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Multiple solutions to
a Dirichlet problem with p-Laplacian and

nonlinearity depending on a parameter
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Abstract. The homogeneous Dirichlet problem for an elliptic equation with p-Laplacian
and concave-convex reaction term depending on a parameter � > 0 is investigated. At least
five nontrivial solutions for all � sufficiently small are obtained via variational methods,
truncation techniques and sub- and super-solution arguments. The special case p D 2 is
also examined.
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1 Introduction

Let � be a bounded domain in RN with a smooth boundary @�, let p 2 �1;C1Œ,
and let p� be the critical Sobolev exponent. Consider the homogeneous Dirichlet
problem ´

��pu D f .x; u; �/ in �;

u D 0 on @�;
(P�)

where �p denotes the p-Laplace differential operator, namely

�pu WD div.jrujp�2ru/ for all u 2 W 1;p
0 .�/,

while the reaction term f W ��R�RC ! R satisfies Carathéodory’s conditions.
The literature concerning (P�) is by now very wide and many existence, multi-

plicity, or bifurcation-type results are already available. In particular, a meaningful
case occurs when

f .x; t; �/ WD �jt jq�2t C jt jr�2t; .x; t; �/ 2 � �R �RC; (1.1)

with 1 < q < p < r < p�. If p D 2, then (1.1) reduces to a so-called concave-
convex nonlinearity and, after the seminal paper [2], the corresponding problem
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has been thoroughly investigated; see [26] for an exhaustive account. A similar
comment holds true also when p ¤ 2, in which case we cite [3, 11, 16, 21]. The
very recent work [21] contains a bifurcation theorem, describing the dependence
of positive solutions to (P�) on the parameter � > 0, where the reaction term f

takes the form

f .x; t; �/ WD �g.x; t/C h.x; t/; .x; t; �/ 2 � �R �RC;

for suitable g; h W � �R! R of Carathéodory’s type.
Roughly speaking, in this paper, one requires that f .x; � ; �/ has a .p � 1/-sub-

linear growth at zero and is .p � 1/-super-linear at infinity, i.e.,

lim
t!0

f .x; t; �/

jt jp�2t
D C1;

lim
jt j!C1

f .x; t; �/

jt jp�2t
D C1 uniformly with respect to x 2 �:

Specifically, the behavior of f .x; � ; �/ at infinity stems from an hypothesis, pat-
terned after that of [19], which does not imply the usual Ambrosetti–Rabinowitz
condition; cf. Remarks 2.5–2.7. Under these assumptions, the existence of �� > 0
such that, for all � 2 �0; ��Œ, (P�) possesses at least five nontrivial weak solutions
belonging to C 10 .�/, four of which have constant sign, is established in Theo-
rem 4.1. Moreover, when p D 2, (P�) has a further nontrivial solution; see Theo-
rem 4.3.

As an example, if 1 < q < p < r < p� and � > 0 is sufficiently small, then
Theorem 4.1 ensures that the equation

��pu D �juj
q�2uC jujp�2u log.1C jujp/ in �

possesses at least five nontrivial solutions v0; v1; u0; u1; w 2 C 10 .�/ such that
vi < 0 < ui , i D 1; 2, in �.

The technical approach we follow employs truncation methods, sub- and super-
solution arguments, besides a careful computation of critical groups of the in-
volved energy functionals and Morse’s identity.

Let us finally point out that, in latest years, also numerous multiplicity theorems
for Neumann problems with nonlinearities having various growth rates have been
published; see for example [8, 20, 22] and their bibliographies.

2 Preliminaries and basic assumptions

Let .X; k � k/ be a real Banach space. If V is a subset of X , we write V for the
closure of V , @V for the boundary of V , and int.V / for the interior of V . Given
x 2 X , � > 0, the symbol BX .x; �/ indicates the open ball of radius � centered
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at x, .X�; k �kX�/ denotes the dual space ofX , h � ; � i stands for the duality pairing
between X and X�, while xn ! x (respectively, xn * x) in X means ‘the se-
quence ¹xnº converges strongly (respectively, weakly) in X ’.

The next elementary but useful result [21, Proposition 2.1] will be used in Sec-
tion 3.

Proposition 2.1. Suppose .X; k�k/ is an ordered Banach space with order coneK.
If x0 2 int.K/, then to every z 2 K there corresponds a tz > 0 such that

tzx0 � z 2 K:

A function ˆ W X ! R fulfilling

lim
kxk!C1

ˆ.x/ D C1

is called coercive. Letˆ 2 C 1.X/. The Cerami compactness condition forˆ reads
as follows:

(C) Every sequence ¹xnº � X such that ¹ˆ.xn/º is bounded and

lim
n!C1

.1C kxnk/kˆ
0.xn/kX� D 0

has a convergent subsequence.

