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Abstract: In this paper we are interested to ensure the existence of multiple nontrivial solutions for some
classes of problems under Dirichlet boundary conditions with impulsive e�ects. More precisely, by using
a suitable analytical setting, the existence of at least three solutions is proved exploiting a recent three-critical
points result for smooth functionals de�ned in a re�exive Banach space. Our approach generalizes some
well-known results in the classical framework.
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1 Introduction
We deal with the following nonlinear Dirichlet problem

{
−u��(x) = ëf(x, u(x)) + g(u(x)), a.e. x ∈ [0, T],

u(0) = u(T) = 0,
(1.1)

with the impulsive conditions
Δu�(xj) = Ij(u(xj)), j = 1, 2, . . . , p, (1.2)

whereT > 0,f : [0, T] × ℝ → ℝ is an L1-Carathéodory function, g : ℝ → ℝ is a Lipschitz continuous function
with the Lipschitz constant L > 0, i.e.

|g(t1) − g(t2)| ≤ L|t1 − t2| for all t1, t2 ∈ ℝ,

satisfying g(0) = 0 and x0 = 0 < x1 < x2 < ⋅ ⋅ ⋅ < xp < xp+1 = T where p ≥ 1,

Δu�(xj) = u
�(x+j ) − u

�(x−j ) = limx→x+
j

u�(x) − lim
x→x−

j

u�(x)

and Ij : ℝ → ℝ are continuous satisfying the condition ∑p
j=1(Ij(t1) − Ij(t2))(t1 − t2) ≥ 0 for every t1, t2 ∈ ℝ

and ë is a positive real parameter. We refer to the impulsive problem (1.1)–(1.2) as (P).
Impulsive di�erential equations have becomemore important in recent years in somemathematicalmod-

els of real processes and phenomena studied in spacecraft control, impact mechanics, physics, chemistry,
chemical engineering, population dynamics, biotechnology, economics and inspection process in opera-
tions research. It is now recognized that the theory of impulsive di�erential equations is a natural framework
for a mathematical modelling of many natural phenomena. For the background, theory and applications of
impulsive di�erential equations, we refer the interested readers to [4, 5, 13, 15, 16, 22, 23, 28]. For a second
order di�erential equation u�� = f(t, u, u�) one usually considers impulses in the position u and the velocity u�.
However, in the motion of spacecraft one has to consider instantaneous impulses depending on the position
that results in jump discontinuities in velocity, but with no change in position, see [8, 9, 19, 26]. The impulses
only on the velocity occur also in impulsive mechanics, see [24, 25].
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Impulsive di�erential equations have been studied extensively in the literature. There have been many
approaches to study the existence of solutions of impulsive di�erential equations, such as �xed point theory,
topological degree theory (including continuation methods and coincidence degree theory) and comparison
method (including upper and lower solution methods and monotone iterative methods) and so on (see, for
example, [2, 10, 12, 17, 18] and references therein). Recently, in [1, 3, 11, 14, 20, 21, 27, 30, 32, 33, 35–37] the
existence and multiplicity of solutions of impulsive problems have been studied using critical point theory.
In [21] and [37] the authors studied the following problem:

{
−u��(x) + ku(x) = f(x, u(x)), a.e. x ∈ [0, T],

u(0) = u(T) = 0,

with the impulsive conditions
Δu�(xj) = Ij(u(xj)), j = 1, 2, . . . , p,

where k is a parameter and under di�erent assumptions in which they established the existence of at least
one solution and the existence of in�nitelymanyweak solutions, respectively. In particular, in [3] the authors,
using critical point theory, studied the multiplicity of solutions for problem (1.1) when g = 0.

In the present paper, motivated by [3], by using variational methods we ensure an exact collection of the
parameter ë for which problem (P) admits at least three weak solutions.

For a thorough account on the subject we refer the reader to [6, 31].

2 Preliminaries
Our analysis is based on the following three-critical points theorem to transfer the existence of three solutions
of problem (P) into the existence of critical points of the Euler functional.

