x A x, :⁎ ⁎ ⁎

is not properly contained in the graph of any other monotone operator. The resolvent of A of order >λ 0 is
the mapping →J X: 2λ

A X defined by
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≔ ∈
→

∈J z X
λ

zx Az1 .λ
A 














(10)

The operator A satisfies the range condition if for every > ( ) =λ D J X0, λ
A .

Definition 2.2. Let C be a nonempty closed and convex subset of a Hadamard space X. A mapping
→T C C: is said to be Δ-demiclosed, if for any bounded sequence { }x Xinn such that − =→∞Δ x xlimn n

and ( ) =→∞d x Txlim , 0n n n , then =x Tx.

Definition 2.3. Let C be a nonempty closed and convex subset of a CAT(0) space X . The metric projection
is a mapping →P X C:C which assigns to each ∈x X, the unique point ∈P x CC such that

( ) = { ( ) ∈ }d x P x d x y y C, inf , : .C

Recall that a mapping T is firmly nonexpansive [36], if

( ) ≤
→ →

∈d Tu Tv TuTv uv u v X, , for all , .2 (11)

It is well known that firmly nonexpansive mappings are nonexpansive (see [10]).

Lemma 2.4. Let X be a ( )CAT 0 space, ∈u v w X, , and ∈ [ ]t 0, 1 . Then,
(a) ( ⊕ ( − ) ) ≤ ( ) + ( − ) ( )d tu t v w td u w t d v w1 , , 1 , (see [23]).
(b) ( ⊕ ( − ) ) ≤ ( ) + ( − ) ( ) − ( − ) ( )d tu t v w td u w t d v w t t d u v1 , , 1 , 1 ,2 2 2 2 (see [23]).
(c) ( ⊕ ( − ) ) ≤ ( ) + ( − ) ( ) + ( − )

→ →d tu t v w t d u w t d v w t t uw vw1 , , 1 , 2 1 ,2 2 2 2 2 (see [46]).

Lemma 2.5. [23] Every bounded sequence in a Hadamard space always has a Δ-convergence subsequence.

Lemma 2.6. [47] Let X be a Hadamard space, { }xn be a sequence in X and ∈u X . Then, { }xn Δ-converges to u

if and only if → →
≤ ∈→∞ ux uw for all w Clim sup , 0n n .

Lemma 2.7. [48] Let X be a Hadamard space and →T X X: be a nonexpansive mapping. Then, T is Δ-demiclosed.

Lemma 2.8. [49] Let { }an be a sequence of non-negative real numbers such that

≤ ( − ) ++a α a α b1 ,n n n n n1

where { }bn is a sequence of real numbers bounded from above and { } ⊂ [ ]α 0, 1n satisfies ∑ = ∞
=

∞ αn n1 . Then, it
holds that

≤
→∞ →∞

a blim sup lim sup .
n

n
n

n

Lemma 2.9. [36] Let X be a CAT(0) space and Jλ
A be the resolvent of A with order λ. Then,

(a) For any > ( ) ⊂ ( ) ( ) = ( )−λ R J D A F J A0, and 0 ,λ
A

λ
A 1 where ( )R Jλ

A is the range of J .λ
A

(b) If A is monotone, then Jλ
A is a single-valued and firmly nonexpansive mapping.

(c) If A is monotone and < ≤λ μ0 , then ( ) ≤ ( )
−

+
d J x J x d x J x, ,λ

A
μ
A μ λ

μ λ μ
A2 2 , which implies that ( )d x J x, λ

A

≤ ( )d x J x2 , .μ
A

Lemma 2.10. [34] Let X be a CAT(0) space and →A X: 2X be monotone. Then,

( ) + ( ) ≤ ( )d u J v d J v v d u v, , , ,λ
A

λ
A2 2 2 (12)

for all ∈ ( )   ∈ >u F J v X and λ, 0.λ
A
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Remark 2.11. We observe that inequality (12) is a property of any firmly nonexpansive mapping. That is, if
T is a firmly nonexpansive mapping, then from (9) and (11), we obtain

( ) + ( ) ≤ ( ) ∈ ( ) ∈d u Tv d Tv v d u v u F T v X, , , for all and .2 2 2

Lemma 2.12. [34] Let X⁎ be the dual space of a Hadamard space X and →T X X: be a nonexpansive

mapping for each = …i N1, 2, , . Let Jλ
i be the resolvent of monotone operators Ai of order >λ 0. Then,

( ∘ ∘ ∘ ⋯ ∘ ∘ ) = ( ) ∩ ( ) ∩ ( ) ∩ ⋯ ∩ ( ) ∩ ( )− −F T J J J J F T F J F J F J F J .λ
N

λ
N

λ λ λ
N

λ
N

λ λ
1 2 1 1 2 1

Lemma 2.13. [50] Let X be a Hadamard space, for any ∈ [ ]t 0, 1 and ∈u v X, , let = ⊕ ( − )u tu t v1 .t Then, for
all ∈x y X, , we have

→ →
≤

→ →
+ ( − )

→ →u x uy t ux uy t vx uy, , 1 , .t

3 Main results

Following the idea of (2) and (3), we give the following definition.

