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The Yamabe equation in a non-local setting

Raffaella Servadei

Abstract. Aim of this paper is to study the following elliptic equation driven by a gen-
eral non-local integrodifferential operator LK such that LKuC �uC juj

2��2u D 0 in�,
u D 0 in Rnn�, where s 2 .0; 1/,� is an open bounded set of Rn, n > 2s, with Lipschitz
boundary, � is a positive real parameter, 2� D 2n=.n � 2s/ is a fractional critical Sobolev
exponent, while LK is the non-local integrodifferential operator

LKu.x/ D

Z
Rn

�
u.x C y/C u.x � y/ � 2u.x/

�
K.y/ dy; x 2 Rn:

As a concrete example, we consider the case when K.x/ D jxj�.nC2s/, which gives
rise to the fractional Laplace operator �.��/s . In this framework, in the existence result
proved along the paper, we show that our problem admits a non-trivial solution for any
� > 0, provided n > 4s and � is different from the eigenvalues of .��/s . This result
may be read as the non-local fractional counterpart of the one obtained by Capozzi, Fortu-
nato and Palmieri and by Gazzola and Ruf for the classical Laplace equation with critical
nonlinearities.

In this sense the present work may be seen as the extension of some classical results
for the Laplacian to the case of non-local fractional operators.

Keywords. Mountain Pass Theorem, Linking Theorem, critical nonlinearities, best
fractional critical Sobolev constant, Palais–Smale condition, variational techniques,
integrodifferential operators, fractional Laplacian.

2010 Mathematics Subject Classification. Primary 49J35, 35A15, 35S15;
secondary 47G20, 45G05.

1 Introduction

1.1 Critical non-local integrodifferential equations

In the literature there are many papers related to the study of the critical elliptic
equatioń

��u � �u D juj2��2u in �

u D 0 on @�; 2� D 2n=.n � 2/; n > 2;
(1.1)

The author was supported by the MIUR National Research Project Variational and Topological
Methods in the Study of Nonlinear Phenomena, by the GNAMPA Project Variational Methods for
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where � � Rn, n > 2, is an open, bounded set and � is a positive parameter (see,
for instance, [2, 20, 22] and references therein).

Equation (1.1) is particularly relevant for its relations with problems arising in
differential geometry and in physics, where a lack of compactness occurs. One
of the most important problem which gives rise to equation (1.1) is the Yamabe
problem: given an n-dimensional compact Riemannian manifold .M; g/, n > 2,
with scalar curvature k D k.x/, find a metric Qg conformal to g with constant scalar
curvature Qk. If we put

Qg D u4=.n�2/g;

where u > 0 is the conformal factor, then the Yamabe problem can be formulated
as follows: find u > 0 satisfying the equation

�4
n � 1

n � 2
�Mu D Qku

2��1
� k.x/u in M:

Here �M is the Laplace–Beltrami operator on M with respect to the metric g.
Also in a non-local setting one could define a notion of non-local scalar curva-

ture (see, for instance, [1]).
Motivated by the interest shown in the literature for non-local operators of el-

liptic type, in this paper we study the non-local counterpart of problem (1.1), that
is we consider critical problems modeled by´

.��/su � �u D juj2
��2u in �;

u D 0 in Rn n�;
(1.2)

where s 2 .0; 1/ is fixed and .��/s is the fractional Laplace operator defined, up
to normalization factors, as

�.��/su.x/ D

Z
Rn

u.x C y/C u.x � y/ � 2u.x/

jyjnC2s
dy; x 2 Rn; (1.3)

(see [11] and references therein for further details on the fractional Laplacian),
while� � Rn, n > 2s, is open, bounded and with Lipschitz boundary, � > 0 and

2� D
2n

n � 2s
(1.4)

is the fractional critical Sobolev exponent.
It would be interesting to understand if it is possible to set a fractional Yam-

abe problem, as described above, directly in the non-local framework and if such
problem coincides with (1.2). Answering to this question goes beyond the scopes
of the present paper.
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In [15, 17] we studied problems of the type´
.��/su � �u D jujq�2u in �;

u D 0 in Rn n�;
(1.5)

where q 2 .2; 2�/, i.e. we considered non-local equations with subcritical growth,
and in this setting we extended the validity of some existence results known in
the classical subcritical case of the Laplacian to the non-local framework. Also,
in [19] we considered the critical equation (1.2) in the case when the parameter
� 2 .0; �1; s/, where �1; s denotes the first eigenvalue of the fractional Laplace
operator .��/s with homogeneous Dirichlet boundary conditions. In this frame-
work we proved a non-local Brezis–Nirenberg type result, i.e. we showed that
problem (1.2) admits a non-trivial solution for any � 2 .0; �1; s/, provided n > 4s

(see [8,19]). The case when n < 4s was treated in the paper [16], where we proved
the existence of non-trivial weak solution for equation (1.2) for any value of the
parameter � > 0 different from the eigenvalues of .��/s .

Aim of this paper is to complete the study of problem (1.2), by showing that
the existence result obtained in [19, Theorem 4] holds true for any � > 0 different
from the eigenvalues of .��/s .

More precisely, along this paper we consider the following general non-local
equation: ´

LKuC �uC juj
2��2u D 0 in �;

u D 0 in Rn n�;
(1.6)

where LK is the non-local operator defined as

LKu.x/ D

Z
Rn

�
u.x C y/C u.x � y/ � 2u.x/

�
K.y/ dy; x 2 Rn; (1.7)

with the kernel K W Rn n ¹0º ! .0;C1/ such that

mK 2 L1.Rn/, where m.x/ D min¹jxj2; 1º, (1.8)

there exists a � > 0 such that K.x/ > � jxj�.nC2s/ for any x 2 Rn n ¹0º; (1.9)

K.x/ D K.�x/ for any x 2 Rn n ¹0º: (1.10)

As a model forK we can take the singular kernelK.x/ D jxj�.nC2s/ which gives
rise to the fractional Laplace operator �.��/s defined in (1.3).

Note that in problem (1.6) the Dirichlet datum is given in Rn n� and not simply
on @�, consistently with the non-local character of the operator LK .
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Along the paper we will be interested in the weak formulation of (1.6) given by
the following problem (for this, it is convenient to assume (1.10)):8̂̂̂̂
<̂̂
ˆ̂̂̂:

Z
R2n

.u.x/ � u.y//.'.x/ � '.y//K.x � y/ dx dy � �

Z
�

u.x/'.x/ dx

D

Z
�

ju.x/j2
��2u.x/'.x/ dx 8' 2 X0;

u 2 X0:

(1.11)

In order to study problem (1.2) (and, in general, (1.6)) the usual fractional
Sobolev spaces are not adequate. Hence, to overcome this difficulty in [15] (see
also [18]) we introduced a new functional space X0, which, in our opinion, is the
suitable space in which working in. The definition of X0 will be given in Sec-
tion 2.1. In the model case LK D �.��/

s the space X0 consists of all the func-
tions of the usual fractional Sobolev space H s.Rn/ which vanish a.e. outside �
(see [19, Lemma 7]).

1.2 Main theorems of the paper

It is easily seen that problem (1.6) admits the trivial function u � 0 as a solution.
The aim of this paper is to find non-trivial weak solutions for (1.6), that is non-
trivial solutions of (1.11). For this, we will use a variational approach adapting the
techniques of [8, 9] (see also [2, 20, 22] and references therein) to our non-local
setting.

Problem (1.11) is the Euler–Lagrange equation of the functional

JK;� W X0 ! R

defined as follows:

JK;�.u/ D
1

2

Z
R2n
ju.x/ � u.y/j2K.x � y/ dx dy �

�

2

Z
�

ju.x/j2 dx

�
1

2�

Z
�

ju.x/j2
�

dx:

(1.12)

Thus, our goal will be finding critical points of JK;� and, for this, we will
use some variants of the classical Mountain Pass and Linking Theorems due to
Ambrosetti and Rabinowitz (see [3, 14]), which take into account that, since the
embedding X0 ,! L2

�

.Rn/ is not compact (see Lemma 2.1), the functional JK;�
does not verify the Palais–Smale condition globally, but only in a suitable range
related to the best fractional critical Sobolev constant defined as

SK WD inf
v2X0n¹0º

SK.v/; (1.13)
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where

X0 n ¹0º 3 v 7! SK.v/ WD

Z
R2n
jv.x/ � v.y/j2K.x � y/ dx dy�Z

�

jv.x/j2
�

dx

�2=2� : (1.14)

The constant SK is well defined, as it can be seen by Lemma 2.1 below, and it is
strictly positive.