It is known that (C) includes the classical Palais–Smale condition, namely

(PS) Every sequence ¹xnº � X such that ¹ˆ.xn/º is bounded and

kˆ0.xn/kX� ! 0

possesses a convergent subsequence,

as a special case. Moreover, the version below of the Mountain Pass Theorem holds
true; see for instance [13, Corollary 5.2.7] or [24]. Define, for every c 2 R,

ˆc WD ¹x 2 X W ˆ.x/ � cº; Kc.ˆ/ WD K.ˆ/ \ˆ
�1.c/;

where, as usual, K.ˆ/ denotes the critical set of ˆ, i.e.,

K.ˆ/ WD ¹x 2 X W ˆ0.x/ D 0º:

Theorem 2.2. Assumeˆ 2 C 1.X/ satisfies (C) and there exist x0; x1 2 X as well
as � 2 �0; kx1 � x0kŒ such that

max¹ˆ.x0/; ˆ.x1/º < inf
x2@BX .x0;�/

ˆ.x/:

If c D inf
2� supt2Œ0;1�ˆ.
.t//, where

� WD ¹
 2 C 0.Œ0; 1�; X/ W 
.0/ D x0; 
.1/ D x1º;

then Kc.ˆ/ ¤ ;.
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An operator A W X ! X� is called of type (S)C if

xn * x in X , lim sup
n!C1

hA.xn/; xn � xi � 0

imply xn ! x. The next simple result is more or less known and will be employed
in Section 4.

Proposition 2.3. Let X be reflexive and let ˆ 2 C 1.X/ be coercive. Assume ˆ
satisfies ˆ0 D AC B , where A W X ! X� is of type (S)C while B W X ! X� is
compact. Then ˆ fulfils (PS).

Proof. Pick a sequence ¹xnº � X such that ¹ˆ.xn/º turns out to be bounded and

lim
n!C1

kˆ0.xn/kX� D 0: (2.1)

By the reflexivity of X , besides the coercivity of ˆ, we may suppose, up to subse-
quences, xn * x in X . Since B is compact, using (2.1) and taking a subsequence
when necessary, one has

lim
n!C1

hA.xn/; xn � xi D lim
n!C1

�
hˆ0.xn/; xn � xi � hB.xn/; xn � xi

�
D 0 :

This forces xn ! x in X , because A is of type (S)C, as desired.

Given a topological pair .A;B/ satisfying B � A � X , the symbol Hk.A;B/,
k 2 N0, indicates the kth-relative singular homology group of .A;B/ with integer
coefficients. If x0 2 Kc.ˆ/ is an isolated point of K.ˆ/, then

Ck.ˆ; x0/ WD Hk.ˆ
c
\ U;ˆc \ U n ¹x0º/; k 2 N0;

are the critical groups ofˆ at x0. Here, U stands for any neighborhood of x0 such
that K.ˆ/ \ˆc \ U D ¹x0º. By excision, this definition does not depend on the
choice of U . Suppose the function ˆ fulfils (PS). When ˆjK.ˆ/ is bounded below
while c < infx2K.ˆ/ˆ.x/, we write

Ck.ˆ;1/ WD Hk.X;ˆ
c/; k 2 N0;

which is independent from c because of the second deformation theorem ([7, Lem-
ma I.3.2]). If K.ˆ/ is finite, then setting

M.t; x/ WD

C1X
kD0

rankCk.ˆ; x/t
k;

P.t;1/ WD

C1X
kD0

rankCk.ˆ;1/t
k
8 .t; x/ 2 R �K.ˆ/;
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the following Morse relation holds:X
x2K.ˆ/

M.t; x/ D P.t;1/C .1C t /Q.t/;

where Q.t/ denotes a formal series with nonnegative integer coefficients; see for
instance [6, Proposition 3.7]. Now, let X be a Hilbert space and let x 2 K.ˆ/.
Assume thatˆ 2 C 2.U /, where U denotes any neighborhood of x. Ifˆ00.x/ turns
out to be invertible, then x is called non-degenerate. The Morse index d of x is the
supremum of the dimensions of the vector subspaces of X on which ˆ00.x/ turns
out to be negative definite. When x is non-degenerate and with Morse index d ,
one has

Ck.ˆ; x/ D ık;dZ; k 2 N0:

The monograph [7] represents a general reference on the subject.
Throughout the paper, we denote by � a bounded domain of the real euclidean

N -space .RN ; j � j/ with a smooth boundary @�, p 2 �1;C1Œ, p0 WD p=.p � 1/,
k � kp is the usual norm of Lp.�/, and W 1;p

0 .�/ indicates the closure of C10 .�/
in W 1;p.�/. On W 1;p

0 .�/ we introduce the norm

kuk WD

�Z
�

jru.x/jp dx

�1=p
; u 2 W

1;p
0 .�/:

Write p� for the critical exponent of the Sobolev embedding W 1;p
0 .�/ � Lq.�/.