Definition 3.1. Let C be a nonempty subset of a CAT(0) space X and ⊆ →T C X X: be a nonlinear mapping.
Then, T is called θ-generalized demimetric, if ( ) ≠ ∅F T and there exists ≠θ 0 such that

→ →
≥ ( )θ uv uTu d u Tu, , ,2 (13)

for all ∈ ∈ ( )u C v F Tand .

The following is an example of a θ-generalized demimetric mapping but not a k-demimetric mapping.

Example 3.2. Define �[ ] →T: 0, 1 by = +Tx x x2. Then, T is θ-generalized demimetric with = −θ 1 but not
a k-demimetric mapping.

Proof. Observe that ( ) = { }F T 0 . Thus, for any ∈ [ ]x 0, 1 , we have

〈 − − 〉 = −〈 〉 = −| || | ≤ −| | = −| − |x x Tx x x x x x x Tx0, , ,2 2 2 2 2

which implies that − 〈 − − 〉 ≥ −x x Tx x Tx0, 2. Therefore, T is a (− )1 -generalized demimetric mapping.
To show that T is not a k-demimetric mapping, let =x 1. Then, we see that

〈 − − 〉 = 〈 − 〉 = −x x Tx0, 1, 1 1. (14)

On the other hand,

−
| − | =

−
| | =

−k x Tx k k1
2

1
2

1 1
2

.2 2 (15)

Now, since − <
−1 k1
2 for all ∈ (−∞ )k , 1 , we obtain from (14) and (15) that 〈 − − 〉 < | − |

−x x Tx x Tx0, k1
2

2

for all ∈ (−∞ )k , 1 . Therefore, T is not a k-demimetric mapping. □

Remark 3.3. Other examples of θ-generalized demimetric mappings in CAT(0) spaces include the following.
1. If →T X X: is a k-strictly pseudocontractive mapping with ∈ [ )k 0, 1 and ( ) ≠ ∅F T , then T is

− k
2

1








-generalized demimetric mapping. The proof is similar to that in [2].
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2. If ( ) ≠ ∅F T and →T X X: is a generalized hybrid mapping, then T is 2-generalized demimetric. Indeed,
for ∈ ( )u F T and ∈v X, we obtain from (1) that

( ) ≤ ( )d u Tv d u v, , .2 2 (16)

Also, from (9), we have that

→ →
= ( ) + ( ) − ( )vu vTv d v Tv d u v d u Tv2 , , , , ,2 2 2

which implies from (16) that
→ →

≥ ( ) + ( ) − ( ) = ( )vu vTv d v Tv d u v d u v d v Tv2 , , , , , .2 2 2 2

Hence, T is a 2-generalized demimetric mapping. Therefore, nonexpansive, nonspreading and hybrid
mappings are examples of θ-generalized demimetric mappings.

3. If →T X X: is a k-demicontractive mapping, then T is a
− k
2

1








-generalized demimetric.

We now study some properties of θ-generalized demimetric mappings in Hadamard spaces.

Proposition 3.4. Let X be a Hadamard space and →T X X: be a θ-generalized demimetric mapping with

>θ 0. Then, T is a −1 θ
2







-demimetric.

Proof. It follows from the definition of demimetric mapping and θ-generalized demimetric mapping. □

Proposition 3.5. Let X be a Hadamard space and →T X X: be a θ-generalized demimetric mapping with
≠θ 0. Then, ( )F T is closed and convex.

Proof.We first show that ( )F T is closed. Let { }xn be a sequence in ( )F T such that { }xn converges to x .⁎ Then,
from the definition of θ-generalized demimetric mappings, we have

→ →
≥ ( )θ x x x Tx d x Tx, , ,n

⁎ ⁎ ⁎ 2 ⁎ ⁎ (17)

which implies from the Cauchy Schwartz inequality that

( ) ( ) ≥ ( )θd x x d x Tx d x Tx, , , .n
⁎ ⁎ ⁎ 2 ⁎ ⁎

Taking limits, we have that ≥ ( )d x Tx0 , ,2 ⁎ ⁎ which implies that =x Tx .⁎ ⁎

Thus, ( )F T is closed. Next, we show that ( )F T is convex. For this, let ∈ ( )u v F T, . Then, it suffices to show
that ( ⊕ ( − ) ) ∈ ( )tu t v F T1 , for ∈ [ ]t 0,1 . Let = ⊕ ( − )    ∈ [ ]w tu t v t1 , 0, 1 , then we obtain from Lemma 2.13 that

