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Abstract: In this article, we prove the existence of nontrivial weak solutions to the singular boundary value
problem

A= u—I W o,
(Iz]* + t2)2
u=0 on aQ,
on the Heisenberg group. We employ Bonanno’s three critical point theorem to obtain the existence of weak
solutions.
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1 Introduction

Let us recall the briefs on the Heisenberg group H". The Heisenberg group H" = (R***!,.) is the space R*"*!
with the noncommutative law of product

oyt) (Y ) =+ Xy + Yy et 1200 X)) = (6 ),

where x, y,x', y' € R", t,t' ¢ Rand (-,-) denotes the standard inner product in R". This operation endows H"
with the structure of a Lie group. The Lie algebra of H" is generated by the left-invariant vector fields

d d d d d
T=2, X.=—42y—, Y, = — —2x,—,
o i ox T Viar VT o Mg

i

i=1,2,.3,...,n

These generators satisfy the noncommutative formula
[X;, Y] =-46;T, [X;,X;]=1Y,Y;]=[X;,T]=[Y;,T] =0.
Letz = (x,y) € R and £ = (z,t) € H". The parabolic dilation
8,:& = (Ax, Ay, A1)

satisfies
8,(&y - &) = 8,€ . 8§,
and | |
Il = (lzl* + )7 = (7 + y*)? +£7)3

is a norm with respect to the parabolic dilation which is known as Koranyi gauge norm N(z, t). In other words,
1

p) = (Iz]* + t*)7 denotes the Heisenberg distance between & and the origin. Similarly, one can define the

distance between (z, t) and (z', ') on H" as follows:

plzt;2',t") = p(Z',t) 7" . (z,1).
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It is clear that the vector fields X;,Y;, i = 1,2,...,n, are homogeneous of degree 1 under the norm | - ||
and T is homogeneous of degree 2. The Lie algebra of Heisenberg group has the stratification H" = V, & V,,
where the 2n-dimensional horizontal space V, is spanned by {X;,Y;},i = 1,2,...,n, while V, is spanned by T.
The Koranyi ball of center &, and radius r is defined by

By (&) = 1 1€ &l <7}

and it satisfies
Bz (Eg» 7)| = [Bggn (0, 7)| = r*|Bygu(0, 1)1,

where |- | is the (2n + 1)-dimensional Lebesgue measure on H"” and d = 2n + 2 is the so-called homoge-
neous dimension of the Heisenberg group H". The Heisenberg gradient and the Heisenberg Laplacian or the
Laplacian—Kohn operator on H” are respectively given by

Vi = (X, X500, X, Y, Y500, Y)

and
n 2 2 2 2

O o 2
AH":ZX"*Y"‘Z(32+33 Yigeor ~ Pz T ”l)_)

i=1
By [4], the fundamental solution on H" of —A ;. with pole at the origin is
%
Iré)=—>15
p(§)+2
where ¢, is a positive constant and d = 2n + 2 is the homogeneous dimension of the group. The fundamental
solution on H" of —A ;» with pole at & is

F(E EO (E go)d 2"

Let Q ¢ H", n > 1, be an open set. We define the associated Sobolev space as following:
HY(Q,H") = {f e Lz(.Q) : the distributional derivatives X, f,Y; f € LZ(Q), i=12,...,n}

and Hy(Q, H") is the closure of C{°(Q) in H' (2, H") under the norm

leall g o500y = (jukuf + |u|2>ds) ,

0

where u : Q ¢ HY — R. The dual space of H (2, H") will be denoted by H™' (2, H"). In this work, we assume
that O ¢ H" is an open, bounded subset containing the origin with smooth boundary. Let us consider the
following singular boundary value problem:
—Apnu = y& +Af(,u) inQ,
(Iz1* + £2)>
u=0 on 0.

(1.1)

For a precise survey on semilinear elliptic equations on Heisenberg group which is related to our problem,
we consider the following prototype problem

(1.2)

“Appu=uVEu+ fA,&u) inQcH",
u=0 on 0Q.

When g =0 and f(A, & u) = f,(u) in (1.2), using the Mountain Pass Theorem and compact embedding,
Garofalo and Lanconelli [5] proved the existence of a nonnegative solution, and using some integral identities
of Rellich—-Pohozaev type, they proved the nonexistence results to (1.2). Using the Mountain Pass Theorem
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and the Linking Theorem of Rabinowitz, Mokrani [8] studied the existence of a nontrivial solution to (1.2),
where f(L, & u) = du+ |ulP?u,2 < p<2+ %, and V has a singularity on Q which is controlled by an applica-
tion of Hardy’s inequality. Chen, Wei and Zhou [3] studied the same problem in a compact C*°-manifold with
conical singularity. Very recently, Balogh and Kristaly [1] have obtained the existence of multiple solutions to

{ —Appu =VW(z,u —u+ AK(z,t) f(u) inQy c H", 13)

u=0 on 00y,

where O, is an unbounded domain and V is measurable, cylindrically symmetric, i.e. V(z,t) = V(|z|,t) and
there exists a constant C,, > 0 such that
|2/’

0< V(Z, t) < CV|Z|4—+t2’

and assume certain assumptions on K and f. Since problem (1.1) has a singularity at the origin as in (1.3),
so to establish the existence of nontrivial solutions to (1.1) is harder than (1.2).

