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Jagmohan Tyagi
Nontrivial solutions for singular semilinear elliptic
equations on the Heisenberg group
Abstract: In this article, we prove the existence of nontrivial weak solutions to the singular boundary value
problem

{{
{{
{

−Δℍnu = ì
g(î)u

(|z|4 + t2)
12 + ëf(î, u) in Ø,

u = 0 on àØ,

on the Heisenberg group. We employ Bonanno’s three critical point theorem to obtain the existence of weak
solutions.
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1 Introduction
Let us recall the briefs on the Heisenberg groupℍn. The Heisenberg groupℍn = (ℝ2n+1, . ) is the space ℝ2n+1

with the noncommutative law of product

(x, y, t) . (x�, y�, t�) = (x + x�, y + y�, t + t� + 2(⟨y, x�⟩ − ⟨x, y�⟩)),

where x, y, x�, y� ∈ ℝn, t, t� ∈ ℝ and ⟨⋅ , ⋅⟩ denotes the standard inner product inℝn. This operation endowsℍn

with the structure of a Lie group. The Lie algebra ofℍn is generated by the left-invariant vector �elds

T =
à
àt

, Xi =
à
àxi

+ 2yi
à
àt

, Yi =
à
àyi

− 2xi
à
àt

, i = 1, 2, .3, . . . , n.

These generators satisfy the noncommutative formula

[Xi, Yj] = −4äijT, [Xi, Xj] = [Yi, Yj] = [Xi, T] = [Yi, T] = 0.

Let z = (x, y) ∈ ℝ2n and î = (z, t) ∈ ℍn. The parabolic dilation

äëî = (ëx, ëy, ë2t)

satis�es
äë(î0 . î) = äëî . äî0

and
‖î‖ℍn = (|z|4 + t2)

14 = ((x2 + y2)2 + t2)
14

is a normwith respect to the parabolic dilationwhich is known as Korányi gauge normN(z, t). In otherwords,
ñ(î) = (|z|4 + t2)

14 denotes the Heisenberg distance between î and the origin. Similarly, one can de�ne the
distance between (z, t) and (z�, t�) onℍn as follows:

ñ(z, t; z�, t�) = ñ((z�, t�)−1 . (z, t)).
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It is clear that the vector �elds Xi, Yi, i = 1, 2, . . . , n, are homogeneous of degree 1 under the norm ‖ ⋅ ‖ℍn
and T is homogeneous of degree 2. The Lie algebra of Heisenberg group has the strati�cationℍn = V1 ⊕ V2,
where the 2n-dimensional horizontal space V1 is spanned by {Xi, Yi}, i = 1, 2, . . . , n, while V2 is spanned by T.
The Korányi ball of center î0 and radius r is de�ned by

Bℍn (î0, r) = {î : ‖î−1 . î0‖ ≤ r}

and it satis�es
|Bℍn (î0, r)| = |Bℍn (0, r)| = rd|Bℍn (0, 1)|,

where | ⋅ | is the (2n + 1)-dimensional Lebesgue measure on ℍn and d = 2n + 2 is the so-called homoge-
neous dimension of the Heisenberg groupℍn. The Heisenberg gradient and the Heisenberg Laplacian or the
Laplacian–Kohn operator onℍn are respectively given by

∇ℍn = (X1, X2, . . . , Xn, Y1, Y2, . . . , Yn)

and

Δℍn = n

∑
i=1

X2
i + Y2

i =
n

∑
i=1

(
à2

àx2
i
+

à2

ày2
i
+ 4yi

à2

àxiàt
− 4xi

à2

àyiàt
+ 4(x2

i + y2
i )

à2

àt2
).

By [4], the fundamental solution onℍn of −Δℍn with pole at the origin is

Ã(î) =
cd

ñ(î)d−2
,

where cd is a positive constant and d = 2n + 2 is the homogeneous dimension of the group. The fundamental
solution onℍn of −Δℍn with pole at î0 is

Ã(î, î0) =
cd

ñ(î, î0)d−2
.