( ) =
→ →

= ( ⊕ ( − ) )
→ →

≤
→ →

+ ( − )
→ →

= [
→ →

+
→ →

] + ( − )[
→ →

+
→ →

]

≤
−

( ) + ( ) −
( − )

( ) + ( − ) ( )

=
−

( ) + ( )

d w Tw wTw wTw

tu t v Tw wTw

t uTw wTw t vTw wTw

t uw wTw wTw wTw t vw wTw wTw wTw
t

θ
d w Tw td w Tw t

θ
d w Tw t d w Tw

θ
d w Tw d w Tw

, ,

1 ,

, 1 ,

, , 1 , ,

, , 1 , 1 ,

1 , , ,

2

2 2 2 2

2 2

which implies that ( ) ≤d w Tw, 0.θ
1 2 Since ≠θ 0, we obtain that ∈ ( )w F T as required. □

Lemma 3.6. Let X be a CAT(0) space and →T X X: be a θ-generalized demimetric mapping with ≠θ 0. Suppose
that = ⊕ ( − )S u λu λ Tu1λ with ≤ ∈ ( )

−
θ λand 0, 1 ,λ

2
1 then Sλ is quasi-nonexpansive and ( ) = ( )F S F T .λ
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Proof. Let ∈u X and ∈ ( )w F T , then since T is θ-generalized demimetric, we obtain by Lemma 2.13 that

→ →
= ( ⊕ ( − ) )

→ →
≤

→ →
+ ( − )

→ →

= ( − )
→ →

≤
−( − )

( − )
( )

wu uS u λu λ Tu u uw λ uu uw λ Tuu uw

λ Tuu uw λ
θ λ

d u Tu

, 1 , , 1 ,

1 , 1
1

, .

λ
2

2
(18)

Now, from (8), we obtain that ( ) = ( − ) ( )d u S u λ d u Tu, 1 , .λ
2 2 2 Thus, we obtain from (18) that

→ →
≤

−

( − )
( )wu uS u

θ λ
d u S u, 1

1
, ,λ λ

2

which implies that

→ →
≥

( − )
( ) ≥ ( )uw uS u

θ λ
d u S u d u S u, 1

1
, 1

2
, .λ λ λ

2 2

Thus, we obtain that

( ) + ( ) − ( ) ≥ ( )d u S u d w u d w S u d u S u, , , , ,λ λ λ
2 2 2 2

which implies that

( ) ≤ ( )d w S u d w u, , .λ
2 2

Hence, Sλ is quasi-nonexpansive.
Next, we show that ( ) = ( )F S F T .λ From (8), we obtain that

( ) = ( − ) ( )d u S u λ d u Tu, 1 , .λ

This implies that =S u uλ if and only if =Tu u. Therefore, ( ) = ( )F S F T .λ □

Theorem 3.7. Let X be a Hadamard space and X⁎ be its dual space. Let → = …A X i N: 2 , 1, 2, ,i
X⁎

be a
finite family of multivalued monotone mappings satisfying the range condition and →T X X: be a

θ-generalized demimetric mapping with ≠θ 0. Suppose that ≔ ( ) ∩ (⋂ ( )) ≠ ∅=
−Γ F T A 0i

N
i1

1 and for arbitrary
∈u x X, ,1 the sequence { }xn is defined by

= ( − ) ⊕

= ( − ) ⊕ ( ∘ ∘⋯∘ ∘ )

= ( − ) ⊕    ≥

−

+

y α x α u
z γ y γ S J J J J y
x β y β z n

1 ,
1 ,

1 , 1,

n n n n

n n n n μ λ
N

λ
N

λ λ n

n n n n n

1 2 1

1









(19)

where ≔ ⊕ ( − )S x μx μ Tx1μ such that Sμ is Δ-demiclosed, with ≤ ∈ ( ) ∈ ( ∞)
−

θ μ λ, 0, 1 , 0,μ
2

1 and { } =
∞α ,n n 1

{ }  { }=
∞

=
∞β γ,n n n n1 1 are in ( )0,1 satisfying the following:

(C1) = ∑ = ∞
→∞

=

∞α αlim 0, ,
n

n n n1

(C2) < ≤   ≤ <a β γ b0 , 1.n n

Then, { }xn converges strongly to an element of Γ.