Along the paper we also need the following function:

X0 n ¹0º 3 v 7! SK;�.v/; (1.15)

where

SK;�.v/ WD

Z
R2n
jv.x/ � v.y/j2K.x � y/ dx dy � �

Z
�

jv.x/j2 dx�Z
�

jv.x/j2
�

dx

�2=2� :

Note that, since v 2 X0, the integrals over � in (1.14) and in (1.15) can be ex-
tended to all Rn, that is

SK.v/ D

Z
R2n
jv.x/ � v.y/j2K.x � y/ dx dy�Z

Rn
jv.x/j2

�

dx

�2=2� ;

SK;�.v/ D

Z
R2n
jv.x/ � v.y/j2K.x � y/ dx dy � �

Z
Rn
jv.x/j2 dx�Z

Rn
jv.x/j2

�

dx

�2=2� :

Hence, SK. � / and SK;�. � / do not depend on the domain�, while SK does, since
X0 depends on �.

In the usual fractional Sobolev spaceH s.Rn/ the counterparts of SK and SK;�
are given, respectively, by the constant Ss defined as follows (see also Lemma 2.2
in the sequel):

Ss WD inf
v2H s.Rn/n¹0º

Ss.v/;

H s.Rn/ n ¹0º 3 v 7! Ss.v/ WD

Z
R2n

jv.x/ � v.y/j2

jx � yjnC2s
dx dy�Z

Rn
jv.x/j2

�

dx

�2=2� ;
(1.16)
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and by the function
H s.Rn/ n ¹0º 3 v 7! Ss; �.v/; (1.17)

where

Ss; �.v/ WD

Z
R2n

jv.x/ � v.y/j2

jx � yjnC2s
dx dy � �

Z
Rn
jv.x/j2 dx�Z

Rn
jv.x/j2

�

dx

�2=2� :

Note that for any � > 0

SK;� WD inf
v2X0n¹0º

SK;�.v/ 6 SK ;

Ss; � WD inf
v2H s.Rn/n¹0º

Ss; �.v/ 6 Ss:

The interesting case is when the strict inequality holds true. Indeed, in this set-
ting a suitable compactness propriety holds true for the functional JK;�. This fact
allows us to prove our main existence result, by suitably using critical points the-
orems.

In the sequel ¹�kºk2N will denote the sequence of the eigenvalues of the oper-
ator �LK with homogeneous Dirichlet boundary data with

0 < �1 < �2 6 � � � 6 �k 6 �kC1 6 � � �

and
�k !C1 as k !C1:

Moreover, ¹ekºk2N will be the sequence of eigenfunctions corresponding to �k .
We recall that this sequence is an orthonormal basis of L2.�/ and an orthogo-
nal basis of X0. For a complete study of the spectrum of the integrodifferential
operator �LK we refer to [17, Proposition 9 and Appendix A].

The main result of the present paper is the following existence theorem:

Theorem 1.1. Let s 2 .0; 1/, n > 2s and � be an open bounded set of Rn with
Lipschitz boundary and letK W Rn n ¹0º ! .0;C1/ be a function satisfying con-
ditions (1.8)–(1.10). Furthermore, assume that

there exists a u0 2 X0 n ¹0º with u0 > 0 a.e. in Rn such that

SK;�.u/ < SK for any u 2 U,

where U D

´
span¹u0º if � 2 .0; �1/;
span¹e1; : : : ; ek; u0º if � 2 Œ�k; �kC1/; k 2 N:

(1.18)

Then, for any � > 0 problem (1.11) admits a solution u 2 X0, which is not identi-
cally zero.
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Note that when � 2 .0; �1/, condition (1.18) is exactly

SK;� < SK ; (1.19)

so that Theorem 1.1 reduces to [19, Theorem 1]. Also, a concrete case in which
condition (1.18) is satisfied is presented in the forthcoming Theorem 1.2.

As a matter of fact, when dealing with the model kernel K.x/ D jxj�.nC2s/,
problem (1.6) reduces to (1.2), whose weak formulation is given by8̂̂̂̂

ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

Z
R2n

.u.x/ � u.y//.'.x/ � '.y//

jx � yjnC2s
dx dy � �

Z
�

u.x/'.x/ dx

D

Z
�

ju.x/j2
��2u.x/'.x/ dx

8' 2 H s.Rn/ with ' D 0 a.e. in Rn n�;

u 2 H s.Rn/ with u D 0 a.e. in Rn n�:

(1.20)

In the fractional Laplace setting the counterpart of Theorem 1.1 is given by the
following result:

Theorem 1.2. Let s 2 .0; 1/, n > 4s, � be an open bounded set of Rn with Lip-
schitz boundary and � be a positive parameter.

Then, problem (1.20) admits a solution u 2 H s.Rn/, which is not identically
zero and such that u D 0 a.e. in Rn n�, provided � is not an eigenvalue of .��/s

with homogeneous Dirichlet boundary data.

This existence theorem may be seen as the natural extension to the non-local
framework of a well-known result obtained by Capozzi, Fortunato and Palmieri
in [9], where the classical critical Laplace equation (1.1) was studied (for more
general critical nonlinearities see [12]). Indeed, when s D 1, Theorem 1.2 reads as
[9, Theorem 0.1] (see also [12, Corollary 1] and [22, Theorem 2.24]).

The proof of Theorem 1.2 is based on the fact that, in the fractional Laplace
setting, condition (1.18) is related to the strict inequality Ss; � < Ss , which holds
true in any dimension n provided n > 4s. For more details, see Section 7.

In general the main existence results proved in the present paper are obtained
through variational methods (precisely applying classical minimax theorems
to JK;�). The main difficulties are related to the encoding the Dirichlet bound-
ary datum in the variational formulation. Working in the space X0 allows us to
overcome this difficulty. Moreover, since equations (1.2) and (1.6) have a critical
growth, another problem is related to the lack of compactness in the embedding
X0 ,!L2

�

.Rn/ (or, in the case of the fractional Laplacian,H s.Rn/ ,!L2
�

.Rn/).
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In order to overcome these difficulties, first we will show that the functional JK;�
satisfies the Palais–Smale condition at any level smaller than a certain threshold
related to the best fractional critical Sobolev constant. Then, after showing that
JK;� has the right geometric structure, we will prove that the minimax critical
level of JK;� lies below such a threshold.

When dealing with a non-local setting, in the pure power case all the results
presented here extend the existence theorems obtained in [15,17,19] to the critical
case. Furthermore, the present paper extends some classical results for the Lapla-
cian to the case of non-local fractional operators (see, for instance, [4, 8, 9, 12]).

We also would like to recall the recent papers [5,21], where the authors studied
a non-local version of the Brezis–Nirenberg equation for an operator conceptually
different from the one treated in the present work.

The paper is organized as follows. Section 2 is devoted to some preliminary
results: since the functional analytic space we will work is not a standard space,
first we introduce it and then we recall some of its embeddings into the usual
Lebesgue spaces. In Section 3 we illustrate the strategy, based on a variational
approach, we will use in order to prove the main result of the paper. In Section 4 we
show that the Euler–Lagrange functional associated with problem (1.11) satisfies
a suitable compactness condition, while Section 5 is devoted to the study of the
geometric structure of the same functional. In Section 6 we prove Theorem 1.1
via variational techniques, while in Section 7 we discuss the case of the fractional
Laplacian operator and we prove Theorem 1.2.

2 Some preliminary results

In this section we recall some preliminary results which will be useful along the
paper.

As we said in the Introduction, in our setting the fractional Sobolev space is
not enough in order to study problems (1.2) and (1.6). For this reason in [15] (see
also [18]) we introduced a new functional analytic space X0 inspired by (but not
equivalent to) the fractional Sobolev spaces which seems to be the appropriate
space in which work in. Since this space is not a standard one, here we recall its
definition and some of its properties which we will use along the paper. The reader
familiar with this topic may skip it.

2.1 The functional setting

In our framework the functional space X denotes the linear space of Lebesgue
measurable functions from Rn to R such that the restriction to� of any function g
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in X belongs to L2.�/ and

the map .x; y/ 7! .g.x/�g.y//
p
K.x � y/ is in L2

�
R2n n .C��C�/; dx dy

�
;

where C� WD Rn n�, while

X0 D ¹g 2 X W g D 0 a.e. in Rn n�º:

We note that X and X0 are non-empty, since C 20 .�/ � X0 by [18, Lemma 11]
(for this we need condition (1.8)).