Recall that p� D Np=.N � p/ if p < N , p� D C1 otherwise, and the embed-
ding is compact whenever 1 � q < p�.

Let W �1;p
0

.�/ be the dual space of W 1;p
0 .�/ and let

A W W
1;p
0 .�/! W �1;p

0

.�/

be the nonlinear operator stemming from the negative p-Laplacian, i.e.,

hA.u/; vi WD

Z
�

jru.x/jp�2ru.x/ � rv.x/ dx 8u; v 2 W
1;p
0 .�/:

A standard argument yields the following auxiliary result; see, e.g., [23].

Proposition 2.4. The operator A W W 1;p
0 .�/! W �1;p

0

.�/ is of type (S)C.

Define C 10 .�/ WD ¹u 2 C
1.�/ W u D 0 on @�º. Obviously, C 10 .�/ is an or-

dered Banach space with order cone

C 10 .�/C WD ¹u 2 C
1
0 .�/ W u.x/ � 0 8 x 2 �º:
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Moreover, one has

int.C 10 .�/C/ D
²
u 2 C 10 .�/ W u > 0 in �;

@u

@n
< 0 on @�

³
;

where n.x/ is the outward unit normal vector to @� at the point x 2 @�; see, for
example, [13, Remark 6.2.10].

Theorem A.0.6 in [23] ensures that A W W 1;p
0 .�/! W �1;p

0

.�/ is bijective.
Thus, we can find a function e 2 W 1;p

0 .�/ such that

��pe.x/ D 1 in �: (2.2)

Theorems 1.5.6 and 1.5.7 of [12] then give e 2 int.C 10 .�/C/.
Finally, ‘measurable’ always signifies Lebesgue measurable while m.E/ indi-

cates the Lebesgue measure of E. Put, provided t 2 R, u; v W �! R,

t� WD max¹�t; 0º; tC WD max¹t; 0º; �.u < v/ WD ¹x 2 � W u.x/ < v.x/º:

The meaning of �.u > v/, etc., is analogous. If u; v belong to a given function
space X and u.x/ � v.x/ in �, then we set

Œu; v� WD ¹w 2 X W u.x/ � w.x/ � v.x/ in �º:

To avoid unnecessary technicalities, ‘for every x 2 �’ will take the place of ‘for al-
most every x 2 �’ and the variable x will be omitted when no confusion can arise.

Let .x; t; �/ 7! f .x; t; �/, .x; t; �/ 2 � �R �RC, be measurable in x for all
.t; �/ 2 R �RC, continuous with respect to t for every .x; �/ 2 � �RC, and
such that f .x; 0; �/ D 0, .x; �/ 2 � �RC. Write, as usual,

F.x; z; �/ WD

Z z

0

f .x; t; �/dt 8 .x; z; �/ 2 � �R �RC:

The hypotheses below will be posited in the sequel.

.f1/ There exist a1 W RC ! RC, a2 > 0, r 2 �p; p�Œ satisfying

lim
�!0C

a1.�/ D 0; jf .x; t; �/j � a1.�/C a2jt j
r�1 in � �R �RC:

.f2/ limjzj!C1
F.x;z;�/
jzjp

D C1 uniformly with respect to .x; �/ 2 � �RC.

.f3/ To every �; � > 0 there corresponds ��;� > 0 such that the function

t 7! f .x; t; �/C ��;�jt j
p�2t

is non-decreasing in Œ��; �� for all x 2 �.
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.f4/ Let � > 0 and let

��.x; z/ WD zf .x; z; �/ � pF.x; z; �/; .x; z/ 2 � �R:

Then there exists ˛� 2 L1.�/ fulfilling

˛�.x/ � 0 ; ��.x; z
0/ � ��.x; z

00/C ˛�.x/ in �

provided z0; z00 2 R, jz0j � jz00j, and z0z00 � 0.

.f5/ To every � > 0 there correspond ı� > 0, �� 2 �1; pŒ such that

ess infx2� F.x; ı�; �/ > 0; ��F.x; z; �/ � zf .x; z; �/ > 0 (2.3)

for all .x; z/ 2 � �R with 0 < jzj � ı�.