Recently, using Bonanno’s three critical point theorem [2], Kristaly and Varga [6] have obtained the exis-
tence of multiple weak solutions to the problem

Au=ut s inQ,
{ HE G P e (1.4)

u=0 onoQ, N >3,
where f: R — Ris superlinear at zero and sublinear at oo, i.e.

lim& =0, lim & =

s—0 § |s| 200 S

0;
respectively, and assume that

S
sup F(s) > 0, where nglﬂm#
seR o

We recall that (1.4) is a counterpart of (1.1) in R"” and the aim of this paper is to establish the existence
of nontrivial solutions to (1.1) using similar ideas of [6]. We remark that Bonanno’s three critical point
theorem is already applied to p-Laplacian [10] and N-Laplace equations with singular weights [11], see
also the references cited therein and many other research papers in Euclidean setting. But we are not aware
of its applications on the Heisenberg group. In this paper we apply Bonanno’s three critical point theorem
to singular elliptic equations on the Heisenberg group. The main difficulty in this problem arises due to the
singularity at the origin which is handled by using Hardy’s inequality on the Heisenberg group [8].

Motivated by the above assumptions, let us also make the following hypotheses:

(H1) lin% w =0 uniformly & € Q,
— S

§

(H2) Illim M =0 uniformly ¢ € Q,
s|—oo S

(H3) supF(&,s) >0 forall € O, where F(§,s) = Jf(f, t)dt.

seR
0

We state now the theorem we will prove in Section 4:

Theorem 1.1. Suppose (H1)-(H3) hold. Suppose there exists an M > 0 such that -M < g(&) < 1. Then for every
uelo, (%)2), there exist an open interval Au c (0, 00) and a real number Mu>0 such that for every A € Ay,
problem (1.1) has two nontrivial weak solutions u € Hé (Q,H") such that ||u|| H(@QE) < My

We organize the paper as follows. Section 2 deals with the preliminaries. Section 3 deals with auxiliary lemmas
which have been used in the proof of the main theorem. The main result is proved in Section 4.
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2 Preliminaries

We begin this section with short preliminaries which have been used in this article. Let us recall the following
Hardy inequality and a compact embedding theorem on the Heisenberg group.

Lemma 2.1([8]). Forn > 1 and for any u € Hy(Q,H"), we have

ul? n+1)\?
j lul lalfg( a ) Iwﬁnmzds.
(2l + 1t )]

(0}

For our convenience, we write the above inequality as follows:

2
[ M < = [ 1wt

2zt +ep): T Ca

32

where C,, = (-5

Lemma 2.2 ([5]). Let @ ¢ HY be a bounded open set. Then the following inclusion is compact:

2Q

Hy(Q,H") cc LP(Q) for1<p< 93

Q=2n+2.

The exponent Q* = % is called critical since the embedding
Hy(QH") c 12 (Q)

is continuous but not compact for every domain Q. We denote the Sobolev embedding constant of the above
compact embedding by S,, > 0, i.e.

||u||Lp(Q) < Sp"u”Hé(Q)]Hn) forallu e Hé (Q, ]Hn)
Let us introduce the energy functional
E,,: Hy(Q,H") - R
associated with (1.1), defined by
E,2(u) = @,(u) - M(w), u e Hy(Q,H"),

where

U e # (9@l
0, (u) = 3 ([ Vet - & i v

ag, Jw) = [ FE e,
0
Using (H2) and standard arguments, it is easy to see that E,, is of class C' and the critical points of E,»
are exactly the weak solutions of (1.1). Therefore, it is sufficient to obtain the existence of multiple critical
points of E,, for certain values of 4 and A. To establish the existence of critical points of E,, ,, we use the
following Bonanno’s three critical point theorem [2].