Theorem 2.1 ([7, Theorem 2.6]). Let X be a re�exive real Banach space, letΦ : X → ℝ be a sequentially weakly
lower semicontinuous, coercive and continuously Gâteaux di�erentiable whose Gâteaux derivative admits
a continuous inverse on X∗, and let Ψ : X → ℝ be a sequentially weakly upper semicontinuous and continu-
ously Gâteaux di�erentiable functional whose Gâteaux derivative is compact. Assume that there exist r ∈ ℝ
and u1 ∈ X with 0 < r < Φ(u1), such that

(a1) sup
u∈Φ−1(]−∞,r])

Ψ(u) < r
Ψ(u1)
Φ(u1)

,

(a2) for each ë ∈ Λ r := ]
Φ(u1)
Ψ(u1)

,
r

supu∈Φ−1(]−∞,r]) Ψ(u)
[ the functionalΦ − ëΨ is coercive.

Then, for each ë ∈ Λ r the functionalΦ − ëΨ has at least three distinct critical points inX.

LetX := H1
0 (0, T). In the Sobolev spaceX, consider the inner product

⟨u, v⟩ =
T

∫
0

u�(x)v�(x)dx

and the corresponding norm

‖u‖ = (
T

∫
0

|u�(x)|2dx)
1
2 .

Let us denoteH2(0, T) = {u ∈ C1[0, T] : u�� ∈ L2[0, T]}. By a classical solution of problem (P), we mean a func-
tion u ∈ {u(x) ∈ H1(0, T) : u(x) ∈ H2(xj, xj+1), j = 0, 1, . . . , p} such that u satis�es (1.1)–(1.2). We say that
a function u ∈ X is a weak solution of problem (P) if

T

∫
0

u�(x)v�(x)dx +
p

∑
j=1

Ij(u(xj))v(xj) −
T

∫
0

g(u(x))v(x)dx − ë
T

∫
0

f(x, u(x))v(x)dx = 0
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for every v ∈ X. Using standard methods, if f is continuous, we see that a weak solution of (P) is indeed
a classical solution (see [3, Lemma 5]).

In this paper, we assume throughout, and without further mention, that the following condition holds:
(A1) The impulsive functions Ij have sublinear growth, i.e., there exist constants aj > 0, bj > 0 and ãj ∈ [0, 1)

for j = 1, 2, . . . , p such that

|Ij(t)| ≤ aj + bj|t|
ãj for every t ∈ ℝ, j = 1, 2, . . . , p.

For the sake of convenience, in the sequel, we de�ne

F(x, t) =
t

∫
0

f(x, î)dî for all (x, t) ∈ [0, T] × ℝ, G(t) = −
t

∫
0

g(î)dî for all t ∈ ℝ,

and

C1 =
1
2
−

p

∑
j=1

bj
ãj + 1

(
√T
2

)
ãj+1

, C2 =
1
2
+

p

∑
j=1

bj
ãj + 1

(
√T
2

)
ãj+1

, C3 =
p

∑
j=1

aj
√T
2
+

p

∑
j=1

bj
ãj + 1

(
√T
2

)
ãj+1

.

Suppose that the Lipschitz constant L > 0 of the function g satis�es LT2 < 4.
A special case of our main result is the following theorem.

Theorem 2.2. Suppose thatC1 −
LT2

8 > 0and there exist positive constants çandäwith ç + ä < T. Letf : ℝ → ℝ
be a continuous function. Put F(t) = ∫t

0 f(î)dî for each t ∈ ℝ. Assume that F(d) > 0 for some d > 0 and F(î) ≥ 0
in [0, d] and

lim inf
î→0

F(î)
4
T (C1 −

LT2

8 )î2 − 2
√T

C3î
= lim sup

î→+∞

F(î)
4
T (C1 −

LT2

8 )î2 − 2
√T

C3î
= 0.

Then, there is ë∗ > 0 such that for each ë > ë∗ the problem

{
−u��(x) = f(u(x)) + g(u(x)),

u(0) = u(T) = 0,

with the impulsive conditions
Δu�(xj) = Ij(u(xj)), j = 1, 2, . . . , p,

where the function g is given as in problem (P), admits at least three classical solutions.

We need the following proposition in the proof of the main result.