Let Ø ⊂ ℍn, n ≥ 1, be an open set. We de�ne the associated Sobolev space as following:

H1(Ø,ℍn) = {f ∈ L2(Ø) : the distributional derivativesXif, Yif ∈ L2(Ø), i = 1, 2, . . . , n}

andH1
0 (Ø,ℍn) is the closure of C∞

0 (Ø) inH1(Ø,ℍn) under the norm

‖u‖H1(Ø,ℍn) = (∫
Ø

(|∇ℍnu|2 + |u|2)dî)

12
,

where u : Ø ⊂ ℍN → ℝ. The dual space ofH1
0 (Ø,ℍn)will be denoted byH−1(Ø,ℍn). In this work, we assume

that Ø ⊂ ℍN is an open, bounded subset containing the origin with smooth boundary. Let us consider the
following singular boundary value problem:

{{
{{
{

−Δℍnu = ì
g(î)u

(|z|4 + t2)
12 + ëf(î, u) in Ø,

u = 0 on àØ.
(1.1)

For a precise survey on semilinear elliptic equations onHeisenberg groupwhich is related to our problem,
we consider the following prototype problem

{
−Δℍnu = ìV(î)u + f(ë, î, u) in Ø ⊂ ℍn,

u = 0 on àØ.
(1.2)

When ì = 0 and f(ë, î, u) = f1(u) in (1.2), using the Mountain Pass Theorem and compact embedding,
Garofalo and Lanconelli [5] proved the existence of a nonnegative solution, and using some integral identities
of Rellich–Pohozaev type, they proved the nonexistence results to (1.2). Using the Mountain Pass Theorem
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and the Linking Theorem of Rabinowitz, Mokrani [8] studied the existence of a nontrivial solution to (1.2),
where f(ë, î, u) = ëu + |u|p−2u, 2 < p < 2 + 2

n , andV has a singularity onØwhich is controlled by an applica-
tion of Hardy’s inequality. Chen, Wei and Zhou [3] studied the same problem in a compact C∞-manifold with
conical singularity. Very recently, Balogh and Kristály [1] have obtained the existence of multiple solutions to

{
−Δℍnu = íV(z, t)u − u + ëK(z, t)f(u) in Ø× ⊂ ℍn,

u = 0 on àØ×,
(1.3)

where Ø× is an unbounded domain and V is measurable, cylindrically symmetric, i.e. V(z, t) = V(|z|, t) and
there exists a constant CV > 0 such that

0 ≤ V(z, t) ≤ CV
|z|2

|z|4 + t2
,

and assume certain assumptions on K and f. Since problem (1.1) has a singularity at the origin as in (1.3),
so to establish the existence of nontrivial solutions to (1.1) is harder than (1.2).

Recently, using Bonanno’s three critical point theorem [2], Kristály and Varga [6] have obtained the exis-
tence of multiple weak solutions to the problem

{
{
{

−Δu = ì
u
|x|2

+ ëf(u) in Ø,

u = 0 on àØ, N ≥ 3,
(1.4)

where f : ℝ → ℝ is superlinear at zero and sublinear at∞, i.e.

lim
s→0

f(s)
s

= 0, lim
|s|→∞

f(s)
s

= 0,

respectively, and assume that

sup
s∈ℝ

F(s) > 0, where F(s) =
s

∫
0

f(t)dt.

We recall that (1.4) is a counterpart of (1.1) in ℝn and the aim of this paper is to establish the existence
of nontrivial solutions to (1.1) using similar ideas of [6]. We remark that Bonanno’s three critical point
theorem is already applied to p-Laplacian [10] and N-Laplace equations with singular weights [11], see
also the references cited therein and many other research papers in Euclidean setting. But we are not aware
of its applications on the Heisenberg group. In this paper we apply Bonanno’s three critical point theorem
to singular elliptic equations on the Heisenberg group. The main di�culty in this problem arises due to the
singularity at the origin which is handled by using Hardy’s inequality on the Heisenberg group [8].