A

Theorem 2.3 (Bonanno’s three critical point theorem). Let X be a separable and reflexive real Banach space
and @,] : X — R be two continuously Gdteau differentiable functionals. Assume that there exists an x, € X
such that ®(x,) = 0 = J(x,) and @(x) > 0 for every x € X and suppose there exist x, € X and r > 0 such that
(W) r<dxy),

s J(x1)

(ii) SUP gy ()< J (%) < r®(x‘l).
Further, put

hr
oD h>1,

r@(xl) Supd)(x)<r ](x)
and assume that the functional @ — 1] is sequentially weakly lower semicontinuous, satisfies the Palais—Smale
condition and

(iii) limy 00 (P(x) = A (x)) = +00 forevery A € [0,a].

a=
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Then there exist an open interval A < [0, a] and a positive real number y such that for each A € A, the equation
@' (x) - MJ'(x) =0

admits at least three solutions in X whose norms are less than y.

3 Auxiliary lemmas

We assume that the hypotheses of Theorem 1.1 are fulfilled throughout this section. We begin this section with
some lemmas which have been used in the proof of the main theorem.

Lemma 3.1. For every u € [0,C,) and A € R, the functional E,, is sequentially weakly lower semicontinuous
on Hy(Q, H").

Proof. By (H1), there exists a constant C > 0 such that
[f(& ) <CQA+]s]) forallé e QandallseR. (3.1)

Using standard arguments with the compactness of the embedding Hé (Q,H") cc L*(2), one can see easily
the sequentially weak continuity of . Again using the compactness of the above embedding with the concen-
tration compactness principle [7], in view of the work of Montefusco [9], it is not difficult to see that D, (u) is
sequentially weakly lower semicontinuous for every u € [0,C,). O

Lemma 3.2. For every u € [0,C,) and A € R, the functional E,,, is coercive and satisfies the Palais—Smale
condition.

Proof. Letusfixu € [0,C,) and let A € R be arbitrary. By (H1), there exists a constant & = §(u, A) > 0 such that

&) < %(1 + I (1- Ci)s;2|s| forall € Q, |s| > &. (32)
An integration yields
|F(E,5)| < l(1 + |)L|)‘1(1 - ﬁ)s;2|s|2 + max f(&v)ls|] forall (§s) € QxR (3.3)
2 Cn O x {v:|v|<8}

Since

1 2 B[ _ 9@’
Buaw) = 3 i Vet - & i e A([F(E, W

and -M < g(¢) < 1, so from (3.3), we get

1 2 P‘j Jul® [A] ( .”)—zj 2 J
E uz—jvnud—— —d& - 1-—)S u|°d§ — |A]  max |F(,t uld
a2 3 [ Wit =G | gy =g )5 [ = e 160 bl

0 Q Q
1 2 |2 J’ 2 (Al < U 721 2 J

> — | |Vynu|"dE - Vipntt| ' d6 — ——(1 - — S ul"dé — |A] max |F(, ¢t uld
Zil ] dE 2CnQI et~ dE 20+ D A Q| ["d€ — | |(2x{t:\t|$6}| (& )IQI 223
1( .”) 2 1( .”) - M 2

>—(1-— Nuliom —={1-—=— 18" —=S,|ull71,0pmm — Al max |F(1)|S,lu "
3 (1= & Wt = 5 (1= & )y Sl = N | max | 1FE 018 bl

1 .“) 2

>—(1-— m = A F(&,1)|S e 3.4

st (1 b - W e IFE DMl o

Now, if [lu| HY(QHr) — 00, We conclude that EM(”) — 400 as well, i.e. E, 1 (u) is coercive. For the Palais—
Smale condition, let {u,} be a sequence in Hé (2, H") such that E, 3 (u,) isbounded and IIE;‘, AU g1 opm — 0.
Since E,, , is coercive, so {u,} is bounded. Up to a subsequence, we may suppose that, as n — oo,

u, —=u  inHy(QH"),
u, > u in L2(Q),

u,(&) - u) forae.&e.
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Now again using Lemma 2.1 and the fact that -M < g(&) < 1, using the same lines of proof as in [6], one can
see easily that

2
lu,, — ul

oL
(I21* + 1t17)2

“ 2
(1= & Dt = g < o, = gy o |
n
0

= By (1), — 1) + Epy () (1 = ) + A J(f(f, 1, (8)) = f (€)))(w, (&) — u(§))ds. (3.5)
0

It is easy to see that E; 5 (u,)(u,, —u) and E!'M(u)(u —u,) tend to 0 as n — oo and using (3.1), we can see that

J(f(f, 10,(8)) ~ F(u(®)) (w4, (&) ~ u(®)dE < C[21Q1> + Il 2y + Nuall 2y ety = vl 20y —» 0 @asm — oo

O

and therefore the conclusion follows. O

Lemma 3.3. Forevery u € [0,C,),

. sup{J(u) : @, (u) <m}
im =0.
m—0* m

Proof. We fix u € [0,C,). By (H1), for any given e > 0 there exists a constant §(¢) > 0 such that
€ H \2

IfE 9)] < 2(1 - C—)s2 is| forall& e 0, |s| < 6. (3.6)
We fixay; € (2,Q") and combining (3.1) with (3.6) yields

€ U \o-2) 2 [E—

IF(E9) < Z(1 - C—)32 s+ C(1+8)8' s/ forallé € @, s € R. (37)
For m > 0, we define the sets
Ay = 1€ HYQH") : ®,(u) <m), B, = {u e H(Q,H"): (1 - Cﬁ>||u||§{0,(g)mn) < Zm}.