If we fix � > 0, then a useful comparison between .f1/–.f5/ and some classical
assumptions can be done.

Remark 2.5. Hypothesis .f2/ is weaker than the Ambrosetti–Rabinowitz condition
below, as a simple computation shows.

(AR) There exist � > p, M > 0 such that

0 < �F.x; z; �/ � zf .x; z; �/

for every x 2 �, jzj �M .

Moreover, from [19, Lemma 2.4] we know that .f2/ and .f4/ force

lim
jt j!C1

f .x; t; �/

jt jp�2t
D C1 uniformly in x 2 �;

i.e., f .x; � ; �/ turns out to be .p � 1/-superlinear at infinity.

Remark 2.6. Assume f . � ; � ; �/ 2 C 0.� � R/ while the function z 7! ��.x; z/

is non-decreasing in Œz0;C1Œ and non-increasing in � �1;�z0�, where z0 > 0.
Then .f4/ holds for constant ˛�; see [19, Lemma 2.4].

Remark 2.7. After integration, (2.3) produces a constant a3.�/ > 0 such that

a3.�/jzj
�� � F.x; z; �/

for all .x; z/ 2 � �R with 0 < jzj � ı�. Since �� < p, we get

lim
z!0

F.x; z; �/

jzjp
D C1 uniformly in x 2 �:

So, if the limit limt!0
f .x;t;�/

jt jp�2t
exists, then it must beC1, and f .x; � ; �/ exhibits

a .p � 1/-sub-linear behavior at zero.
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Example 2.8. A simple but meaningful situation when all the assumptions stated
above are satisfied is the following:

f .x; t; �/ WD �jt jq�2t C jt jr�2t; .x; t; �/ 2 � �R �RC;

where 1 < q < p < r < p�. The same conclusion remains true if

f .x; t/ WD �jt jq�2t C jt jp�2t log.1C jt jp/:

However, in such a case, condition (AR) does not hold.

Finally, in the semi-linear case, i.e., p D 2, the following stronger version of
.f1/ will be exploited:

.f01/ f .x; � ; �/ 2 C
1.R n ¹0º/ for all .x; �/ 2 � �RC. Moreover, there exist a

function a1 W RC ! RC, a2 > 0, r 2 �2; 2�Œ such that

lim
�!0C

a1.�/ D 0; jf
0
t .x; t; �/j � a1.�/Ca2jt j

r�2 in ��.Rn¹0º/�RC:

3 Constant-sign solutions

To shorten notation, write X WD W 1;p
0 .�/. Define

'�.u/ WD
1

p
kukp �

Z
�

F.x; u.x/; �/ dx; u 2 X: (3.1)

Obviously, '� 2 C 1.X/. Moreover, one has

Theorem 3.1. Let .f1/, .f3/, and .f5/ be fulfilled. Then there exists �� > 0 such
that, for all � 2 �0; ��Œ, problem (P�) possesses two solutions u0 2 int.C 10 .�/C/,
v0 2 �int.C 10 .�/C/, which are local minima of '�.

Proof. We claim that there is �� > 0 such that to every � 2 �0; ��Œ there corre-
sponds a constant t� > 0 satisfying

a1.�/C .t�kek1/
r�1a2 < t

p�1

�
; (3.2)

where e 2 int.C 10 .�/C/ comes from (2.2). Indeed, if the assertion were false, then
we could construct a sequence ¹�kº � RC with the properties

lim
k!C1

�k D 0; tp�1 � a1.�k/C .tkek1/
r�1a2; t > 0; k 2 N:

Letting k !C1, from .f1/ it would follow

tp�r � a2kek
r�1
1 8 t > 0:
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However, this is impossible because p < r . Pick any � 2 �0; ��Œ and put

Nu WD t�e: (3.3)

Moreover, set

NfC.x; t; �/ WD

8̂<̂
:
0 if t < 0;
f .x; t; �/ if 0 � t � Nu.x/;
f .x; Nu.x/; �/ if Nu.x/ < t;

.x; t/ 2 � �R; (3.4)

as well as

N'�;C.u/ WD
1

p
kukp �

Z
�

NFC.x; u.x/; �/ dx 8u 2 X; (3.5)

where
NFC.x; z; �/ WD

Z z

0

NfC.x; t; �/ dt :

By (3.4) the functional N'�;C turns out to be coercive. A simple argument, based
on the compact embedding X � Lp.�/, shows that it is also weakly sequentially
lower semi-continuous. So, there exists u0 2 X fulfilling

N'�;C.u0/ D inf
u2X
N'�;C.u/: (3.6)