The space X is endowed with the norm defined as

kgkX D kgkL2.�/ C

�Z
Q

jg.x/ � g.y/j2K.x � y/ dx dy

�1=2
; (2.1)

where Q D R2n nO and O D .C�/ � .C�/ � R2n. It is easily seen that k � kX
is a norm on X (see, for instance, [15] for a proof).

In the following we denote by H s.�/ the usual fractional Sobolev space en-
dowed with the norm (the so-called Gagliardo norm)

kgkH s.�/ D kgkL2.�/ C

�Z
���

jg.x/ � g.y/j2

jx � yjnC2s
dx dy

�1=2
: (2.2)

We remark that, even in the model case in which K.x/ D jxj�.nC2s/, the norms
in (2.1) and (2.2) are not the same, because � �� is strictly contained in Q (this
makes the classical fractional Sobolev space approach not sufficient for studying
the problem).

For further details on the fractional Sobolev spaces we refer to [11] and to the
references therein.

By [15, Lemmas 6 and 7] in the sequel we can take the function

X0 3 v 7! kvkX0 D

�Z
Q

jv.x/ � v.y/j2K.x � y/ dx dy

�1=2
(2.3)

as norm on X0. Also
�
X0; k � kX0

�
is a Hilbert space, with scalar product

hu; viX0 D

Z
Q

�
u.x/ � u.y/

��
v.x/ � v.y/

�
K.x � y/ dx dy: (2.4)

Note that in (2.3) (and in the related scalar product) the integral can be extended
to all R2n, since v 2 X0 (and so v D 0 a.e. in Rn n�).

Along the paper we need some embeddings of the spaces X0 and H s.Rn/
into the usual Lebesgue spaces. With respect to these embeddings, the space X0
behaves like H 1

0 .�/, while the fractional Sobolev space H s.Rn/ as the usual
Sobolev space H 1.Rn/: this is due to the fact that the functions v 2 X0 are such
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that v D 0 a.e. in Rn n� and so X0 may be seen as a space of functions defined
in the bounded set �. Indeed, the following results, proved in [15, Lemma 8] and
in [19, Lemma 9], hold true:

Lemma 2.1. LetK W Rn n ¹0º ! .0;C1/ satisfy assumptions (1.8)–(1.10). Then,
the following assertions hold true:

(a) if� has a Lipschitz boundary, then the embedding X0 ,! L�.Rn/ is compact
for any � 2 Œ1; 2�/,

(b) the embedding X0 ,! L2
�

.Rn/ is continuous.

The counterpart of Lemma 2.1 in the usual fractional Sobolev spaces is given
by the following one proved in [11, Theorem 6.5]:

Lemma 2.2. The embeddingH s.Rn/ ,!L�.Rn/ is continuous for any � 2 Œ2; 2��.

Before ending this subsection, we give some notations. In the following we will
say that

gj D o.1/ as j !C1

if and only if limj!C1 gj D 0. Also, for any ˛ > 0 we will say that

g" D O."˛/ as "! 0;

if there exists a C > 0 such that jg"j 6 C"˛ as "! 0.

2.2 A variational characterization of the eigenvalues of �LK

In this subsection we will give a variational characterization of the eigenvalues of
the integrodifferential operator �LK , which will be useful in the sequel. A com-
plete study of the spectrum of the �LK can be found in [17, Proposition 9 and
Appendix A].

Proposition 2.3. Let ¹�kºk2N be the sequence of the eigenvalues of the opera-
tor �LK with homogeneous Dirichlet boundary data and

0 < �1 < �2 6 � � � 6 �k 6 �kC1 6 � � �

and let ¹ekºk2N be the sequence of eigenfunctions corresponding to �k .
Then, for any k 2 N the eigenvalues can be characterized as follows:

�k D max
u2span¹e1;:::;ekºn¹0º

Z
R2n
ju.x/ � u.y/j2K.x � y/ dx dyZ

�

ju.x/j2 dx

:
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Proof. Let k 2 N. Since �k is the eigenvalue corresponding to the eigenfunc-
tion ek , we have that

�k D

Z
R2n
jek.x/ � ek.y/j

2K.x � y/ dx dyZ
�

jek.x/j
2 dx

6 max
u2span¹e1;:::;ekºn¹0º

Z
R2n
ju.x/ � u.y/j2K.x � y/ dx dyZ

�

ju.x/j2 dx

:

(2.5)

Furthermore, let u 2 span¹e1; : : : ; ekº n ¹0º. Then

u D

kX
iD1

uiei with
kX
iD1

u2i 6D 0

andZ
R2n
ju.x/ � u.y/j2K.x � y/ dx dyZ

�

ju.x/j2 dx

D

kX
iD1

u2i keikX0

kX
iD1

u2i

D

kX
iD1

u2i �i

kX
iD1

u2i

6 �k;

since ¹e1; : : : ; ekº are orthonormal in L2.�/ and orthogonal in X0 (see [17, Pro-
position 9 (f)]) and �k > �i for any i D 1; : : : ; k. As a consequence, passing to
the maximum over u 2 span¹e1; : : : ; ekº n ¹0º we get

max
u2span¹e1;:::;ekºn¹0º

Z
R2n
ju.x/ � u.y/j2K.x � y/ dx dyZ

�

ju.x/j2 dx

6 �k;

which together with (2.5) gives the assertion.

In the sequel it will be useful also the following regularity result for the eigen-
values of �LK , whose proof can be found in [16, Proposition 4] in the setting of
the fractional Laplacian (in the general case we can proceed in the same way):

Proposition 2.4. Let e 2 X0 and � > 0 be such that

he; 'iX0 D �

Z
�

e.x/'.x/ dx (2.6)

for any ' 2 X0. Then e 2 L1.�/.
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3 Strategy for proving Theorem 1.1

This section is devoted to the study of problem (1.11) which is the Euler–Lagrange
equation of the functional JK;� defined in (1.12). Notice that this functional is
well defined thanks to the definition of X0 and Lemma 2.1 (b). Moreover, JK;� is
Fréchet differentiable in u 2 X0 and for any ' 2 X0

hJ0K;�.u/; 'i D

Z
R2n

�
u.x/ � u.y/

��
'.x/ � '.y/

�
K.x � y/ dx dy

� �

Z
�

u.x/'.x/ dx �

Z
�

ju.x/j2
��2.x/u.x/'.x/ dx:

In order to prove the existence of solutions for problem (1.11), we will ap-
ply some variants of the Mountain Pass Theorem and of the Linking Theorem
(see, for instance, [3, 6, 13, 14]) which take into account the fact that in the criti-
cal setting there is a lack of compactness in the embedding X0 ,! L2

�

.Rn/ (see
Lemma 2.1 (b)). As a consequence of this, as it happens in classical case, also in
the non-local critical setting the functional JK;� does not verify the Palais–Smale
condition globally, but only in an energy range determined by the best fractional
critical Sobolev constant SK given in formula (1.13).

In what follows, �1 will be the first eigenvalue of �LK with homogeneous
Dirichlet boundary data. In the case when � 2 .0; �1/, problem (1.11) was studied
in [19] in a setting more general than the power function. Hence, here we consider
only the case when � > �1 and, in order to get our goal, we will use appropriately
the Linking Theorem of Rabinowitz (see [14, Theorem 5.3]).

Since � > �1, we can suppose that

� 2 Œ�k; �kC1/ for some k 2 N;

where �k is the k-th eigenvalue of the operator �LK with homogeneous Dirichlet
boundary conditions. We recall that, in what follows, ek will be the k-th eigen-
function corresponding to the eigenvalue �k of �LK , and

PkC1 WD ¹u 2 X0 W hu; ej iX0 D 0 for all j D 1; : : : ; kº; (3.1)

while span¹e1; : : : ; ekº will denote the linear subspace generated by the first k
eigenfunctions of �LK for any k 2 N. Finally, we recall that JK;� satisfies the
Palais–Smale condition at level c 2 R ((PS)c-condition for short) if any sequence
uj in X0 such that

JK;�.uj /! c

and
sup

®
jhJ0K;�.uj /; 'ij W ' 2 X0; k'kX0 D 1

¯
! 0

as j !C1 admits a subsequence strongly convergent in X0.
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In order to prove Theorem 1.1, our strategy consists in adapting the techniques
used in the classical case of the Laplacian in the critical setting (see [2,20,22] and
references therein) to the non-local critical framework. Roughly, in order to apply
[14, Theorem 5.3] we will prove these three facts:

� compactness conditions for JK;�: the functional JK;� satisfies the (PS)c-con-
dition at any level c smaller than a certain threshold related to the best fractional
critical Sobolev constant, i.e., to be precise, for any c such that

c <
s

n
S
n=.2s/
K :

� geometric structure of JK;�: the functional JK;� has the geometry required by
the Linking Theorem.