Motivated by the above assumptions, let us also make the following hypotheses:

(H1) lim
s→0

f(î, s)
s

= 0 uniformly î ∈ Ø,

(H2) lim
|s|→∞

f(î, s)
s

= 0 uniformly î ∈ Ø,

(H3) sup
s∈ℝ

F(î, s) > 0 for all î ∈ Ø, where F(î, s) =
s

∫
0

f(î, t)dt.

We state now the theorem we will prove in Section 4:

Theorem 1.1. Suppose (H1)–(H3) hold. Suppose there exists anM > 0 such that −M ≤ g(î) ≤ 1. Then for every
ì ∈ [0, ( n2

n+1 )
2), there exist an open interval Ëì ⊂ (0,∞) and a real number çì > 0 such that for every ë ∈ Ëì,

problem (1.1) has two nontrivial weak solutions u ∈ H1
0 (Ø,ℍn) such that ‖u‖H10 (Ø,ℍn) ≤ çì.

Weorganize thepaper as follows. Section 2dealswith thepreliminaries. Section 3dealswith auxiliary lemmas
which have been used in the proof of the main theorem. The main result is proved in Section 4.
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2 Preliminaries
Webegin this sectionwith short preliminaries which have been used in this article. Let us recall the following
Hardy inequality and a compact embedding theorem on the Heisenberg group.

Lemma 2.1 ([8]). For n ≥ 1 and for any u ∈ H1
0 (Ø,ℍn), we have

∫
Ø

|u|2

(|z|4 + |t|2)
12 dî ≤ (

n + 1
n2

)
2
∫
Ø

|∇ℍnu|2dî.
For our convenience, we write the above inequality as follows:

∫
Ø

|u|2

(|z|4 + |t|2)
12 dî ≤

1
Cn

∫
Ø

|∇ℍnu|2dî,
where Cn = ( n2

n+1 )
2.

Lemma 2.2 ([5]). Let Ø ⊂ ℍN be a bounded open set. Then the following inclusion is compact:

H1
0 (Ø,ℍn) ⊂⊂ Lp(Ø) for 1 ≤ p <

2Q
Q − 2

, Q = 2n + 2.

The exponent Q∗ = 2Q
Q−2 is called critical since the embedding

H1
0 (Ø,ℍn) ⊂ LQ∗

(Ø)

is continuous but not compact for every domainØ. We denote the Sobolev embedding constant of the above
compact embedding by Sp > 0, i.e.

‖u‖Lp(Ø) ≤ Sp‖u‖H10 (Ø,ℍn) for all u ∈ H1
0 (Ø,ℍn).

Let us introduce the energy functional

Eì,ë : H1
0 (Ø,ℍn) → ℝ

associated with (1.1), de�ned by

Eì,ë(u) = Õì(u) − ëJ(u), u ∈ H1
0 (Ø,ℍn),

where
Õì(u) =

1
2
∫
Ø

|∇ℍnu|2dî − ì
2
∫
Ø

g(î)|u|2

(|z|4 + t2)
14 dî, J(u) = ∫

Ø

F(î, u)dî.

Using (H2) and standard arguments, it is easy to see that Eì,ë is of class C1 and the critical points of Eì,ë

are exactly the weak solutions of (1.1). Therefore, it is su�cient to obtain the existence of multiple critical
points of Eì,ë for certain values of ì and ë. To establish the existence of critical points of Eì,ë, we use the
following Bonanno’s three critical point theorem [2].

Theorem 2.3 (Bonanno’s three critical point theorem). Let X be a separable and re�exive real Banach space
and Õ, J : X → ℝ be two continuously Gâteau di�erentiable functionals. Assume that there exists an x0 ∈ X
such that Õ(x0) = 0 = J(x0) and Õ(x) ≥ 0 for every x ∈ X and suppose there exist x1 ∈ X and r > 0 such that
(i) r < Õ(x1),
(ii) supÕ(x)<r J(x) < r J(x1)

Õ(x1) .
Further, put

̄a =
ℎr

r J(x1)
Õ(x1) − supÕ(x)<r J(x) , ℎ > 1,

and assume that the functional Õ − ëJ is sequentially weakly lower semicontinuous, satis�es the Palais–Smale
condition and
(iii) lim‖x‖→+∞(Õ(x) − ëJ(x)) = +∞ for every ë ∈ [0, ̄a].
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Then there exist an open intervalË ⊆ [0, ̄a] and a positive real number ç such that for each ë ∈ Ë, the equation

Õ�(x) − ëJ�(x) = 0

admits at least three solutions inX whose norms are less than ç.