Let us verify that u0 ¤ 0. Indeed, if u 2 C 10 .�/C n ¹0º, then, due to Proposi-
tion 2.1, for any t > 0 sufficiently small we have

tu.x/ � Nu.x/; tu.x/ � ı� in �:

On account of (3.4), .f5/, and .f1/, this implies

N'�;C.tu/ D
tp

p
kukp �

Z
�

NFC.x; tu.x/; �/ dx �
tp

p
kukp � a4t

��kuk�� ;

where a4 > 0. Since �� < p, fixing t > 0 small enough furnishes N'�;C.tu/ < 0.
Hence,

N'�;C.u0/ D inf
u2X
N'�;C.u/ < 0 D N'�;C.0/;

which clearly means u0 ¤ 0, as desired. Now, from (3.6) it follows N'0
�;C

.u0/ D 0,
namely

hA.u0/; vi D

Z
�

NfC.x; u0.x/; �/v.x/ dx; v 2 X: (3.7)
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Through (3.7), written for v WD �u�0 , we obtain that ku�0 k
p D 0. Thus, u0 � 0.

Thanks to (3.4), .f1/, and (3.2), letting v WD .u0 � Nu/C in (3.7) yields

hA.u0/; .u0 � Nu/
C
i D

Z
�

NfC.x; u0; �/.u0 � Nu/
C dx

D

Z
�

f .x; Nu; �/.u0 � Nu/
C dx

� t
p�1

�

Z
�

.u0 � Nu/
C dx D hA. Nu/; .u0 � Nu/

C
i

because Nu WD t�e. This forcesZ
�.u0> Nu/

�
jru0j

p�2
ru0 � jr Nuj

p�2
r Nu
�
� r.u0 � Nu/ dx � 0;

which, on account of [23, Lemma A.0.5], leads to m.�.u0 > Nu// D 0. Conse-
quently,

u0.x/ � Nu.x/ a.e. in �; (3.8)

and, by (3.4) and (3.7) again, the function u0 solves problem (P�). Standard reg-
ularity results ([12, Theorems 1.5.5–1.5.6]) give u0 2 C 10 .�/C. If � WD k Nuk1,
then, due to .f3/, we have

��pu0.x/C ��;�u0.x/
p�1
D f .x; u0.x/; �/C ��;�u0.x/

p�1
� 0:

Thus, Theorem 1.5.7 in [12] ensures that

u0 2 int.C 10 .�/C/: (3.9)

Now, combining .f1/ with (3.2) provides

��pu0.x/C ��;�u0.x/
p�1
D f .x; u0.x/; �/C ��;�u0.x/

p�1

< t
p�1

�
C ��;� Nu.x/

p�1

D ��p Nu.x/C ��;� Nu.x/
p�1:

On account of [4, Proposition 2.6] this implies Nu � u0 2 int.C 10 .�/C/, namely

BC10 .�/
.u0; ı/ � Nu � C

1
0 .�/C (3.10)

for some ı > 0. By decreasing ı if necessary, (3.9)–(3.10) lead to

BC10 .�/
.u0; ı/ � Œ0; Nu� :

Since '�jŒ0; Nu� D N'�;CjŒ0; Nu� and (3.6) holds, the function u0 turns out to be a
C 10 .�/-local minimum of '�. Thanks to [11, Theorem 1.1], the same is true with
X in place of C 10 .�/.
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Finally, setting, for every .x; t/ 2 � �R,

Nf�.x; t; �/ WD

8̂<̂
:
f .x;�Nu.x/; �/ if t < �Nu.x/;
f .x; t; �/ if � Nu.x/ � t � 0;
0 if 0 < t;

(3.11)

and arguing as before yields a function v0 2 �int.C 10 .�/C/ that satisfies (P�) and
is a local minimum of '�.

Lemma 3.2. Under the assumptions of Theorem 3.1, if � 2 �0; ��Œ, then problem
(P�) has a smallest solution Ov in the order interval Œ�Nu; 0� and a biggest solution
Ou in the order interval Œ0; Nu�, with Nu given by (3.3).