Proof. We first show that { }xn is bounded.
Let ∈p Γ , from (19), Lemmas 2.4 and 3.6, we have

( ) = (( − ) ⊕ ( ∘ ∘ ⋯ ∘ ∘ ) )

≤ ( − ) ( ) + ( ( ∘ ∘⋯∘ ∘ ) )

− ( − ) ( ( ∘ ∘⋯∘ ∘ ))

≤ ( − ) ( ) + ( ) − ( − ) ( ( ∘ ∘⋯∘ ∘ ))

−

−

−

−

d z p d γ y γ S J J J J y p
γ d y p γ d S J J J J y p

γ γ d y S J J J J y
γ d y p γ d y p γ γ d y S J J J J y

, 1 ,
1 , ,

1 ,
1 , , 1 ,

n n n n μ λ
N

λ
N

λ λ n

n n n μ λ
N

λ
N

λ λ n

n n n μ λ
N

λ
N

λ λ n

n n n n n n n μ λ
N

λ
N

λ λ n

2 2 1 2 1

2 2 1 2 1

2 1 2 1

2 2 2 1 2 1 (20)

≤ ( )d y p, .n
2 (21)
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We also have from (19) and (8) that

( ) = ( )+d x y β d z y, , ,n n n n n1 (22)

which implies that

( ) =
( )+d z y α

β
d x y

α β
,

,
.n n

n

n

n n

n n

2
2

1







 (23)

From (19), (21), (23) and Lemma 2.4, we obtain

( ) ≤ ( − ) ( ) + ( ) − ( − ) ( )+d x p β d y p β d z p β β d y z, 1 , , 1 ,n n n n n n n n n
2

1
2 2 2 (24)

≤ ( ) − ( − ) ( ) ≤ ( )+d y p
β

β d x y d y p, 1 1 , , .n
n

n n n n
2 2

1
2 (25)

Thus, we obtain from Lemma 2.4 that

( ) ≤ ( )

≤ ( − ) ( ) + ( )

≤   { ( ) ( )}

⋮

≤   { ( ) ( )}

+d x p d y p
α d x p α d u p

d x p d u p

d x p d u p

, ,
1 , ,

max , , ,

max , , , .

n n

n n n

n

1

1

Therefore, { }xn is bounded. Hence, { }yn and { }zn are also bounded.
Next, we show that

( ( ∘ ∘⋯∘ ∘ )) =
→∞

−d y S J J J J ylim , 0.
n n μ λ

N
λ
N

λ λ n
1 2 1

From (19), (24) and Lemma 2.4, we have that

( ) ≤ ( ) − ( − ) ( )

= (( − ) ⊕ ) − ( − ) ( )

≤ ( − ) ( ) + ( ) + ( − )
→ →

− ( − ) ( )

≤ ( − ) ( ) + ( ) − ( − )
→ →

− ( − ) ( )

= ( − ) ( ) + (− )

+ +

+

+

+

d x p d y p
β

β d x y

d α x α u p
β

β d x y

α d x p α d u p α α x p up
β

β d x y

α d x p α d u p α α x p pu
β

β d x y

α d x p α d

, , 1 1 ,

1 , 1 1 ,

1 , , 2 1 , 1 1 ,

1 , , 2 1 , 1 1 ,

1 , ,

n n
n

n n n

n n n
n

n n n

n n n n n n
n

n n n

n n n n n n
n

n n n

n n n n

2
1

2 2
1

2 2
1

2 2 2 2 2
1

2 2 2 2
1

2

(26)

where

= ( − )
→ →

− ( ) + ( − ) ( )+d α x p pu α d u p
β α

β d x y2 1 , , 1 1 , .n n n n
n n

n n n
2 2

1








 (27)

Since { }xn and { }yn are bounded, they are bounded below. Thus, { }dn is bounded below, which implies that
{− }dn is bounded above.

Therefore, we obtain from Lemma 2.8 and Condition C1 of Theorem 3.7 that

( ) ≤ (− ) = −
→∞ →∞

d x p d dlim sup , lim sup lim inf ,
n

n
n

n n
2 (28)

which implies that ( ) ≤ − ( )d d x plim inf lim sup , .n n
2 Thus, we conclude that

→∞
dlim inf

n
n exists.

Hence, we obtain from (27) and Condition C1 of Theorem 3.7 that

=
→ →

+ ( − ) ( )
→∞ →∞

+d x p pu
β α

β d x ylim inf lim inf 2 , 1 1 , .
n

n
n

n
n n

n n n
2

1









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Since { }xn is bounded, we obtain by Lemma 2.5 that there exists a subsequence { }xnk of { }xn such that
− = ∈

→∞
Δ x z Xlim ,

k
nk and

=
→ →

+ ( − ) ( )
→∞ →∞

+d x p pu
β α

β d x ylim inf lim 2 , 1 1 , ,
n

n
k

n
n n

n n n
2

1k
k k

k k k













(29)

for some subsequences { } { } { } { } { } { }y β α y β α, and of , andn n n n n nk k k , respectively.