� estimate of the critical level of JK;�: the Linking critical level of JK;� lies
below the threshold where the (PS)c-condition holds true. For this we will use
assumption (1.18).

4 A local Palais–Smale condition for the functional JK;�

We start by proving that the functional JK;� satisfies the Palais–Smale condition
in a suitable energy range involving the best fractional critical Sobolev constant SK
given in (1.13).

Proposition 4.1. Let � 2 Œ�k; �kC1/ for some k 2 N and let c 2 R be such that

c <
s

n
S
n=.2s/
K : (4.1)

Let uj be a sequence in X0 such that

JK;�.uj /! c (4.2)

and
sup

®
jhJ0K;�.uj /; 'ij W ' 2 X0; k'kX0 D 1

¯
! 0 (4.3)

as j !C1.
Then, there exists a u1 2 X0 such that, up to a subsequence, kuj�u1kX0 ! 0

as j !C1.

Proof. We proceed by steps.

Step 1. The sequence uj is bounded in X0.

Proof. The proof of Step 1 is quite standard (see, for instance, [19]), but we prefer
to repeat it for the reader’s convenience. For any j 2 N by (4.2) and (4.3) it easily
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follows that there exists a � > 0 such that

jJK;�.uj /j 6 � (4.4)

and ˇ̌̌̌�
J0K;�.uj /;

uj

kuj kX0

�ˇ̌̌̌
6 �: (4.5)

As a consequence of (4.4) and (4.5) we have

JK;�.uj / �
1

2
hJ0K;�.uj /; uj i 6 �

�
1C kuj kX0

�
: (4.6)

Moreover, it is easy to see that

JK;�.uj / �
1

2
hJ0K;�.uj /; uj i D �

�
1

2�
�
1

2

�
kuj k

2�

L2
�
.�/
D
s

n
kuj k

2�

L2
�
.�/
;

so that, thanks to (4.6), we get that for any j 2 N

kuj k
2�

L2
�
.�/

6 ��
�
1C kuj kX0

�
(4.7)

for a suitable positive constant ��.
Consequently, recalling that 2� > 2, the use of the Hölder inequality yields

kuj k
2
L2.�/

6 j�j2s=nkuj k2L2� .�/ 6 �
2=2�

� j�j2s=n
�
1C kuj kX0

�2=2�
:

That is, using that 2=2� < 1,

kuj k
2
L2.�/

6e��1C kuj kX0�; (4.8)

for a suitablee� > 0 that does not depend on j . By (4.4), (4.7) and (4.8), we con-
clude that

� > JK;�.uj / D
1

2
kuj k

2
X0
�
�

2
kuj k

2
L2.�/

�
1

2�
kuj k

2�

L2
�
.�/

>
1

2
kuj k

2
X0
� �

�
1C kuj kX0

�
;

with � > 0 independent of j . Hence, the proof of Step 1 is complete.

Step 2. Problem (1.11) admits a solution u1 2 X0.

Proof. Since uj is bounded in X0 and X0 is a reflexive space (being a Hilbert
space, by [15, Lemma 7]), up to a subsequence, still denoted by uj , there exists
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a u1 2 X0 such that uj ! u1 weakly in X0, that isZ
R2n

�
uj .x/ � uj .y/

��
'.x/ � '.y/

�
K.x � y/ dx dy

!

Z
R2n

�
u1.x/ � u1.y/

��
'.x/ � '.y/

�
K.x � y/ dx dy 8' 2 X0

(4.9)

as j !C1. Moreover, by Step 1, (4.7), Lemma 2.1 (b) and the fact thatL2
�

.Rn/
is a reflexive space we have that, up to a subsequence,

uj ! u1 weakly in L2
�

.Rn/ (4.10)

as j !C1, while by Lemma 2.1 (a), up to a subsequence,

uj ! u1 in L�.Rn/; (4.11)

uj ! u1 a.e. in Rn (4.12)

as j !C1 for any � 2 Œ1; 2�/.
As a consequence of inequality (4.7) it is easy to see that juj j2

��2uj is bounded
in L2

�=.2��1/.�/ uniformly in j 2 N. Hence, by this and (4.10) we get that

juj j
2��2uj ! ju1j

2��2u1 weakly in L2
�=.2��1/.�/ (4.13)

as j !C1.
Since .2�=.2� � 1//0 D 2�, by (4.13) it is easily seen thatZ

�

juj .x/j
2��2uj .x/'.x/ dx

!

Z
�

ju1.x/j
2��2u1.x/'.x/ dx 8' 2 L2

�

.�/;

and so, in particular,Z
�

juj .x/j
2��2uj .x/'.x/ dx

!

Z
�

ju1.x/j
2��2u1.x/'.x/ dx 8' 2 X0

(4.14)

as j !C1 (here we use Lemma 2.1 (b)).
By (4.3), for any ' 2 X0

0 hJ0K;�.uj /; 'i D

Z
R2n

�
uj .x/ � uj .y/

��
'.x/ � '.y/

�
K.x � y/ dx dy

� �

Z
�

uj .x/'.x/ dx �

Z
�

juj .x/j
2��2uj .x/'.x/ dx;
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so that, passing to the limit in this expression as j !C1 and taking into account
(4.9), (4.11) and (4.14) we getZ

R2n

�
u1.x/ � u1.y/

��
'.x/ � '.y/

�
K.x � y/ dx dy

� �

Z
�

u1.x/'.x/ dx

�

Z
�

ju1.x/j
2��2u1.x/'.x/ dx D 0

for any ' 2 X0, that is u1 is a solution of problem (1.11) and Step 2 follows.

Step 3. The following relation holds true:

JK;�.u1/ D
s

n

Z
�

ju1.x/j
2� dx > 0:

Proof. By Step 2, taking ' D u1 2 X0 as a test function in (1.11), we getZ
R2n
ju1.x/ � u1.y/j

2K.x � y/ dx dy � �

Z
�

ju1.x/j
2 dx

D

Z
�

ju1.x/j
2�dx;

so that

JK;�.u1/ D

�
1

2
�
1

2�

�Z
�

ju1.x/j
2� dx

D
s

n

Z
�

ju1.x/j
2� dx > 0:

Hence, Step 3 is proved.

Step 4. The following equality holds true:

JK;�.uj / D JK;�.u1/

C
1

2

Z
R2n
juj .x/ � u1.x/ � uj .y/C u1.y/j

2K.x � y/ dx dy

�
1

2�

Z
�

juj .x/ � u1.x/j
2� dx C o.1/

as j !C1.
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Proof. First of all, we observe that by Step 1 and Lemma 2.1 (b), the sequence uj
is bounded in X0 and in L2

�

.�/. Hence, since (4.12) holds true, by the Brezis–
Lieb Lemma (see [7, Theorem 1]), we getZ

R2n
juj .x/ � uj .y/j

2K.x � y/ dx dy

D

Z
R2n
juj .x/ � u1.x/ � uj .y/C u1.y/j

2K.x � y/ dx dy

C

Z
R2n
ju1.x/ � u1.y/j

2K.x � y/ dx dy C o.1/

(4.15)

andZ
�

juj .x/j
2� dx D

Z
�

juj .x/�u1.x/j
2� dxC

Z
�

ju1.x/j
2� dxCo.1/ (4.16)

as j !C1.
Therefore, using also the definition of JK;�, by (4.11), (4.15) and (4.16) we

deduce that

JK;�.uj / D
1

2

Z
R2n
juj .x/ � u1.x/ � uj .y/C u1.y/j

2K.x � y/ dx dy

C
1

2

Z
R2n
ju1.x/ � u1.y/j

2K.x � y/ dx dy

�
�

2

Z
�

ju1.x/j
2 dx �

1

2�

Z
�

juj .x/ � u1.x/j
2� dx

�
1

2�

Z
�

ju1.x/j
2� dx C o.1/

D JK;�.u1/

C
1

2

Z
R2n
juj .x/ � u1.x/ � uj .y/C u1.y/j

2K.x � y/ dx dy

�
1

2�

Z
�

juj .x/ � u1.x/j
2� dx C o.1/

as j !C1, which gives the desired assertion.