Proof. Define S�;C WD ¹u 2 Œ0; Nu� W u is nontrivial and fulfils .P�/º. The proof of
Theorem 3.1 shows that S�;C ¤ ;, because u0 2 S�;C, and S�;C � int.C 1.�/C/.
Moreover, S�;C turns out to be upward directed; cf. [16, Lemma 2.4]. Hence, by
Zorn’s lemma, a biggest solution of (P�) in Œ0; Nu� exists once we know that each
chain C � S�;C is bounded above. Due to [10, p. 336] one has

supC D sup¹uk W k 2 Nº (3.12)

for some ¹ukº � C , while Lemma 1.1.5 of [15] allows this sequence to be increas-
ing. Since

uk 2 Œ0; Nu� and A.uk/ D f . � ; uk; �/ in W �1;p
0

.�/ 8 k 2 N; (3.13)

¹ukº turns out to be bounded in W 1;p
0 .�/. Passing to a subsequence when nec-

essary, we may thus suppose uk * u in W 1;p
0 .�/ as well as uk ! u in Lq.�/,

with
u D sup¹uk W k 2 Nº: (3.14)

This forces

lim
k!C1

Z
�

f .x; uk.x/; �/.uk.x/ � u.x// dx D 0:

Therefore, on account of (3.13),

lim
k!C1

hA.uk/; uk � ui D 0:

Proposition 2.4 ensures that uk ! u in W 1;p
0 .�/. From (3.13) it follows, letting

k !C1,
u 2 Œ0; Nu�; A.u/ D f . � ; u; �/ in W �1;p

0

0 .�/;

namely u 2 S�;C. Now, (3.12) and (3.14) lead to supC 2 S�;C, as desired. A sim-
ilar argument produces a smallest solution of (P�) in the order interval Œ�Nu; 0�.
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Through Lemma 3.2 we can find two further constant-sign solutions. This ex-
actly is the goal of the next result.

Theorem 3.3. Let .f1/–.f5/ be satisfied, let � 2 �0; ��Œ, and let u0, v0 be as in
Theorem 3.1. Then problem (P�) possesses two solutions u1 2 int.C 10 .�/C/n¹u0º
and v1 2 �int.C 10 .�/C/ n ¹v0º such that v1 � v0 < 0 < u0 � u1 in �.

Proof. Keep the same notation of Lemma 3.2 and define, provided .x; t/ 2 ��R,

OfC.x; t; �/ WD

´
f .x; Ou.x/; �/ if t � Ou.x/;
f .x; t; �/ if Ou.x/ < t:

(3.15)

Moreover, set

O'�;C.u/ WD
1

p
kukp �

Z
�

OFC.x; u.x/; �/ dx 8u 2 X; (3.16)

where OFC.x; z; �/ WD
R z
0
OfC.x; t; �/ dt . Obviously, one has

K. O'�;C/ � ¹u 2 X W Ou � u in �º: (3.17)

Combining the arguments adopted in the proof of Theorem 3.1 with the maximal-
ity of Ou (cf. Lemma 3.2) shows that Ou 2 int.C 10 .�/C/ is a local minimum for O'�;C.
Hence, Ou 2 K. O'�;C/. We can certainly assume Ou turns out to be an isolated critical
point of O'�;C, otherwise a whole sequence of positive solutions to (P�) will exist.
So, like in the proof of [1, Proposition 29],

O'�;C. Ou/ < inf¹ O'�;C.u/ W ku � Ouk D Orº (3.18)

for some Or > 0. Since .f1/–.f4/ hold true, the functional O'�;C fulfils condition (C);
the relevant verification goes on exactly as that of [21, Lemma 3.1]. Finally, from
.f2/ it evidently follows

lim
t!C1

O'�;C.tu/ D �1

whenever u 2 int.C 10 .�/C/. At this point, Theorem 2.2 can be applied and, on
account of (3.18), we obtain a point u1 2 W

1;p
0 .�/ n ¹ Ouº such that

O'0�;C.u1/ D 0: (3.19)

Inclusion (3.17) forces Ou � u1. Thanks to (3.15) and (3.19) one thus has

A.u1/ D f . � ; u1; �/ in W �1;p
0

.�/;

while standard regularity results ([12, Theorems 1.5.5–1.5.6]) produce

u1 2 int.C 10 .�/C/:

Since u0 � Ou � u1 in �, the function u1 complies with our conclusion. The con-
struction of a fourth solution v1 � v0 to (P�) is analogous.
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4 Multiplicity results

Problem (P�) possesses another nontrivial solution in addition to those given by
Theorems 3.1–3.3. The notation is the same as in Section 3.

Theorem 4.1. Under assumptions .f1/–.f5/, if � 2 �0; ��Œ, then there exists a so-
lution w 2 W 1;p

0 .�/ to (P�) such that w 2 C 10 .�/ n ¹0; v0; v1; u0; u1º.