Proposition 2.3. Let T : X → X∗ be the operator de�ned by

T(u)v =
T

∫
0

u�(x)v�(x)dx +
p

∑
j=1

Ij(u(xj))v(xj) −
T

∫
0

g(u(x))v(x)dx

for every u, v ∈ X. Then T admits a continuous inverse onX∗.

Proof. In view of assumption (A1), for u ∈ X when u(xj) ≥ 0,

Ij(u(xj))u(xj) ≥ (−aj − bj|u(xj)|
ãj )u(xj) = −aju(xj) − bj(u(xj))

ãj+1;

when u(xj) < 0,

Ij(u(xj))u(xj) ≥ (aj + bj|u(xj)|
ãj )u(xj) = aju(xj) + bj(u(xj))

ãj+1.

Therefore, since

‖u‖∞ = maxt∈[0,T]
|u(t)| ≤

√T
2

‖u‖, (2.3)
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for every u(xj), we have

Ij(u(xj))u(xj) ≥ −aj|u(xj)| − bj|u(xj)|
ãj+1 ≥ −aj

√T
2

‖u‖ − bj‖u‖
ãj+1. (2.4)

So, recalling that
|g(t1) − g(t2)| ≤ L|t1 − t2|

for all t1, t2 ∈ ℝ and g(0) = 0, from (2.3) and (2.4), for any u ∈ X \ {0}, we obtain

lim
‖u‖→∞

⟨T(u), u⟩
‖u‖
= lim

‖u‖→∞

∫
T
0 (u

�(x))2dx + ∑p
j=1 Ij(u(xj))u(xj) − ∫

T
0 g(u(x))u(x)dx

‖u‖

≥ lim
‖u‖→∞

∫
T
0 (u

�(x))2dx + ∑p
j=1 Ij(u(xj))u(xj) −

LT2

4 ‖u‖2

‖u‖

≥ lim
‖u‖→∞

(1 − LT2

4 )‖u‖2 − ∑p
j=1(aj

√T
2 ‖u‖ + bj‖u‖

ãj+1)

‖u‖
= ∞.

Thus, the map T is coercive. Now, taking into account [29, (2.2)], since
p

∑
j=1

(Ij(t1) − Ij(t2))(t1 − t2) ≥ 0

for t1, t2 ∈ ℝ, we see that

⟨T(u) − T(v), u − v⟩ ≥ (1 −
LT2

4
)‖u − v‖2,

so T is uniformly monotone. Therefore, since T is hemicontinuous inX, by [34, Theorem 26.A (d)], T−1 exists
and is continuous onX∗.

3 Main results
We formulate our main result as follows:

Theorem 3.1. Assume that C1 −
LT2

8 > 0, and there exist positive constants ç, ä, c and d with ç + ä < T and

d > c >
√TC3

4(C1 −
LT2

8 )

such that
(A2) F(x, t) ≥ 0 for all (x, t) ∈ ([0, ç] ∪ [T − ä]) × [0, d],

(A3)
T

∫
0

sup
t∈[−c,c]

F(x, t)dx <
4
T (C1 −

LT2

8 )c2 − 2
√T

C3c

ç+ä
çä (C2 +

LT2

8 )d2 + √ ç+ä
çä C3d

T−ä

∫
ç

F(x, d)dx,

(A4) lim sup
|t|→+∞

F(x, t)
t2
<

4(C1 −
LT2

8 )
T2

T

∫
0

sup
t∈[−c,c]

F(x, t)dx, uniformly with respect to x ∈ [0, T].

Then, for each

ë ∈ Λ 1 := ]

ç+ä
çä (C2 +

LT2

8 )d2 + √ ç+ä
çä C3d

∫
T−ä
ç F(x, d)dx

,
4
T (C1 −

LT2

8 )c2 − 2
√T

C3c

∫
T
0 supt∈[−c,c] F(x, t)dx

[

problem (P) admits at least three distinct weak solutions inX.