Step 5. The following equality holds true:Z
R2n
juj .x/ � u1.x/ � uj .y/C u1.y/j

2K.x � y/ dx dy

D

Z
�

juj .x/ � u1.x/j
2� dx C o.1/

as j !C1.
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Proof. First of all, note that, as a consequence of (4.10), (4.13) and (4.16), we getZ
�

�
juj .x/j

2��2uj .x/ � ju1.x/j
2��2u1.x/

��
uj .x/ � u1.x/

�
dx

D

Z
�

juj .x/j
2� dx �

Z
�

ju1.x/j
2��1u1.x/uj .x/ dx

�

Z
�

juj .x/j
2��2uj .x/u1.x/ dx

C

Z
�

ju1.x/j
2� dx

D

Z
�

juj .x/j
2� dx �

Z
�

ju1.x/j
2� dx C o.1/

D

Z
�

juj .x/ � u1.x/j
2� dx C o.1/

(4.17)

as j !C1.
By (4.3) and Steps 1 and 2, it is easily seen that

o.1/ D hJ0K;�.uj /; uj � u1i

D hJ0K;�.uj / � J0K;�.u1/; uj � u1i
(4.18)

as j !C1. Moreover, by (4.11) and (4.17)

hJ0K;�.uj / � J0K;�.u1/; uj � u1i

D

Z
R2n
juj .x/ � u1.x/ � uj .y/C u1.y/j

2K.x � y/ dx dy

� �

Z
�

juj .x/ � u1.x/j
2 dx

�

Z
�

�
juj .x/j

2��2uj .x/ � ju1.x/j
2��2u1.x/

��
uj .x/ � u1.x/

�
dx

D

Z
R2n
juj .x/ � u1.x/ � uj .y/C u1.y/j

2K.x � y/ dx dy

�

Z
�

juj .x/ � u1.x/j
2� dx C o.1/ (4.19)

as j !C1. Hence, the assertion of Step 5 comes from (4.18) and (4.19).

Now, we can conclude the proof of Proposition 4.1.
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By Step 5 it is easy to see that

1

2

Z
R2n
juj .x/ � u1.x/ � uj .y/C u1.y/j

2K.x � y/ dx dy

�
1

2�

Z
�

juj .x/ � u1.x/j
2� dx

D

�
1

2
�
1

2�

�Z
R2n
juj .x/�u1.x/�uj .y/Cu1.y/j

2K.x � y/ dx dyC o.1/

D
s

n

Z
R2n
juj .x/ � u1.x/ � uj .y/C u1.y/j

2K.x � y/ dx dy C o.1/;

and so, as a consequence of this and Step 4,

JK;�.u1/C
s

n

Z
R2n
juj .x/ � u1.x/ � uj .y/C u1.y/j

2K.x � y/ dx dy

D JK;�.uj /C o.1/

D c C o.1/ (4.20)

as j !C1, thanks to (4.2). Now, by Step 1 the sequence kuj kX0 is bounded
in R. Hence, up to a subsequence, if necessary, we can assume that

kuj �u1k
2
X0
D

Z
R2n
juj .x/�u1.x/�uj .y/Cu1.y/j

2K.x � y/ dx dy ! L

(4.21)
and so, again as a consequence of Step 5,Z

�

juj .x/ � u1.x/j
2� dx ! L

as j !C1. Of course L 2 Œ0;C1/ and, by definition of SK , it holds true

L > L2=2
�

SK ;

so that
L D 0 or L > S

n=.2s/
K :

The case L > S
n=.2s/
K cannot occur. Otherwise, by (4.20), (4.21) and Step 3, we

would get
c D JK;�.u1/C

s

n
L >

s

n
L >

s

n
S
n=.2s/
K ;

which contradicts (4.1). Thus L D 0 and so, by (4.21), we obtain that

kuj � u1kX0 ! 0

as j !C1. This ends the proof of Proposition 4.1.
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5 The geometry of the functional JK;�

Along this section we show that the functional JK;� has the geometric structure
required by [14, Theorem 5.3]. In a non-local setting for nonlinearities with sub-
critical growth a proof of this is given in [17]. Essentially, here we adapt the proof
given in [17, Section 4.2] to the critical case. With respect to the classical case of
the Laplacian some technical differences arise.

Proposition 5.1. Let � 2 Œ�k; �kC1/ and let PkC1 be as in (3.1) for some k 2 N.
Then, there exist � > 0 and ˇ > 0 such that for any u 2 PkC1 with kukX0 D � it
results that JK;�.u/ > ˇ.

Proof. Let u be a function in PkC1. Thanks to the choice of � and to the variational
characterization of �kC1 (see [17, Proposition 9 (d)]) we get

JK;�.u/ D
1

2

Z
R2n
ju.x/ � u.y/j2K.x � y/ dx dy �

�

2

Z
�

ju.x/j2 dx

�
1

2�

Z
�

ju.x/j2
�

dx

>
1

2

�
1 �

�

�kC1

�Z
R2n
ju.x/ � u.y/j2K.x � y/ dx dy

�
1

2�

Z
�

ju.x/j2
�

dx:

(5.1)

Using [15, Lemma 6] and (1.9), from (5.1) we deduce that

JK;�.u/ >
1

2

�
1 �

�

�kC1

�Z
R2n
ju.x/ � u.y/j2K.x � y/ dx dy

�
c2
�=2

2�

�Z
R2n

ju.x/ � u.y/j2

jx � yjnC2s
dx dy

�2�=2
>
1

2

�
1 �

�

�kC1

�Z
R2n
ju.x/ � u.y/j2K.x � y/ dx dy

�
1

2�

�
c

�

�2�=2�Z
R2n
ju.x/ � u.y/j2K.x � y/ dx dy

�2�=2
D
1

2

�
1 �

�

�kC1

�
kuk2X0 �

1

2�

�
c

�

�2�=2
kuk2

�

X0
: (5.2)

Hence, for a suitable positive constant � we have

JK;�.u/ >
1

2

�
1 �

�

�kC1

�
kuk2X0

�
1 � �kuk2

��2
X0

�
:
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Now, let u 2 PkC1 be such that kukX0 D � > 0. Since 2� > 2, choosing � suf-
ficiently small (i.e. � such that 1 � ��2

��2 > 0), we get

inf
u2PkC1
kukX0D�

JK;�.u/ >
1

2

�
1 �

�

�kC1

�
�2.1 � ��2

��2/ DW ˇ > 0;

and this ends the proof of Proposition 5.1.

Proposition 5.2. Let � 2 Œ�k; �kC1/ for some k 2 N. Then, JK;�.u/ 6 0 for any
u 2 span¹e1; : : : ; ekº.

Proof. Let u 2 span¹e1; : : : ; ekº. Then

u.x/ D

kX
iD1

uiei .x/ with ui 2 R, i D 1; : : : ; k.

Since ¹e1; : : : ; ek; : : : º is an orthonormal basis of L2.�/ and an orthogonal one
of X0 by [17, Proposition 9 (f)], we getZ

�

ju.x/j2 dx D

kX
iD1

u2i (5.3)

and Z
R2n
ju.x/ � u.y/j2K.x � y/ dx dy D

kX
iD1

u2i keik
2
X0
: (5.4)

Then, by (5.3) and (5.4) and using [17, Proposition 9 (b) and (e)] (here we also use
the fact that ei 2 X0 for i D 1; : : : ; k, see [17, Proposition 9 (f)]) we get

JK;�.u/ D
1

2

kX
iD1

u2i
�
keik

2
X0
� �

�
�
1

2�
kuk2

�

L2
�
.�/

6
1

2

kX
iD1

u2i .�i � �/ 6 0;

since �i 6 �k 6 � for any i D 1; : : : ; k. Hence, Proposition 5.2 follows.

Proposition 5.3. Let � > 0 and let F be a finite dimensional subspace ofX0. Then,
there exists an R > � such that JK;�.u/ 6 0 for any u 2 F with kukX0 > R,
where � is given in Proposition 5.1.
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Proof. Let u 2 F . Then, the non-negativity of � gives

JK;�.u/ D
1

2
kuk2X0 �

�

2
kuk2

L2.�/
�
1

2�
kuk2

�

L2
�
.�/

6
1

2
kuk2X0 �

1

2�
kuk2

�

L2
�
.�/

6
1

2
kuk2X0 �

�

2�
kuk2

�

X0
;

for some positive constant �, thanks to the fact that in any finite dimensional space
all the norms are equivalent.