Proof. Define, for every .x; t/ 2 � �R,

f0.x; t; �/ WD

8̂<̂
:
f .x; v0.x/; �/ if t < v0.x/;
f .x; t; �/ if v0.x/ � t � u0.x/;
f .x; u0.x/; �/ if u0.x/ < t;

(4.1)

f0;C.x; t; �/ WD f0.x; t
C; �/; f0;�.x; t; �/ WD f0.x;�t

�; �/: (4.2)

Moreover, set, provided u 2 X ,

 �.u/ WD
1

p
kukp �

Z
�

F0.x; u.x/; �/ dx;

 �;˙.u/ WD
1

p
kukp �

Z
�

F0;˙.x; u.x/; �/ dx;

where F0.x; z; �/ WD
R z
0 f0.x; t; �/ dt and F0;˙.x; z; �/ WD

R z
0 f0;˙.x; t; �/ dt .

By (4.1)–(4.2) one has

K. �/ � Œv0; u0�; K. �;�/ � Œv0; 0�; K. �;C/ � Œ0; u0�: (4.3)

We may suppose that

K. �;�/ � ¹v0; 0º; K. �;C/ � ¹0; u0º: (4.4)

Indeed, if, for example, u 2 K. �;C/ n ¹0; u0º, then u 2 Œ0; u0� n ¹0; u0º due to
(4.3). Thus, u ¤ Ou, because u0 � Ou, and, a fortiori, u ¤ u1. On account of (4.1)
the conclusion would follow with w WD u.

Let us next verify that u0, v0 are local minima of  �. Thanks to (4.2) the func-
tional  �;C is weakly sequentially lower semi-continuous and coercive. So, there
exists Qu 2 X such that

 �;C. Qu/ D inf
u2X

 �;C.u/: (4.5)

Arguing as in the proof of Theorem 3.1 yields

 �;C. Qu/ < 0 D  �;C.0/; i.e., Qu ¤ 0: (4.6)
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By (4.4) this implies Qu D u0 2 int.C 10 .�/C/. Since  �jXC D  �;CjXC , where

XC WD ¹u 2 X W u � 0 in �º; (4.7)

u0 turns out to be a C 10 .�/-local minimum of  �. Theorem 1.1 in [11] ensures
that the same is true with X in place of C 10 .�/. A similar reasoning then holds
for v0.

Now, observe that, due to (4.1),  � is coercive and if

hB.u/; vi WD �

Z
�

f0.x; u.x/; �/v.x/ dx 8u; v 2 X;

then
h 0�.u/; vi D hA.u/; vi C hB.u/; vi:

The operatorA turns out to be of type (S)C (cf. Proposition 2.4) whileB WX!X�

is compact, because X compactly embeds in Lp.�/. So, Proposition 2.3 guaran-
tees that  � satisfies (PS). Through [25, Corollary 1] (cf. also [24, Corollary 8])
we thus obtain

K. �/ n ¹u0; v0º ¤ ;:

Let w 2 K. �/ n ¹u0; v0º be a critical point of Mountain Pass type. From (4.3)
and (4.1) it follows

A.w/ D f . � ; w; �/ in W �1;p
0

.�/;

namelyw solves (P�), while standard regularity results [12, Theorems 1.5.5–1.5.6]
produce w 2 C 10 .�/. We may assume that

C1. �; w/ ¤ 0I (4.8)

see [7, pp. 89–90]. By Proposition 2.1 of [17] one has

Ck. �; 0/ D 0 8 k 2 N0: (4.9)

Comparing (4.8) with (4.9) leads to w ¤ 0, which completes the proof.

A further nontrivial solution of (P�) exists whenever p D 2, i.e., in the semi-
linear framework. Towards this, the first step is the following.

Lemma 4.2. Let � > 0 and let .f1/, .f2/, .f4/ be satisfied. Then Ck.'�;1/ D 0
for all k 2 N0.

Proof. Pick any u 2 X . Thanks to .f4/ we get

0 D ��.x; 0/ � ��.x; u
C.x//C ˛�.x/;

0 D ��.x; 0/ � ��.x;�u
�.x//C ˛�.x/;
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that is,

pF.x; u.x/; �/�u.x/f .x; u.x/; �/ D ���.x; u.x// � ˛�.x/ a.e. in �: (4.10)

If t > 0, then, by the chain rule,

d

dt
'�.tu/ D h'

0
�.tu/; ui D

1

t
h'0�.tu/; tui

D
1

t

�
kr.tu/kpp �

Z
�

tuf .x; tu; �/dx

�
:

(4.11)

Inequality (4.10), written for tu in place of u, and (4.11) yield

d

dt
'�.tu/ �

1

t
Œp'�.tu/C k˛�k1�: (4.12)