We now exhibit an example in which the hypotheses of Theorem 3.1 are satis�ed.
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Example 3.1. Consider the problem

{{{{{
{{{{{
{

−u��(x) = ëex−uu17(18 − u) +
1
16

u, a.e. x ∈ [0, 4],

u(0) = u(4) = 0,

Δu�(x1) =
1
16
+

1
32

|u(x1)|
1
2 , Δu�(x2) =

1
32
+

1
64

|u(x2)|
1
2 , 0 < x1 < x2 < 4,

(3.4)

such that 1
32 (|u(x1)|

1
2 − |v(x1)|

1
2 )(u(x1) − v(x1)) +

1
64 (|u(x2)|

1
2 − |v(x2)|

1
2 )(u(x2) − v(x2)) ≥ 0 for all u, v ∈ H1

0 (0, 4).
It is obvious that C1 =

15
32 , C2 =

17
32 and C3 =

1
8 . Also a direct calculation shows that F(x, t) = ex−tt18 for

all (x, t) ∈ [0, 4] × ℝ. Choose ç = ä = 1, c = 5 and d = 10. Clearly assumption (A2) is ful�lled, and a straight-
forward computation shows that assumption (A3) is satis�ed. In particular, since

lim sup
|t|→+∞

F(x, t)
t2
= 0

for every x ∈ [0, 4], assumption (A4) is satis�ed. So, Theorem 3.1 is applicable to problem (3.4) for every

ë ∈ ]
e9(105 + √2)
8 ⋅ 1017(e2 − 1)

,
51e5

32 ⋅ 517(e4 − 1)
[.

Proof of Theorem 2.2. Fix

ë > ë∗ :=

ç+ä
çä (C2 +

LT2

8 )d2 + √ ç+ä
çä C3d

(T − ä − ç)F(d)
for some d > 0. Taking into account that

lim inf
î→0

F(î)
4
T (C1 −

LT2

8 )î2 − 2
√T

C3î
= 0,

there is a sequence {cn} ⊂ ]0, +∞[ such that limn→+∞ cn = 0 and

lim
n→∞

sup|î|≤cn F(î)
4
T (C1 −

LT2

8 )c2n −
2
√T

C3cn
= 0.

In fact, one has

lim
n→∞

sup|î|≤cn F(î)
4
T (C1 −

LT2

8 )c2n −
2
√T

C3cn
= lim

n→∞

F(îcn )
4
T (C1 −

LT2

8 )î2cn −
2
√T

C3îcn
⋅

4
T (C1 −

LT2

8 )î2cn −
2
√T

C3îcn
4
T (C1 −

LT2

8 )c2n −
2
√T

C3cn
= 0,

where F(îcn ) = sup|î|≤cn F(î). Hence, there is c > 0 such that

sup|î|≤c F(î)
4
T (C1 −

LT2

8 )c2 − 2
√T

C3c
< min{

(T − ä − ç)F(d)

T( ç+äçä (C2 +
LT2

8 )d2 + √ ç+ä
çä C3d)

,
1
ëT

},

and d > c > √TC3

2(C1−
LT2
8 )

. Applying Theorem 3.1 the desired conclusion follows.

4 Proofs of the main results
Proof of Theorem 3.1. We proceed by applying Theorem 2.1 for the functionalsΦ,Ψ : X → ℝ given by

Φ(u) =
1
2

T

∫
0

(u�(x))2dx +
p

∑
j=1

u(xj)

∫
0

Ij(t)dt +
T

∫
0

G(u(x))dx (4.1)

and

Ψ(u) =
T

∫
0

F(x, u(x))dx (4.2)
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for each u ∈ X. It is well known that Ψ is a Gâteaux di�erentiable functional and sequentially weakly lower
semicontinuous whose Gâteaux derivative at the point u ∈ X is the functional Ψ�(u) ∈ X∗, given by

Ψ�(u)(v) =
T

∫
0

f(x, u(x))v(x)dx

for every v ∈ X. We claim that Ψ� : X → X∗ is a compact operator. Indeed, for �xed u ∈ X, assume un → u
weakly inX as n → ∞. Then un → u strongly in C([0, T]). Since f(x, ⋅ ) is continuous inℝ for every x ∈ [0, T],
we get that f(x, un) → f(x, u) strongly as n → ∞. By the Lebesgue Theorem, Ψ�(un) → Ψ�(u) strongly, which
means thatΨ� is strongly continuous, then it is a compact operator. Hence the claimholds true.Moreover,Φ is
a Gâteaux di�erentiable functional whose Gâteaux derivative at the point u ∈ X is the functionalΦ�(u) ∈ X∗,
given by