Using the fact that { }xn is bounded and
→∞

dlim inf
n

n exists, we get that ( − ) ( )+β d x y1 ,β α n n n
1 2

1
nk nk k k k








is

bounded. Also, by Condition C2, we obtain that ( − ) ≥ ( − ) >β b1 1 0.α β n α β
1 1

nk nk
k nk nk

Thus, ( )+d x y,β α n n
1 2

1
nk nk

k k









is bounded.

Again, from C1 and C2, we obtain that < ≤ → → ∞k0 0, as .α
β

α
a

nk

nk

nk Thus, → → ∞k0 as .α
β

nk

nk

Therefore, we obtain from (23) that

( ) =
→∞

d z ylim , 0.
k

n nk k (30)

From (22), (30) and Condition C2, we obtain that

( ) =
→∞

+d x ylim , 0.
k

n n1k k (31)

Also, from (21) and (30), we have

( − ) ( ( ∘ ∘⋯∘ ∘ ))

≤ ( ) − ( ) ≤ ( ) + ( ) ( ) + ( ) − ( ) → → ∞

−γ γ d y S J J J J y
d y p d z p d y z d y z d z p d z p d z p k

1 ,
, , , 2 , , , , 0, as .

n n n μ λ
N

λ
N

λ λ n

n n n n n n n n n

2 1 2 1

2 2 2 2 2
k k k k

k k k k k k k k k

Thus, from Condition C2, we have that

( ( ∘ ∘⋯∘ ∘ )) =
→∞

−y S J J J J ylim , 0.
k n μ λ

N
λ
N

λ λ n
1 2 1

k k (32)

Next, we show that ( ) =
→∞

d v S vlim , 0.
k

n μ nk k

Let =v Φ y ,n λ
N

nk k
where = ∘ ∘⋯∘ ∘−Φ J J J Jλ

N
λ
N

λ
N

λ λ
1 2 1 with =Φ 1.λ

0 Since Jλ
N is firmly nonexpansive, we

obtain from Remark 2.11 and (32) that

( ) ≤ ( ) − ( ) ≤ ( ) − ( )

≤ ( ) + ( ) ( ) + ( ) − ( ) → → ∞

− −d v Φ y d p Φ y d p v d p y d p S v
d p S v d p S v d S v y d S v y d p S v k

, , , , ,
, 2 , , , , 0 as .

n λ
N

n λ
N

n n n μ n

μ n μ n μ n n μ n n μ n

2 1 2 1 2 2 2

2 2 2
k k k k k k

k k k k k k k

(33)

Similarly, since −Jλ
N 1 is firmly nonexpansive, we obtain that

( ) ≤ ( ) − ( ) ≤ ( ) − ( ) ≤ ( ) − ( )

≤ ( ) + ( ) ( ) + ( ) − ( ) → → ∞

− − − −d Φ y Φ y d p Φ y d p Φ y d p y d p v d p y d p S v
d p S v d p S v d S v y d S v y d p S v k

, , , , , , ,
, 2 , , , , 0 as .

λ
N

n λ
N

n λ
N

n λ
N

n n n n μ n

μ n μ n μ n n μ n n μ n

2 1 2 2 2 2 1 2 2 2 2

2 2 2
k k k k k k k k

k k k k k k k

(34)

In the same manner, we can show that

( ) = ( ) = ⋯ = ( ) =
→∞

− −

→∞

− −

→∞
d Φ y Φ y d Φ y Φ y d Φ y ylim , lim , lim , 0.

k
λ
N

n λ
N

n k
λ
N

n λ
N

n k
λ n n

2 2 3 2 3 4 2 1
k k k k k k (35)

Thus,

( ) ≤ ( ) + ( ) + ⋯ + ( )− − −d v y d Φ y Φ y d Φ y Φ y d Φ y y, , , , .n n λ
N

n λ
N

n λ
N

n λ
N

n λ n n
1 1 2 1

k k k k k k k k

This implies from (33), (34) and (35) that

( )( ) = ∘ ∘ ⋯∘ ∘ =
→∞ →∞

−d v y d J J J J y ylim , lim , 0.
k

n n k
λ
N

λ
N

λ λ n n
1 2 1

k k k k (36)

Furthermore, from (32) and (36), we obtain
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( ) =
→∞

d v S vlim , 0.
k

n μ nk k (37)

Finally, we show that { }xn converges strongly to ∈z Γ.
From (19) and Condition C1, we obtain