Hence, if kukX0 !C1, then

JK;�.u/! �1;

since 2� > 2 by assumption, and so the assertion of Proposition 5.3 follows.

6 Proof of Theorem 1.1

As we said at the beginning of Section 3, in the case when � 2 .0; �1/ our thesis
follows by [19, Theorem 2], where more general critical nonlinearities than the
power (critical) function were studied.

Now, let us consider the case when � 2 Œ�k; �kC1/ for some k 2 N. Let u0 be
the function given in condition (1.18). Note that we can choose u0 > 0 a.e. in Rn,
since if v 2 X0, then its positive part vC and its negative part v� belong to X0 by
[18, Lemma 12].

Starting from u0 we construct the functions z; Qz 2 PkC1 as follows:

z D u0 �

kX
iD1

�Z
�

u0.x/ei .x/ dx

�
ei ; Qz D z=kzkX0 : (6.1)

Moreover, let V D span¹e1; : : : ; ekº and W D PkC1. It is easily seen that V is
finite dimensional and V ˚W D X0.

By Propositions 5.1–5.3 we get that JK;� has the geometric structure required
by the Linking Theorem (see assumptions (I 01) and (I5) of [14, Theorem 5.3] and
also [14, Remark 5.5 (iii)]), that is

inf
u2W
kukX0D�

JK;�.u/ > ˇ > 0; sup
u2V

JK;�.u/ 6 0;

and
sup
u2F

kukX0>R

JK;�.u/ 6 0; F D V ˚ span¹Qzº;

where ˇ and R are as in Propositions 5.1 and 5.3, respectively, and Qz is as in (6.1).
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Now, let cL be the Linking critical level of JK;�, i.e.

cL D inf
h2�

max
u2Q

JK;�.h.u//;

where
� D

®
h 2 C.QIX0/ W h D id on @Q

¯
;

Q D
�
BR \ V

�
˚
®
r Qz W r 2 .0; R/

¯
:

Our goal is to show that cL is smaller than s
n
S
n=.2s/
K , that is proving that the

Linking critical level of JK;� lies below the threshold where the (PS)c-condition
holds true. For this, first of all we note that for any u 2 X0 n ¹0º

max
�>0

JK;�.�u/ D
s

n
S
n=.2s/

K;�
.u/ (6.2)

(see, for instance, [19, Proposition 20]).
By definition of cL we get that for any h 2 �

cL 6 max
u2Q

JK;�.h.u//

and so, in particular, taking h D id on Q

cL 6 max
u2Q

JK;�.u/ 6 max
u2F

JK;�.u/; (6.3)

being Q � F . Since F is a linear space,

max
u2F

JK;�.u/ D max
u2F
� 6D0

JK;�

�
j�j �

u

j�j

�
D max

u2F
�>0

JK;�.�u/

6 max
u2F
�>0

JK;�.�u/:

(6.4)

Hence, (6.2)–(6.4) and assumption (1.18) yield

cL 6 max
u2F
�>0

JK;�.�u/ D
s

n
max
u2F

S
n=.2s/

K;�
.u/ <

s

n
S
n=.2s/
K ; (6.5)

since F D V ˚ span¹Qzº D span¹e1; : : : ; ek; u0º by construction of Qz.
Therefore, the Linking Theorem [14, Theorem 5.3] yields that problem (1.11)

admits a solution u 2 X0 with critical value JK;�.u/ D cL > ˇ. Since

ˇ > 0 D JK;�.0/;

we deduce that u is not identically zero and this concludes the proof of Theo-
rem 1.1.
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7 The fractional Laplace case: proof of Theorem 1.2

In this section, as a concrete application, we consider the model fractional kernel

K.x/ D jxj�.nC2s/;

which gives rise to the fractional Laplace operator�.��/s defined is (1.3). Hence,
here we study problem (1.2) or, to be more precise, its weak formulation, that is
problem (1.20).

In order to prove Theorem 1.2 we will apply Theorem 1.1. For doing this, it is
enough to show that condition (1.18) is satisfied in the fractional Laplace setting.
First of all, we have to construct the function u0 and the linear space U given
in (1.18) in a suitable way (i.e. in such a way that (1.18) is verified).

7.1 Construction of the function u0 and of the linear space U

In order to construct such a u0, we can proceed as in [19, Section 4]. To illustrate
the procedure we need the following result proved in [10, Theorem 1.1]:

Theorem 7.1. The infimum in formula (1.16) is attained, that is

Ss D Ss. Qu/;

where
Qu.x/ D �

�
�2 C jx � x0j

2
��.n�2s/=2

; x 2 Rn; (7.1)

with � 2 R n ¹0º, � > 0 and x0 2 Rn fixed constants.
Equivalently, the function Nu defined as

Nu.x/ D
Qu.x/

k QukL2� .Rn/
(7.2)

is such that

Ss D inf
v2H s.Rn/
kvk

L2
�
.Rn/
D1

Z
R2n

jv.x/ � v.y/j2

jx � yjnC2s
dx dy

D

Z
R2n

j Nu.x/ � Nu.y/j2

jx � yjnC2s
dx dy:

(7.3)

In what follows we suppose that, up to a translation, x0 D 0 in (7.1). As in
the classical case of the Laplacian, following [19, Section 4], we can construct an
explicit solution of the limiting critical problem

.��/su D juj2
��2u in Rn (7.4)
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as follows:

u�.x/ D Nu

�
x

S
1=.2s/
s

�
; x 2 Rn: (7.5)

Note that the function u� 2 H s.Rn/ is a solution of problem (7.4) satisfying the
property

ku�k2
�

L2
�
.Rn/
D Sn=.2s/s : (7.6)

Now, starting from u� we can define the family of functions U" as

U".x/ D "
�.n�2s/=2 u�.x="/; x 2 Rn; (7.7)

for any " > 0.
Finally, we need to put appropriately U" to zero outside �. For this let us fix

a ı > 0 such that
B4ı � �

and let us consider the cut-off function � 2 C1.Rn/ such that 0 6 � 6 1 in Rn,
� � 1 in Bı and � � 0 in CB2ı , where Bı D B.0; ı/ and CBı D Rn n Bı . For
every " > 0 we denote by u" the following family of functions:

u".x/ D �.x/U".x/; x 2 Rn; (7.8)

where U" is given in (7.7).
Of course u" 2 H s.Rn/, u" > 0 a.e. in Rn and u" D 0 a.e. in Rn n�. Hence,

by [19, Lemma 7] it is easily seen that u" 2 X0. Moreover, the function u" satisfies
the following crucial estimates:

Proposition 7.2. Let s 2 .0; 1/ and n > 2s. Then, the following estimates hold
true: Z

R2n

ju".x/ � u".y/j
2

jx � yjnC2s
dx dy 6 Sn=.2s/s CO."n�2s/;

Z
Rn
ju".x/j

2 dx >

8̂<̂
:
Cs"

2s CO."n�2s/ if n > 4s;
Cs"

2sjlog "j CO."2s/ if n D 4s;
Cs"

n�2s CO."2s/ if n < 4s;Z
Rn
ju".x/j

2� dx D Sn=.2s/s CO."n/;Z
Rn
ju".x/j

2��1 dx D O.".n�2s/=2/
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and Z
Rn
ju".x/j dx D O.".n�2s/=2/

as "! 0, for some positive constant Cs depending on s.
As a consequence, if " > 0 is sufficiently small, then for any � > 0

Ss; �.u"/ < Ss; (7.9)

provided n > 4s.