Φ�(u)(v) =
T

∫
0

u�(x)v�(x)dx +
p

∑
j=1

Ij(u(xj))v(xj) −
T

∫
0

g(u(x))v(x)dx

for every v ∈ X. Furthermore, Proposition 2.3 gives that Φ� admits a continuous inverse on X∗ and since Φ�

is monotone, we obtain that Φ is sequentially weakly lower semicontinuous (see [34, Proposition 25.20]).
Moreover, similar to the argument as given in [3], for all u ∈ X we see that

(C1 −
LT2

8
)‖u‖2 − C3‖u‖ ≤ Φ(u) ≤ (C2 +

LT2

8
)‖u‖2 + C3‖u‖. (4.3)

Choose

r :=
4
T
(C1 −

LT2

8
)c2 −

2
√T

C3c and u1(x) =
{{{
{{{
{

d
çx, x ∈ [0, ç),

d, x ∈ [ç, T − ä],
d
ä (T − x), x ∈ (T − ä, T].

It is clear that u1 ∈ X and

‖u1‖ = √
ç + ä
çä

d.

From assumption (A1) we observe that C2 and C3 are positive. Arguing as in [3], let

H(t) = (C1 −
LT2

8
)t2 − C3t

for t ≥ 0. Since C1 −
LT2

8 > 0 and C3 > 0, one has

H(t) ≤ 0 for every t ∈ [0,
C3

C1 −
LT2

8

]

andH(t) is strictly increasing on [ C3

C1−
LT2
8

, +∞). Since ç > 0, ä > 0 and ç + ä < T, we get

1
ç
+

1
ä
>

4
ä
.

Moreover, since C1 −
LT2

8 > 0 and C3 > 0 and c > √TC3

4(C1−
LT2
8 )

, we have c > 0. Thus,

√ç + ä
çä

c >
2
√T

c.

From d > c, we have

√ç + ä
çä

d > √
ç + ä
çä

c.

Moreover, the condition

c >
√TC3

4(C1 −
LT2

8 )
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implies that
2
√T

c >
C3

C1 −
LT2

8

.

Hence,
‖u1‖ >

2
√T

c >
C3

(C1 −
LT2

8 )
,

which in conjunction with the fact thatH(t) is strictly increasing on [ C3

C1−
LT2
8

, +∞), yields that

H(‖u1‖) > H(
2
√T

c) > H(
C3

C1 −
LT2

8

),

which means
(C1 −

LT2

8
)‖u1‖

2 − C3‖u1‖ > (C1 −
LT2

8
)(

2
√T

c)
2
− C3(

2
√T

c) = r.

It follows fromH(t) = r that

t =
2c
√T

or t =
C3 −

2c(C1−
LT2

8 )
√T

(C1 −
LT2

8 )
.

Moreover, since c > 0, C1 −
LT2

8 > 0 and

c >
√TC3

4(C1 −
LT2

8 )
,

we observe that the unique solution ofH(t) = rwith x ∈ [0, +∞) is t = 2c
√T

. Thus, taking into account thatH(t)
is strictly increasing on [ C3

C1−
LT2
8

, +∞) and

c >
√TC3

4(C1 −
LT2

8 )
,

we obtain
[

C3

C1 −
LT2

8

,
2
√T

c] ⊆ {t : H(t) ≤ r} (4.4)

and

(
2
√T

c, +∞) ∩ {t : H(t) ≤ r} = 0. (4.5)

Recalling thatH(t) ≤ 0 for every t ∈ [0, C3

C1−
LT2
8

] and r > 0, one has

[0,
C3

C1 −
LT2

8

] ⊆ {t : H(t) ≤ r}. (4.6)

Thus, from (4.4)–(4.6), we have

{t : H(t) ≤ r} = [0,
2
√T

c]. (4.7)

For any u ∈ X, from (4.3), we observe
H(‖u‖) ≤ Φ(u) ≤ r.