3 Auxiliary lemmas
Weassume that the hypotheses of Theorem 1.1 are ful�lled throughout this section.We begin this sectionwith
some lemmas which have been used in the proof of the main theorem.

Lemma 3.1. For every ì ∈ [0, Cn) and ë ∈ ℝ, the functional Eì,ë is sequentially weakly lower semicontinuous
onH1

0 (Ø,ℍn).

Proof. By (H1), there exists a constant C > 0 such that

|f(î, s)| ≤ C(1 + |s|) for all î ∈ Ø and all s ∈ ℝ. (3.1)

Using standard arguments with the compactness of the embedding H1
0 (Ø,ℍn) ⊂⊂ L2(Ø), one can see easily

the sequentially weak continuity of J. Again using the compactness of the above embeddingwith the concen-
tration compactness principle [7], in view of the work of Montefusco [9], it is not di�cult to see that Õì(u) is
sequentially weakly lower semicontinuous for every ì ∈ [0, Cn).

Lemma 3.2. For every ì ∈ [0, Cn) and ë ∈ ℝ, the functional Eì,ë is coercive and satis�es the Palais–Smale
condition.

Proof. Let us �x ì ∈ [0, Cn) and let ë ∈ ℝ be arbitrary. By (H1), there exists a constant ä = ä(ì, ë) > 0 such that

|f(î, s)| <
1
2
(1 + |ë|)−1(1 −

ì
Cn

)S−22 |s| for all î ∈ Ø, |s| > ä. (3.2)

An integration yields

|F(î, s)| ≤
1
2
(1 + |ë|)−1(1 −

ì
Cn

)S−22 |s|2 + max
Ø̄ × {v : |v|≤ä}

f(î, v)|s| for all (î, s) ∈ Ø̄ × ℝ. (3.3)

Since
Eì,ë(u) =

1
2
∫
Ø

|∇ℍnu|2dî − ì
2
∫
Ø

g(î)|u|2

(|z|4 + |t|2)
12 dî − ë∫

Ø

F(î, u)dî

and −M ≤ g(î) ≤ 1, so from (3.3), we get

Eì,ë(u) ≥
1
2
∫
Ø

|∇ℍnu|2dî − ì
2
∫
Ø

|u|2

(|z|4 + |t|2)
12 dî − |ë|

2(1 + |ë|)
(1 −

ì
Cn

)S−22 ∫
Ø

|u|2dî − |ë| max
Ø̄ × {t : |t|≤ä}

|F(î, t)| ∫
Ø

|u|dî

≥
1
2
∫
Ø

|∇ℍnu|2dî − ì
2Cn

∫
Ø

|∇ℍnu|2dî − |ë|
2(1 + |ë|)

(1 −
ì
Cn

)S−22 ∫
Ø

|u|2dî − |ë| max
Ø̄ × {t : |t|≤ä}

|F(î, t)| ∫
Ø

|u|dî

≥
1
2
(1 −

ì
Cn

)‖u‖2H10 (Ø,ℍn) − 1
2
(1 −

ì
Cn

)S−22
|ë|

1 + |ë|
S2‖u‖

2
H10 (Ø,ℍn) − |ë| max

Ø̄ × {t : |t|≤ä}
|F(î, t)|S1‖u‖H10 (Ø,ℍn)

≥
1

2(1 + |ë|)
(1 −

ì
Cn

)‖u‖2H10 (Ø,ℍn) − |ë| max
Ø̄ × {t : |t|≤ä}

|F(î, t)|S1‖u‖H10 (Ø,ℍn). (3.4)

Now, if ‖u‖H10 (Ø,ℍn) → +∞, we conclude that Eì,ë(u) → +∞ as well, i.e. Eì,ë(u) is coercive. For the Palais–
Smale condition, let {un}be a sequence inH1

0 (Ø,ℍn) such thatEì,ë(un) is bounded and ‖E�
ì,ë(un)‖H−1(Ø,ℍn) → 0.