Proof. The first three estimates were proved in [19, Propositions 21 and 22 and
Section 4.2.1]. It remains to show the last two ones. Let us start by proving the
L2
��1-estimate. By (7.7) and (7.8) we have thatZ

Rn
ju".x/j

2��1 dx

6
Z
B2ı

jU".x/j
2��1 dx

D ��
�
"�.n�2s/=2

�2��1 Z
B2ı

��
�2 C jx="j2

��.n�2s/=2�2��1
dx

D ��".n�2s/=2
Z 2ı="

0

rn�1

.�2 C r2/.nC2s/=2
dr

Š Q�".n�2s/=2
�
1C

Z 2ı="

1

r�2s�1 dr

�
D O.".n�2s/=2/

as "! 0.
In a similar way we getZ

Rn
ju".x/j dx 6

Z
B2ı

jU".x/j dx

D ��"�.n�2s/=2
Z
B2ı

�
�2 C jx="j2

��.n�2s/=2
dx

D ��".nC2s/=2
Z 2ı="

0

rn�1

.�2 C r2/.n�2s/=2
dr

Š Q�".nC2s/=2
�
1C

Z 2ı="

1

r2s�1
�

D O.".n�2s/=2/

as "! 0. In both cases, here �� and Q� are positive constants.
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Finally, let us show (7.9). If n > 4s, by definition of Ss; �. � / and the previous
estimates we get

Ss; �.u"/ D

Z
R2n

ju".x/ � u".y/j
2

jx � yjnC2s
dx dy � �

Z
�

ju".x/j
2 dx�Z

�

ju".x/j
2� dx

�2=2�

6
S
n=.2s/
s CO."n�2s/ � �Cs"

2s�
S
n=.2s/
s CO."n/

�2=2�
6 Ss C "

2s
�
O."n�4s/ � �Cs

�
< Ss

for any � > 0, provided " > 0 is sufficiently small.
If n D 4s, similarly we get

Ss; �.u"/ 6
S
n=.2s/
s CO."n�2s/ � �Cs"

2sjlog "j CO."2s/�
S
n=.2s/
s CO."n/

�2=2�
6 Ss CO."2s/ � �Cs"

2s
jlog "j

6 Ss C "
2s
jlog "j

�
jlog "j�1 � �Cs

�
< Ss

for any � > 0, provided " > 0 is sufficiently small. This concludes the proof of
Proposition 7.2.

Now, we construct the function u0 given in (1.18) as follows:

u0 D u" for " sufficiently small, (7.10)

and the linear space U as

U D U" WD

´
span¹u"º if � 2 .0; �1; s/;
span¹e1; s; : : : ; ek; s; u"º if � 2 Œ�k; s; �kC1; s/; k 2 N;

(7.11)

where the functions ek; s , are the eigenfunctions of .��/s corresponding to �k; s
for any k 2 N (see [17, Proposition 9] for a detailed spectral theory for the frac-
tional Laplacian).

In the next subsection we will show that, with this choice of u0 and U, condi-
tion (1.18) is satisfied.
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7.2 A non-degeneracy estimate

Note that, if � 2 .0; �1; s/, then condition (1.18) reduces to

Ss; �.u0/ D Ss; �.u"/ < Ss; (7.12)

which is always satisfied, provided " is sufficiently small, thanks to (7.9).
Now, it remains to consider the case when � 2 Œ�k; s �kC1; s/ for some k 2 N.

For this we need the following result:

Proposition 7.3. Let s 2 .0; 1/ and n > 2s. Let � 2 Œ�k; s; �kC1; s/ for some k 2N
and let U" be the linear space defined in (7.11). Finally, let

M" WD max
u2U"

kuk
L2
�
.�/
D1

Ss; �.u/; (7.13)

where the function H s.Rn/ n ¹0º 3 v 7! Ss; �.v/ is defined as in (1.17). Then:

(a) M" is achieved in uM 2 U" and uM can be written as follows:1

uM D v C tu" with v 2 span¹e1; s; : : : ; ek; sº and t > 0: (7.14)

(b) the following estimate holds true:

M" 6

8̂̂<̂
:̂
.�k; s � �/kvk

2
L2.�/

if t D 0;

.�k; s � �/kvk
2
L2.�/

C Ss; �.u"/
�
1CO.".n�2s/=2/kvkL2.�/

�
CO.".n�2s/=2// kvkL2.�/ if t > 0;

as "! 0, where v is given in (7.14).

Proof. First of all, note that u" 2 X0 and ei; s 2 X0 for any i D 1; : : : ; k, thanks
to [17, Proposition 9 (b) and (e)] and to [19, Lemma 7]. As a consequence of this
U" � X0 and, by definition of Ss; �,

M" WD max
u2U"

kuk
L2
�
.�/
D1

�Z
R2n

ju.x/ � u.y/j2

jx � yjnC2s
dx dy � �

Z
�

ju.x/j2 dx

�
:

Let us start by proving part (a). The maximum in formula (7.13) is achieved
thanks to the Weierstrass Theorem (applied here in a finite dimensional space).
Thus, let uM 2 U" be the function such that

M" D

Z
R2n

juM .x/�uM .y/j
2

jx � yjnC2s
dx dy ��

Z
�

juM .x/j
2 dx; kuMkL2� .�/ D 1:

1 Beware that uM , v and t (and also Qv in (7.16) below) depend on ". For simplicity we omit this
dependence in the notation.
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Note that uM 6� 0. Moreover, since uM 2 U", by definition of U" we have that

uM D v C tu";

for some v 2 span¹e1; s; : : : ; ek; sº and t 2 R. We can suppose that t > 0 (other-
wise, if t 6 0, we can replace uM with �uM ). This concludes the proof of asser-
tion (a).

Now, let us show (b). First of all, note that, if t D 0 in formula (7.14), then
uM D v 2 span¹e1; s; : : : ; ek; sº and

M" D

Z
R2n

juM .x/ � uM .y/j
2

jx � yjnC2s
dx dy � �

Z
�

juM .x/j
2 dx

D

Z
R2n

jv.x/ � v.y/j2

jx � yjnC2s
dx dy � �

Z
�

jv.x/j2 dx

6 .�k; s � �/kvk
2
L2.�/

;

by Proposition 2.3. Thus, assertion (b) holds true when t D 0.
Now, let us consider the case when t > 0 in (7.14). By the Hölder inequality

and the properties of uM , we can bound uM as follows:

kuMk
2
L2.�/

6 j�jn=.2s/kuMk2L2� .�/ D j�j
n=.2s/: (7.15)

Also, since uM 2 U", by definition of U" we have that

uM D Qv C tz"; (7.16)

where

Qv D v C t

kX
iD1

�Z
�

u".x/ei; s.x/ dx

�
ei; s 2 span¹e1; s; : : : ; ek; sº

and

z" D u" �

kX
iD1

�Z
�

u".x/ei; s.x/ dx

�
ei; s; (7.17)

so that Qv and z" are orthogonal in L2.�/ (see [17, Proposition 9 (f)]). As a conse-
quence of this, we get that

kuMk
2
L2.�/

D kQvk2
L2.�/

C t2kz"k
2
L2.�/

> k Qvk2
L2.�/

: (7.18)

By (7.15) and (7.18), we have obtained that kuMkL2.�/, and k QvkL2.�/ are all
bounded uniformly in " by a suitable Qc > 0.
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Now, we claim that, up to renaming such a constant,

t 6 Qc: (7.19)

For this note that by Proposition 2.4 we have that ei; s 2 L1.�/ for any i 2 N, so
that also Qv 2 span¹e1; s; : : : ; ek; sº does. Hence, Qv 2 L2

�

.�/, since � is bounded.
Moreover, by the equivalence of the norms in a finite dimensional space, we also
have

k QvkL2� .�/ 6 Qc: (7.20)

By Propositions 2.4 and 7.2 we haveˇ̌̌̌Z
�

u".x/ei;s.x/ dx

ˇ̌̌̌
6 ku"kL1.�/kei;skL1.�/ D O.".n�2s/=2/

as "! 0. As a consequence, using (7.17) and again Proposition 7.2,

kz"kL2� .�/ > ku"kL2� .�/ �
kX
iD1

ˇ̌̌̌Z
�

u".x/ei;s.x/ dx

ˇ̌̌̌
kei;skL2� .�/

D S .n�2s/=.4s/s CO.".n�2s/=2/

>
S
.n�2s/=.4s/
s

2

for " sufficiently small. So, by (7.16), the fact that t > 0 and (7.20) we have

S
.n�2s/=.4s/
s t

2
6 tkz"kL2� .�/ 6 kuMkL2� .�/ C kQvkL2� .�/ 6 1C Qc;

thanks to the properties of uM . Therefore the claim in (7.20) follows.
Note that by Proposition 2.4 also v 2 span¹e1; s; : : : ; ek; sº belongs to L1.�/.
Finally, the convexity2, the monotonicity properties of the integrals, (7.19) and

the fact that in span¹e1; s; : : : ; ek; sº all the norms are equivalent yield

1 D kuMk
2�

L2
�
.�/
D

Z
�

juM .x/j
2� dx

>
Z
�

jtu".x/j
2� dx C 2�

Z
�

�
tu".x/

�2��1
v.x/ dx

> ktu"k2
�

L2
�
.�/
� 2� Qc 2

��1
ku"k

2��1
L2
��1.�/

kvkL1.�/

> ktu"k2
�

L2
�
.�/
� Oc ku"k

2��1
L2
��1.�/

kvkL2.�/;