Since, on account of .f2/,

lim
t!C1

'�.tu/ D �1 (4.13)

provided u¤ 0, given M < � 1
p
k˛�k1, there exists tM > 0 such that '�.tu/�M

for all t > tM . From (4.12) it thus follows

d

dt
'�.tu/ < 0; t > tM : (4.14)

Fix u 2 @BX .0; 1/. Through (4.13)–(4.14) we can find a unique tu > 0 fulfilling

'�.tuu/ DM: (4.15)

Moreover, if �0.u/ WD tu, u 2 @BX .0; 1/, then, due to the Implicit Function The-
orem, �0 W @BX .0; 1/! R is continuous. Write

h.t; u/ WD .1 � t /uC t�.u/u 8 .t; u/ 2 Œ0; 1� � .X n ¹0º/;

where

�.u/ WD

´
1 if '�.u/ < M;
1
kuk
�0
�
u
kuk

�
otherwise:

Evidently, the function h W Œ0; 1�� .X n ¹0º/! X n ¹0º is continuous and satisfies
h.0; u/ D u in X n ¹0º. By (4.15) one has h.1; u/ D �.u/u 2 'M

�
as well as

h.t; � /j'M
�
D idj'M

�
:

Hence, 'M
�

is a deformation retract ofX n¹0º. Owing to [9, Theorem XV.6.5], the
same holds for @BX .0; 1/. Therefore, 'M

�
and @BX .0; 1/ turn out to be homotopy
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equivalent, which forces

Hk.X; '
M
� / D Hk.X; @BX .0; 1//; k 2 N0: (4.16)

Now, observe that @BX .0; 1/ is contractible in itself, becauseX has infinite dimen-
sion ([13, Remark 5.5.7]). Proposition 4.9 and 4.10 in [14, p. 389] thus yield

Hk.X; @BX .0; 1// D 0: (4.17)

Combining (4.16) with (4.17) immediately leads to

Ck.'�;1/ D Hk.X; '
M
� / D 0

provided M < � 1
p
k˛�k1 and jM j is big enough.

We shall adopt the notation used in Theorem 4.1. Since p D 2, the underlying
space X becomes a very good Hilbert space, i.e.,H 1

0 .�/, while�p reduces to the
classical Laplace operator.

Theorem 4.3. If p D 2, � 2 �0; ��Œ, and .f01/, .f2/–.f5/ hold true, then (P�) pos-
sesses a solution Nw 2 H 1

0 .�/ such that Nw 2 C 10 .�/ n ¹0; v0; v1; u0; u1; wº.

Proof. On account of [7, Example 1, p. 33], besides Theorem 3.1, one clearly has

Ck.'�; u0/ D Ck.'�; v0/ D ık;0Z 8 k 2 N0: (4.18)

The proof of Theorem 3.3 ensures that u1 turns out to be a Mountain Pass critical
point for O'�;C. So, by Proposition 2.5 in [5],

Ck. O'�;C; u1/ D ık;1Z; k 2 N0: (4.19)

Using (3.15) we obtain O'�;CjXC D '�jXC C Oc, where XC is defined in (4.7) and
Oc 2 R. From (4.19) it thus follows

Ck.'�; u1/ D ık;1Z 8 k 2 N0: (4.20)

A similar argument shows that

Ck.'�; v1/ D ık;1Z; k 2 N0: (4.21)

The proof of Theorem 4.1 guarantees that w turns out to be a Mountain Pass criti-
cal point for  �. Hence, due to [5, Proposition 2.5] and [18, Theorem 2.7],

Ck. �; w/ D ık;1Z 8 k 2 N0: (4.22)
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Reasoning as in the proof of Theorem 3.1 we achieve BC10 .�/.w; ı/ � Œv0; u0� for
some ı > 0 while (4.1) yields

 �jŒv0;u0� D '�jŒv0;u0�:

Thanks to [5, Proposition 2.6], (4.22) provides

Ck.'�; w/ D ık;1Z ; k 2 N0 : (4.23)

Finally, Proposition 2.1 in [17] and Lemma 4.2, respectively, force

Ck.'�; 0/ D 0 ; Ck.'�;1/ D 0 8 k 2 N0 : (4.24)

Now, if
K.'�/ D ¹0; u0; v0; u1; v1; wº;

then the Morse relation written for t WD �1, combined with (4.18), (4.20), (4.21),
(4.23), and (4.24), would give 2.�1/0C 3.�1/1 D 0, which is impossible. There-
fore, there exists a point

Nw 2 K.'�/ n ¹0; v0; v1; u0; u1; wº:

The function Nw evidently solves problem (P�). Moreover, through standard regu-
larity results ([12, Theorems 1.5.5–1.5.6]) we obtain Nw 2 C 10 .�/.
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