( ) = (( − ) ⊕ ) = ( ) → → ∞d y x d α x α u x α d u x k, 1 , , 0 as .n n n n n n n nk k k k k k k k (38)

Since − =
→∞

Δ x zlim ,
k

nk we obtain from (38) that − =
→∞

Δ y zlim ,
k nk

and from (36) that − =
→∞

Δ v zzlim .
k

nk By the

demicloseness of S ,μ (37) and Lemma 3.6, we obtain that ∈ ( ) = ( )z F S F T .μ Since    = …J i N, 1, 2, ,λ
i are

nonexpansive mappings and the composition of nonexpansive mappings is nonexpansive, we obtain from (36),
Lemma 2.7 and Lemma 2.12 that ∈ ( ∘ ∘⋯∘ ∘ ) =−z F J J J Jλ

N
λ
N

λ λ
1 2 1 ( ) ∩ ( ) ∩F J F Jλ

N
λ
N ( ) ∩ ⋯ ∩−F Jλ

N 1 ( ) ∩F Jλ
2 ( )F J .λ

1

Hence ∈z Γ.
Furthermore, by Lemma 2.6, we have

→ →
≥

→∞

zu x zlim sup , 0.
n

nk

Thus, we obtain from (29) and (31) that

=
→ →

≥
→∞ →∞

d zu x zlim inf 2 lim , 0.
n

n
k

nk

Hence from (28), we have

( ) ≤ − ≤
→∞ →∞

d x z dlim sup , lim inf 0.
n

n
n

n
2

Therefore, ( ) =
→∞

d x zlim , 0
n

n and this implies that { }xn converges strongly to ∈z Γ. □

Setting ≡T I in Theorem 3.7, we have the following result.

Corollary 3.8. Let X be a Hadamard space and X⁎ be its dual space. Let → = …A X i N: 2 , 1, 2, ,i
X⁎

be a finite

family of multivalued monotone mappings satisfying the range condition. Suppose that ≔ ⋂ ( ) ≠ ∅=
−Γ A 0i

N
i1

1

and for arbitrary ∈u x X, ,1 the sequence { }xn is defined by

= ( − ) ⊕

= ( − ) ⊕ ∘ ∘⋯∘ ∘   

= ( − ) ⊕ ≥

−

+

y α x α u
z γ y γ J J J J y
x β y β z n

1 ,
1 ,

1 , 1,

n n n n

n n n n λ
N

λ
N

λ λ n

n n n n n

1 2 1

1









(39)

where ∈ ( ∞)λ 0, and { }  { }  { }=
∞

=
∞

=
∞α β γ, ,n n n n n n1 1 1 are in ( )0, 1 satisfying the following:

(C1) = ∑ = ∞
→∞

=

∞α αlim 0, ,
n

n n n1

(C2) < ≤   ≤ <a β γ b0 , 1.n n

Then, { }xn converges strongly to an element of Γ.

Setting =N 1 in Theorem 3.7, we have the following result.

Corollary 3.9. Let X be a Hadamard space and X⁎ be its dual space. Let →A X: 2X be a multivalued
monotone mapping that satisfies the range condition and →T X X: be a θ-generalized demimetric mapping
with ≠θ 0. Suppose that ≔ ( ) ∩ ( ) ≠ ∅−Γ F T A 01 and for arbitrary ∈u x X, ,1 the sequence { }xn is defined by

= ( − ) ⊕

= ( − ) ⊕ ( )   

= ( − ) ⊕ ≥+

y α x α u
z γ y γ S J y
x β y β z n

1 ,
1 ,

1 , 1,

n n n n

n n n n μ λ
A

n

n n n n n1









(40)
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where ≔ ⊕ ( − )S x μx μ Tx1μ such that Sμ is Δ-demiclosed, with ≤ ∈ ( ) ∈ ( ∞)
−

θ μ λ, 0, 1 , 0,μ
2

1 and { } =
∞α ,n n 1

{ }  { }=
∞

=
∞β γ,n n n n1 1 are in ( )0, 1 satisfying the following:

(C1) = ∑ = ∞
→∞

=

∞α αlim 0, ,
n

n n n1

(C2) < ≤   ≤ <a β γ b0 , 1.n n

Then, { }xn converges strongly to an element of Γ.

If T is nonexpansive in Corollary 3.9, we obtain the following result.