By an application of (2.1), it is not difficult to see that A,, < B,,. By (3.7), for every u € A,, and hence u € B,,
we have

J(u) < Z(l -

E(l_
4

S+ c(1+ 8)1—1/15?12%1,”%‘(1 - i)
2 n C

n

)s;2 J ul2dE + C(1 + 8)8' ™ j |l dE
0 0

Ol=

IN

) j VipulPdé + C(1+8)' "8 2% m? (1 - Ci)
0

Ol=

Y1

2

IN

IN

§m+C1mv71, (3.8)

where "
C,=C(1+8) Msn2t (1 - Cﬁ> "
Thus there exists an m(e) > 0 such that for every 0 < m < m(e)

supueAm ](u) SupueBm ](u)
< < <

€
m m 2
which proves the lemma. O

Now we are ready to sketch the proof of the main result.
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4 Proof of Theorem 1.1 is concluded

Proof. Let t, € R such that F(,¢,) > 0, by (H3). Since F(¢,t,) is continuous, there exists 8 > 0 such that
F(&,t5) = B > 0. We choose R, > 0 such that R, < dist(0,00). For 5 € (0,1), as already defined in [6] for the
Euclidean case, we also define

0, ifwe H"\ B,,,,(0,Ry),
u,(w) = { o, ifw € B,,,,(0,7R,),
sy (Ro — lwh),  ifw € By,,1(0, Ry) \ By, (0,7Ry),

where B, (0, r) denotes the n-dimensional open ball with center 0 and radius r > 0. One can compute

2 2

%0 (1 - %)(1 +4t%)

Vyptt, W) = ——0
|Vt (W) R(1- )

and therefore it is easy to see that u, € H(}(Q, H™). Also,
Ju,) 2 [FEt)y™ = max  [F(E9)|(1 =1 )]V, RS
Qx{s:sl<lty}

> [ - max  |FE 9|1 -7 )]Vy, RS, (@.1)
Qx{s:[s|<lt, |}

where V, denotes the volume of the n-dimensional unit ball in R".
For 7 close enough to 1, the right hand side of the last inequality becomes strictly positive, so we choose
such a number, say #,. We fix p € [0,C,,). By Lemma 3.3, we may choose m, such that

“ 2
21’7’10 < <1 - C_‘> ||M,’0 "H&(Q,IH")’
n

Z[F(E’ to)ﬂ2n+1 - maXﬁx{s:IsIsItOH |F(E’ S)I(l - ’12n+1)]V2n+1R(2)n+1

sup{J(u) : @H(u) < my} < 5
et s ot

By choosing x, = u, , the hypotheses of Theorem 2.3 are satisfied. Define

A=A, = L+ g 4.2)
T Jyy)  suplJ )@, w)<m) .

Dy (”ﬂo ) Mo

In view of Lemmas 3.1 and 3.2, all the hypotheses of Theorem 2.3 are satisfied after putting x, = 0. An appli-
cation of Theorem 2.3 implies that there exist an open interval A, c [0, A ,| and a number #, > 0 such that
for each A € A, the equation E{M = <D’:(u) - M'(u) = 0 admits at least three solutions in H,(Q, H") which
have H, (Q, H")-norm less than 1,- Since (H1) implies that f(£,0) = 0, so (H1) admits one trivial solution and
hence there exist two nontrivial solutions to equation (1.1), which completes the proof. O

Remark 4.1. As in [6, 10, 11], we can find an explicit estimation of the intervals A wh € [0,C,). In order to
obtain the estimation, let us fix t,, R, and #, as in the previous section. Let u € [0,C,) and by Lemma 3.3,

we can assume that m, < 1 and
sup{J(w) : @, (u) <mg}  J(u,)

. (4.3)
my 2<Dﬂ(u,70)
Now from (4.2) and (4.3), we have
_ 4D, (u,)
ur"y
< —2 (4.4)
Ty,
and therefore
2 2
7 so(1 +4Ry)
A, c [0,2(1—C_)R2 1 — 72 [ B2 — _ F 1 — 2y, R
n 0( 7’]0) [ﬁ”lo maxgx{5;|5|§|t0|} [F(, $)I( Mo )] 218
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