(7.21)

2 If f is a differentiable convex function, then f .y/ > f .x/C f 0.x/.y � x/. Here we take
f .s/ D s2

�
, x D tu" and y D uM D v C tu".
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for some positive constant Oc, so that

ktu"k
2�

L2
�
.�/

6 1C Oc ku"k
2��1
L2
��1.�/

kvkL2.�/: (7.22)

Now, we are ready to prove the inequality in part (b). By (7.14) we get

M" D

Z
R2n

juM .x/ � uM .y/j
2

jx � yjnC2s
dx dy � �

Z
�

juM .x/j
2 dx

D

Z
R2n

jv.x/C tu".x/ � v.y/ � tu".y/j
2

jx � yjnC2s
dx dy

� �

Z
�

jv.x/C tu".x/j
2 dx

D

Z
R2n

jv.x/ � v.y/j2

jx � yjnC2s
dx dy C t2

Z
R2n

ju".x/ � u".y/j
2

jx � yjnC2s
dx dy

C 2t

Z
R2n

�
u".x/ � u".y/

��
v.x/ � v.y/

�
jx � yjnC2s

dx dy

� �

Z
�

jv.x/j2 dx � �t2
Z
�

ju".x/j
2 dx

� 2�t

Z
�

u".x/v.x/ dx

6
�
�k; s � �

�
kvk2

L2.�/
C Ss; �.u"/ktu"k

2
L2
�
.�/

C 2t

Z
R2n

�
u".x/ � u".y/

��
v.x/ � v.y/

�
jx � yjnC2s

� 2�t

Z
�

u".x/v.x/ dx;

(7.23)

thanks to Proposition 2.3 and to the definition of Ss; �. � /.
Now we write

v D

kX
iD1

viei;s

for some vi 2 R, so that

kvk2
L2.�/

D

kX
iD1

v2i :

Also (see (2.4)),

hu"; viX0 D

kX
iD1

vi hu"; ei;siX0 D

kX
iD1

�i;svi

Z
�

u".x/ei;s.x/ dx:
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So, by the Hölder inequality and the equivalence of the norms in a finite dimen-
sional space,

jhu"; viX0 j 6
kX
iD1

�i;sjvi j ku"kL1.�/kei;skL1.�/

6 Q��kC1; sku"kL1.�/kvkL1.�/
6 N�ku"kL1.�/kvkL2.�/

for suitable Q� and N� > 0 ( N� possibly depends on k). More explicitly,ˇ̌̌̌Z
R2n

�
u".x/ � u".y/

��
v.x/ � v.y/

�
jx � yjnC2s

dx dy

ˇ̌̌̌
6 N�kvkL2.�/ku"kL1.�/: (7.24)

Gathering the results in (7.23) and (7.24), and using again the Hölder inequality,
we get

M" 6 .�k; s � �/kvk
2
L2.�/

C Ss; �.u"/ktu"k
2
L2
�
.�/
C 2t N�kvkL2.�/ku"kL1.�/

C 2�tku"kL1.�/kvkL1.�/

6 .�k; s � �/kvk
2
L2.�/

C Ss; �.u"/ktu"k
2
L2
�
.�/
C �ku"kL1.�/kvkL2.�/

for some positive �, thanks to (7.19) and the equivalence of the norms in the finite
dimensional space span¹e1; s; : : : ; ek; sº.

This and (7.22) yield

M" 6 .�k; s � �/kvk
2
L2.�/

C Ss; �.u"/
�
1C Oc ku"k

2��1
L2
��1.�/

kvkL2.�/
�2=2�

C �ku"kL1.�/kvkL2.�/;

so that, by Proposition 7.2

M" 6 .�k; s � �/kvk
2
L2.�/

C Ss; �.u"/
�
1CO.".n�2s/=2/kvkL2.�/

�2=2�
CO.".n�2s/=2/kvkL2.�/

6
�
�k; s � �

�
kvk2

L2.�/
C Ss; �.u"/

�
1CO.".n�2s/=2/kvkL2.�/

�
CO.".n�2s/=2/kvkL2.�/;

being 2 < 2� (since s > 0). Then, assertion (b) is proved.
This ends the proof of Proposition 7.3.

Now, we are ready to prove Theorem 1.2.
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7.3 End of the proof of Theorem 1.2

When � 2 .0; �1; s/, condition (1.18) reduces to (7.12). Hence, Theorem 1.2 comes
from [19, Theorem 4].

Let us consider the case when � > �1; s . As we said at the beginning of Sec-
tion 7, in order to prove Theorem 1.2, the idea consists of applying Theorem 1.1
(for this we have to show that condition (1.18) is satisfied). If we assume that
� 2 .�k; s; �kC1; s/ for some k 2 N, in order to prove condition (1.18) it is enough
to show that

M" WD max
u2U"

kuk
L2
�
.�/
D1

Ss; �.u/ < Ss; (7.25)

taking into account the scale invariance of the function Ss; �. � /.
By Proposition 7.3 (a),

M" D

Z
R2n

juM .x/ � uM .y/j
2

jx � yjnC2s
dx dy � �

Z
�

juM .x/j
2 dx

with
uM D v C tu"

for some v 2 span¹e1; s; : : : ; ek; sº and t > 0.
If t D 0, by Proposition 7.3 (b) and the choice of � > �k; s , we get that

M" 6 .�k; s � �/kvk
2
L2.�/

< 0 < Ss;

and so (7.25) is proved.
Now, suppose that t > 0. Again by Proposition 7.3 (b) we deduce that for "

sufficiently small

M" 6 .�k; s � �/kvk
2
L2.�/

C Ss; �.u"/
�
1CO.".n�2s/=2/kvkL2.�/

�
CO.".n�2s/=2/kvkL2.�/

D O."n�2s/C Ss; �.u"/
�
1CO.".n�2s/=2/kvkL2.�/

�
;

(7.26)

since the parabola .�k; s � �/kvk2L2.�/ CO.".n�2s/=2/kvkL2.�/ stays always be-
low its vertex, that is

.�k; s � �/kvk
2
L2.�/

CO.".n�2s/=2/kvkL2.�/ 6
1

4.� � �k; s/
O."n�2s/

D O."n�2s/:
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We have to distinguish the cases n > 4s and n D 4s. Let us start with the first
one, i.e. n > 4s. Thus, by (7.26) and Proposition 7.2

M" 6 O."n�2s/C Ss; �.u"/
�
1CO.".n�2s/=2/kvkL2.�/

�
6 O."n�2s/C

�
Ss CO."n�2s/ � �Cs"

2s
��
1CO.".n�2s/=2/kvkL2.�/

�
D Ss CO."n�2s/ � �Cs"

2s

D Ss C "
2s
�
O."n�4s/ � �Cs

�
< Ss

as "! 0. Here we use also the fact that � is positive (being � > �k; s > 0). This
ends the proof of (7.25) when n > 4s.

Now, let n D 4s. Arguing as above, by (7.26) and Proposition 7.2 we get

M" 6 O."2s/C Ss; �.u"/
�
1CO."s/kvkL2.�/

�
6 Ss CO."2s/ � �Cs"

2s
jlog "j

D Ss C "
2s
jlog "j

�
jlog "j�1 � �Cs

�
< Ss

as "! 0. This concludes the proof in the case when n D 4.
Hence, condition (1.18) is satisfied when n > 4s for any � > 0 different from

the eigenvalues of .��/s . Then, Theorem 1.1 provides a solution u 2 X0 n ¹0º of
problem (1.20). Since X0 � H s.Rn/ by [15, Lemma 5 (b)] (see also [19, Lem-
ma 7]), the proof of Theorem 1.2 is complete.

Note that, of course, we can prove Theorem 1.2 directly by applying the Moun-
tain Pass and the Linking Theorem to the Euler–Lagrange functional

Js; �.u/ D
1

2

Z
R2n

ju.x/ � u.y/j2

jx � yjnC2s
dx dy �

�

2

Z
�

ju.x/j2 dx

�
1

2�

Z
�

ju.x/j2
�

dx

associated with problem (1.20). In this framework condition (1.18) (or, to be pre-
cise, (7.12) when � 2 .0; �1; s/ and (7.25) when � 2 .�k; s �kC1; s/, k 2 N) says
that the Mountain Pass or the Linking critical level of Js; � stays below the thresh-
old where the (PS)-condition holds true.
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