Corollary 3.10. Let X be a Hadamard space and X⁎ be its dual space. Let →A X: 2X⁎
be a multivalued

monotone mapping satisfying the range condition and →T X X: be a nonexpansive mapping. Suppose that
≔ ( ) ∩ ( ) ≠ ∅−Γ F T A 01 and for arbitrary ∈u x X, ,1 the sequence { }xn is defined by

= ( − ) ⊕

= ( − ) ⊕ ( )

= ( − ) ⊕ ≥+

y α x α u
z γ y γ T J y
x β y β z n

1 ,
1 ,

1 , 1,

n n n n

n n n n λ
A

n

n n n n n1









(41)

with ∈ ( ∞)λ 0, and { }  { }  { }=
∞

=
∞

=
∞α β γ, ,n n n n n n1 1 1 are in ( )0, 1 satisfying the following:

(C1) = ∑ = ∞
→∞

=

∞α αlim 0, ,
n

n n n1

(C2) < ≤   ≤ <a β γ b0 , 1.n n

Then, { }xn converges strongly to an element of Γ.

4 Application to some optimization problems

In this section, we apply our results to solve some optimization problems.

Definition 4.1. Let X be a Hadamard space and → (−∞ ∞]f X: , be a proper, convex and lower
semicontinuous function with domain ( ) ≔ { ∈ ( ) < +∞}D f u X f u: . The function → (−∞ ∞]f X: , is called
(i) proper, if ( ) ≠ ∅D f ,
(ii) convex, if

( ⊕ ( − ) ) ≤ ( ) + ( − ) ( ) ∈ ∈ ( )f λu λ v λf u λ f v u v X λ1 1 for all , and 0, 1 ,

(iii) lower semicontinuous at a point ∈ ( )u D f , if

( ) ≤ ( )
→∞

f u f xlim inf ,
n

n

for each sequence { } ( ) =
→∞

x D f x uin such that lim ,n
n

n

(iv) f is lower semicontinuous on ( )D f , if it is lower semicontinuous at any point in ( )D f .

Definition 4.2. [44] Let X be a Hadamard space and X⁎ be its dual space. The subdifferential of f is the

multivalued function ∂ →f X: 2X⁎
defined by

∂ ( ) =
{ ∈ ( ) − ( ) ≥ 〈

→
〉 ∈ } ∈ ( )

∅
f u u X f w f u u uw w X u D f: , for all , if ,

, otherwise.

⁎ ⁎ ⁎



(42)

Theorem 4.3. [44] Let → (−∞ +∞]f X: , be a proper, convex and lower semicontinuous function on a
Hadamard space X with dual X ,⁎ then
(i) f attains its minimum at ∈u X if and only if ∈ ∂ ( )f u0 ,
(ii) ∂ →f X: 2X⁎

is a monotone operator,
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(iii) for any ∈v X and >α 0, there exists a unique point ∈u X such that [
→

] ∈ ∂ ( )αuv f u , that is ( ) =∂D Jλ
f X,

for >all λ 0.

Definition 4.4. Let C be a nonempty, closed and convex subset of X. Then, the indicator function
�→δ X:C is defined by

=
∈

+ ∞
δ u u C0, if ,

, otherwise.C




(43)

It is generally known that δC is a proper convex. Thus, by Theorem 4.3(ii) and (iii), we have that the sub-
differential of δC, given by

∂ ( ) =
{ ∈ 〈

→
〉 ≤ ∈ } ∈

∅
δ u u X u uw w C u C: , 0 for all , if ,

, otherwiseC
⁎ ⁎ ⁎




(44)

is a monotone operator that satisfies the range condition.

4.1 VIP

Recently, Khatibzadeh and Ranjbar [51] formulated a VIP associated with a nonexpansive mapping in a
Hadamard space as follows: Find ∈x C such that

→ →
≥ ∈Txx xy y C, 0 for all . (45)

Recall that the metric projection →P X C:C is defined for ∈x X by ( ) = ( )
∈

d x P x d x y, inf ,C
y C

and is character-
ized by =z P xC if and only if → →

≤ ∈zx zy y C, 0, for all (see [51]). Using the characterization of P ,C we obtain
that

=
→ →

≥ ∈x P Tx Txx xy y Cif and only if , 0 for all .C

Thus, we have that ∈ ( ∘ )x F P TC if and only if x solves (45). From (10), we have that

= ⇔
→

∈ ∂ ⇔ 〈
→ →

〉 ≤ ∈ ⇔ =∂z J x
λ

zx δ z zx zy y C z P x1 , 0, for all .λ
δ

C CC 





(46)

Letting =z x, we obtain that =x P xC if and only if ∈ (∂ ) ( )−x δ 0 .C
1 Thus,

∈ (∂ ) ( ) ∩ ( ) ∈ ( ) ∩ ( ) ∈ ( ∘ )−x δ F T x F P F T x F P T0 .C C C
1

Suppose the solution set of problem (45) is ϒ. Setting = ∂A δC in Corollary 3.10, we apply Corollary 3.10
to obtain the following result for approximating solutions of VIP in Hadamard spaces.