Since Eì,ë is coercive, so {un} is bounded. Up to a subsequence, we may suppose that, as n → ∞,

un ⇀ u inH1
0 (Ø,ℍn),

un → u in L2(Ø),

un(î) → u(î) for a.e. î ∈ Ø.



92 | J. Tyagi, Nontrivial solutions for singular semilinear elliptic equations

Now again using Lemma 2.1 and the fact that −M ≤ g(î) ≤ 1, using the same lines of proof as in [6], one can
see easily that

(1 −
ì
Cn

)‖un − u‖H10 (Ø,ℍn) ≤ ‖un − u‖2H10 (Ø,ℍn) − ì∫
Ø

|un − u|2

(|z|4 + |t|2)
12 dî

= E�
ì,ë(un)(un − u) + E�

ì,ë(u)(u − un) + ë∫
Ø

(f(î, un(î)) − f(u(î)))(un(î) − u(î))dî. (3.5)

It is easy to see that E�
ì,ë(un)(un − u) and E�

ì,ë(u)(u − un) tend to 0 as n → ∞ and using (3.1), we can see that

∫
Ø

(f(î, un(î)) − f(u(î)))(un(î) − u(î))dî ≤ C[2|Ø|
12 + ‖un‖L2(Ø) + ‖u‖L2(Ø)]‖un − u‖L2(Ø) → 0 as n → ∞

and therefore the conclusion follows.

Lemma 3.3. For every ì ∈ [0, Cn),

lim
m→0+ sup{J(u) : Õì(u) < m}

m
= 0.

Proof. We �x ì ∈ [0, Cn). By (H1), for any given å > 0 there exists a constant ä(å) > 0 such that

|f(î, s)| <
å
4
(1 −

ì
Cn

)S−22 |s| for all î ∈ Ø, |s| < ä. (3.6)

We �x a ã1 ∈ (2, Q∗) and combining (3.1) with (3.6) yields

|F(î, s)| ≤
å
4
(1 −

ì
Cn

)S−22 |s|2 + C(1 + ä)ä1−ã1 |s|ã1 for all î ∈ Ø, s ∈ ℝ. (3.7)

Form > 0, we de�ne the sets

Am = {u ∈ H1
0 (Ø,ℍn) : Õì(u) < m}, Bm = {u ∈ H1

0 (Ø,ℍn) : (1 −
ì
Cn

)‖u‖2H10 (Ø,ℍn) < 2m}.

By an application of (2.1), it is not di�cult to see that Am ⊆ Bm. By (3.7), for every u ∈ Am and hence u ∈ Bm

we have

J(u) ≤
å
4
(1 −

ì
Cn

)S−22 ∫
Ø

|u|2dî + C(1 + ä)ä1−ã1 ∫
Ø

|u|ã1dî
≤

å
4
(1 −

ì
Cn

)∫
Ø

|∇ℍnu|2dî + C(1 + ä)1−ã1Sã1ã12 ã12 m ã12 (1 − ì
Cn

)
− ã12

≤
å
2
m + C(1 + ä)1−ã1Sã1ã12 ã12 m ã12 (1 − ì

Cn
)
− ã12

≤
å
2
m + C1m

ã12 , (3.8)

where

C1 = C(1 + ä)1−ã1Sã1ã12 ã12 (1 − ì
Cn

)
− ã12

.

Thus there exists anm(å) > 0 such that for every 0 < m < m(å)

0 ≤
supu∈Am J(u)

m
≤
supu∈Bm J(u)

m
≤

å
2
+ C1m

ã1−22 < å,

which proves the lemma.