Therefore, using (4.7) one has ‖u‖ ≤ 2c
√T

. So, taking (2.3) into account, we have

Φ−1(] − ∞, r]) ⊆ {u ∈ X : ‖u‖∞ ≤ c},

which leads to

sup
u∈Φ−1(]−∞,r])

Ψ(u) = sup
u∈Φ−1(]−∞,r])

T

∫
0

F(x, u(x))dx ≤
T

∫
0

sup
t∈[−c,c]

F(x, t)dx.
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Therefore, assumption (A3) implies that

sup
u∈Φ−1(]−∞,r])

Ψ(u) ≤
T

∫
0

sup
t∈[−c,c]

F(x, t)dx <
4
T (C1 −

LT2

8 )c2 − 2
√T

C3c

ç+ä
çä (C2 +

LT2

8 )d2 + √ ç+ä
çä C3d

T−ä

∫
ç

F(x, d)dx

< r
∫
T
0 F(x, u1(x))dx

Φ(u1)

= r
Ψ(u1)
Φ(u1)

,

namely, assumption (a1) of Theorem 2.1 is ful�lled. Furthermore, due to assumption (A4), there exist two
constants ã, ç ∈ ℝ with

ã <
∫
T
0 supt∈[−c,c] F(x, t)dx

4
T (C1 −

LT2

8 )c2 − 2
√T

C3c

such that
T2

4(C1 −
LT2

8 )
F(x, t) ≤ ãt2 + ç for a.e. x ∈ [0, T].

Fix u ∈ X. Then

F(x, u(x)) ≤
4(C1 −

LT2

8 )
T2 (ã|u(x)|2 + ç) for a.e. x ∈ [0, T]. (4.8)

Now, in order to prove the coercivity of the functional Φ − ëΨ, �rst we assume that ã > 0. So, for any
�xed ë ∈ Λ 1, from (2.3), (4.1)–(4.3) and (4.8) we have

Φ(u) − ëΨ(u) =
1
2

T

∫
0

(u�(x))2dx +
p

∑
j=1

u(xj)

∫
0

Ij(t)dt +
T

∫
0

G(u(x))dx − ë
T

∫
0

F(x, u(x))dx

≥ (C1 −
LT2

8
)‖u‖2 − C3‖u‖ − ëã

4(C1 −
LT2

8 )
T2

T

∫
0

|u(x)|2dx − ë
4(C1 −

LT2

8 )
T2 ç

≥ (C1 −
LT2

8
)‖u‖2 − C3‖u‖ − ëã

4(C1 −
LT2

8 )
T2 ⋅

T2

4
‖u‖2 − ë

4(C1 −
LT2

8 )
T2 ç

= (C1 −
LT2

8
)(1 − ëã)‖u‖2 − C3‖u‖ − ë

4(C1 −
LT2

8 )
T2 ç

≥ (C1 −
LT2

8
)(1 − ã

4
T (C1 −

LT2

8 )c2 − 2
√T

C3c

∫
T
0 supt∈[−c,c] F(x, t)dx

)‖u‖2

− C3‖u‖ −
4
T (C1 −

LT2

8 )c2 − 2
√T

C3c

∫
T
0 supt∈[−c,c] F(x, t)dx

⋅
4(C1 −

LT2

8 )
T2 ç,

and thus
lim

‖u‖→+∞
(Φ(u) − ëΨ(u)) = +∞,

which means that the functionalΦ − ëΨ is coercive. On the other hand, if ã ≤ 0, we get

lim
‖u‖→+∞

(Φ(u) − ëΨ(u)) = +∞.

Both cases lead to the coercivity of functional Φ − ëΨ. So, assumption (a2) of Theorem 2.1 is satis�ed. Now,
we can apply Theorem 2.1. Hence, by using Theorem 2.1, taking into account that the weak solutions of (P)
are exactly the solutions of the equation Φ�(u) − ëΨ�(u) = 0, problem (P) admits at least three distinct weak
solutions.
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