Theorem 4.5. Let C be a nonempty closed and convex subset of a Hadamard space X and X⁎ be its dual
space. Let →T X X: be a nonexpansive mapping. Suppose that ≠ ∅ϒ and for arbitrary ∈u x X, ,1 the
sequence { }xn is defined by

( )

= ( − ) ⊕

= ( − ) ⊕ ≥  

= ( − ) ⊕ ≥

∂

+

y α x α u
z γ y γ T J y n
x β y β z n

1 ,
1 , 1,

1 , 1,

n n n n

n n n n λ
δ

n

n n n n n1

C









(47)

with ∈ ( ∞)λ 0, and { }  { }  { } ⊂ ( )=
∞

=
∞

=
∞α β γ, , 0, 1n n n n n n1 1 1 satisfying the following:

(C1) = ∑ = ∞
→∞

=

∞α αlim 0, ,
n

n n n1

(C2) < ≤   ≤ <a β γ b0 , 1.n n

Then, { }xn converges strongly to an element of ϒ.
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4.2 Convex feasibility problem

The convex feasibility problem is defined as follows: find ∈x C such that

∈ ⋂
=

x C ,
i

N
i

1
(48)

where C is a nonempty closed and convex subset of X and = …C i N, 1, 2, ,i is a finite family of nonempty
closed and convex subsets of C such that ⋂ ≠ ∅= C .i

N
i1

From (46), we have that =
∂x J xλ

δCi if and only if = = …x P x i N, 1, 2, , .Ci Setting = ∂A δi Ci in Corollary 3.8

and = = …J P i N, 1, 2, ,λ
i

Ci in Algorithm 39, we can apply Corollary 3.8 to approximate solutions of (48).

4.3 Convex minimization problem

The minimization problem is to find ∈x X such that

( ) = ( )
∈

f x f ymin .
y X (49)

Observe from Theorem 4.3(i) that (49) can be written as: find ∈x X such that

∈ ∂ ( )f x0 . (50)

Thus, by setting = ∂A f in Theorem 3.7, we obtain the following result.

Theorem 4.6. Let X be a Hadamard space and X⁎ be its dual space. Let → (−∞ ∞] = …f X i N: , , 1, 2, ,i
be a finite family of proper, convex and lower semicontinuous functions and →T X X: be a θ-generalized
demimetric mapping with ≠θ 0. Suppose that ≔ ( ) ∩ (⋂ ∂ ( )) ≠ ∅=

−F T f 0ϒ i
N

i1
1 and for arbitrary ∈u x X, ,1 the

sequence { }xn is defined by

= ( − ) ⊕

= ( − ) ⊕ ( ∘ ∘ ⋯ ∘ ∘ )   

= ( − ) ⊕ ≥

∂ ∂ ∂ ∂

+

−

y α x α u
z γ y γ S J J J J y
x β y β z n

1 ,
1 ,

1 , 1,

n n n n

n n n n μ λ
f

λ
f

λ
f

λ
f

n

n n n n n1

N N 1 2 1









(51)

where ≔ ⊕ ( − )S x μx μ Tx1μ such that Sμ is Δ-demiclosed, with ≤ ∈ ( ) ∈ ( ∞)
−

θ μ λ, 0, 1 , 0,μ
2

1 and { } =
∞α ,n n 1

{ }  { } ⊂ ( )=
∞

=
∞β γ, 0, 1 ,n n n n1 1 satisfying

(C1) = ∑ = ∞
→∞

=

∞α αlim 0, ,
n

n n n1

(C2) < ≤   ≤ <a β γ b0 , 1.n n

Then, { }xn converges strongly to an element of ϒ.

5 Conclusion

The class of θ-generalized demimetric mappings is introduced and studied in Hadamard space settings. In
the study, it was shown (see Example 3.2) that this class of mappings is more general than the class of
demimetric mappings previously studied in [1–5]. Moreover, the class of θ-generalized demimetric
mappings contains many important classes of mappings (see Remark 3.3) known to be very useful for
solving optimization problems. Furthermore, the strong convergence of a Halpern-type proximal point
method for solving MIP and fixed point problem for this mapping is established in the framework of
Hadamard space. An application of this method for solving other optimization problems is also
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considered. The obtained results of this article are a natural generalization of the results previously
obtained in [2–5] from the study of demimetric mappings to θ-generalized demimetric mappings. The
results also extend and complement the results in [25,32,34,39,52] established in Hadamard spaces for
nonexpansive, strictly pseudocontractive, generalized hybrid and demicontractive mappings. Thus, the
results of this article possess many possible applications compared to many other results in this direction.
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