Now we are ready to sketch the proof of the main result.
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4 Proof of Theorem 1.1 is concluded
Proof. Let t0 ∈ ℝ such that F(î, t0) > 0, by (H3). Since F(î, t0) is continuous, there exists â > 0 such that
F(î, t0) ≥ â > 0. We choose R0 > 0 such that R0 < dist(0, àØ). For ç ∈ (0, 1), as already de�ned in [6] for the
Euclidean case, we also de�ne

uç(w) =
{{{
{{{
{

0, if w ∈ ℍn \ B2n+1(0, R0),

t0, if w ∈ B2n+1(0, çR0),
t0

R0(1−ç) (R0 − |w|), if w ∈ B2n+1(0, R0) \ B2n+1(0, çR0),

where Bn(0, r) denotes the n-dimensional open ball with center 0 and radius r > 0. One can compute

|∇ℍnuç(w)|2 = s20
R2
0(1 − ç)2

(1 −
t2

r2
)(1 + 4t2)

and therefore it is easy to see that uç ∈ H1
0 (Ø,ℍn). Also,

J(uç) ≥ [F(î, t0)ç
2n+1 − max

Ø× {s : |s|≤|t0|} |F(î, s)|(1 − ç2n+1)]V2n+1R
2n+1
0

≥ [âç2n+1 − max
Ø× {s : |s|≤|t0|} |F(î, s)|(1 − ç2n+1)]V2n+1R

2n+1
0 , (4.1)

where Vn denotes the volume of the n-dimensional unit ball inℝn.
For ç close enough to 1, the right hand side of the last inequality becomes strictly positive, so we choose

such a number, say ç0. We �x ì ∈ [0, Cn). By Lemma 3.3, we may choosem0 such that

2m0 < (1 −
ì
Cn

) ‖uç0‖2H10 (Ø,ℍn),
sup{J(u) : Õì(u) < m0} <

2[F(î, t0)ç
2n+1 − maxØ× {s : |s|≤|t0|} |F(î, s)|(1 − ç2n+1)]V2n+1R

2n+1
0

‖uç0‖2H10 (Ø,ℍn) .

By choosing x1 = uç0 , the hypotheses of Theorem 2.3 are satis�ed. De�ne

Ā = ̄Aì =
1 + m0

J(uç0 )
Õì(uç0 ) − sup{J(u) : Õì(u)<m0}

m0
. (4.2)

In view of Lemmas 3.1 and 3.2, all the hypotheses of Theorem 2.3 are satis�ed after putting x0 = 0. An appli-
cation of Theorem 2.3 implies that there exist an open interval Ëì ⊂ [0, ̄Aì] and a number çì > 0 such that
for each ë ∈ Ëì, the equation E�

ì,ë ≡ Õ�
ì(u) − ëJ�(u) = 0 admits at least three solutions in H1

0 (Ø,ℍn) which
haveH1

0 (Ø,ℍn)-norm less than çì. Since (H1) implies that f(î, 0) = 0, so (H1) admits one trivial solution and
hence there exist two nontrivial solutions to equation (1.1), which completes the proof.

Remark 4.1. As in [6, 10, 11], we can �nd an explicit estimation of the intervals Ëì, ì ∈ [0, Cn). In order to
obtain the estimation, let us �x t0, R0 and ç0 as in the previous section. Let ì ∈ [0, Cn) and by Lemma 3.3,
we can assume thatm0 < 1 and

sup{J(u) : Õì(u) < m0}
m0

<
J(uç0 )

2Õì(uç0 ) . (4.3)

Now from (4.2) and (4.3), we have

̄Aì <
4Õì(uç0 )
J(uç0 ) (4.4)

and therefore

Ëì ⊂ [0, 2(1 −
ì
Cn

)
s20(1 + 4R2

0)
R2
0(1 − ç0)2[âç2n+10 − maxØ× {s : |s|≤|t0|} |F(î, s)|(1 − ç2n+10 )]V2n+1R2n+1

0
].
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