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A multiplicity result for the scalar field equation

Abstract: We prove the existence of N — 1 distinct pairs of nontrivial solutions of the scalar field equation
in RN under a slow decay condition on the potential near infinity, without any symmetry assumptions. Our
result gives more solutions than the existing results in the literature when N > 6. When the ground state is
the only positive solution, we also obtain the stronger result that at least N — 1 of the first N minimax levels
are critical, i.e., we locate our solutions on particular energy levels with variational characterizations. Finally
we prove a symmetry breaking result when the potential is radial. To overcome the difficulties arising from
the lack of compactness we use the concentration compactness principle of Lions, expressed as a suitable
profile decomposition for critical sequences.
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1 Introduction

Consider the eigenvalue problem for the scalar field equation

“Au+V(x)u=MulP?u, ueH(RY), (1.1)
where N > 2, V € L®(RY) satisfies
lim V(x) =V® >0, 1.2
|x|—00

pe(22%),and 2" =2N/(N -2)if N >3and 2" = coif N = 2. Let

() = j Wl? and () = j Vul? + Ve?, ue H'(RY).
RN RN
Then the eigenfunctions of (1.1) on the manifold

M:=f{ue HMRY) : I(w) = 1}

and the corresponding eigenvalues coincide with the critical points and the corresponding critical values of
the constrained functional ]|, respectively. Equation (1.1) has extensively been studied for more than three
decades (see Bahri and Lions [1] for a detailed account). The main difficulty here is the lack of compactness
inherent in this problem. This lack of compactness originates from the invariance of RN under the action of
the noncompact group of translations, and manifests itself in the noncompactness of the Sobolevimbedding
H'(RN) < LP(RM). This in turn implies that the manifold M is not weakly closed in H'(R") and that ]|,
does not satisfy the usual Palais—Smale compactness condition at all energy levels.
Least energy solutions, also called ground states, are well-understood. In general, the infimum

A, = inf
1= inf J(u)
is not attained. For the autonomous problem at infinity,

“Au+V®u = AMul’u, ueH®RY), (1.3)
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the corresponding functional
T W) := J [Vul? + Vu?
IRN
attains its infimum
AP = ulél]g[ T®Ww) >0
ataradial function w;® > 0 and this minimizer is unique up to translations (see Berestycki and Lions [6] and
Kwong [17]). For the nonautonomous problem, we have A, < A{° by (1.2) and the translation invariance of J*,
and A, is attained if A, < A{° (see Lions [19, 20]).

As for higher energy solutions, also called bound states, radial solutions have extensively been studied
when the potential V is radially symmetric (see, e.g., Berestycki and Lions [7], Grillakis [15], Bartsch and
Willem [4], and Conti, Merizzi and Terracini [11]). The subspace Hr1 (RN) of H'(RY) consisting of radially
symmetric functions is compactly imbedded into L (R") for p € (2,2*) by acompactness result of Strauss [24],
so in this case the restrictions of J and J* to M n H,I(IRN ) have increasing and unbounded sequences of
critical values given by a standard minimax scheme. Furthermore, Sobolev imbeddings remain compact for
subspaces with any sufficiently robust symmetry (see, e.g., Bartsch and Willem [3], Bartsch and Wang [2], and
Devillanova and Solimini [13]).

As for multiplicity in the nonsymmetric case, Zhu [27], Hirano [16], and Clapp and Weth [10] have given
sufficient conditions for the existence of 2, 3, and N/2 + 1 pairs of solutions, respectively (see also Li [18]).
Let us also mention that Cerami, Devillanova and Solimini [9] have obtained infinitely many solutions under
considerably strong additional asymptotic assumptions. There is also an extensive literature on multiple
solutions of scalar field equations in topologically nontrivial unbounded domains (see the survey paper of
Cerami [8]). In the present paper we obtain N — 1 pairs of solutions in the whole space, without any symmetry
assumptions. We assume that

W =V® -V e LV/P2(RN),

and write | - | q for the norm in LY(RY). Our multiplicity result is the following.
Theorem 1.1. Assume that N > 3,V e L°(RY) satisfies (1.2), p € (2,2%), and W € LF/P~2(RN) satisfies
Wlpypa < QPP - 1A (1.4)

and

Wi(x) > c()e*“lx| forall x e RY (1.5)
for some constants 0 < a < 2/V® and ¢, > 0. Then equation (1.1) has N — 1 pairs of eigenfunctions on M.
Our result gives more solutions than [10] when N > 6. Moreover, our proof is simpler than that in [10] and does
not involve any dynamical systems theory arguments. Note also that we do not assume that V is a positive
function as in [10].

We obtain a stronger result when A, is the only eigenvalue of (1.1) with a positive eigenfunction on M.
Let A denote the class of all nonempty closed symmetric subsets of M, let

y(A) := inf{l > 1 : there exists an odd continuous map A — R’ \ {0}}
be the genus of A € A, and set

A= inf supJ(u), A% := inf sup (), j>2.
J AeA ueg ]( ) J AeA ueEI ( ) J
y(A)zj y(A)>j

We have A; < /\‘j?o by (1.2) and the translation invariance of J*, and it is known that
AP =20 P =2, N (1.6)

(see Perera and Tintarev [22]), so
A << Ay <2070 1.7)

Under the hypotheses of Theorem 1.1, A, < A{° and hence A, is an eigenvalue of (1.1), and it was recently
shown in Perera and Tintarev [22] that A, is also an eigenvalue.
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Theorem 1.2. Assume that N > 3, V € L°(RY) satisfies (1.2), p € (2,2%), and W € LP/?"2(RYN) satisfies (1.4)
and (1.5). If (1.1) has no positive eigenfunctions on M corresponding to eigenvalues in (A, A°), and has only
a finite number of eigenfunctions on M corresponding to eigenvalues in (A, 22/ PA), then at least N - 1 of
the minimax levels A,, ..., Ay are eigenvalues of (1.1).

Finally we prove a symmetry breaking result when V is radial. Let A, denote the class of all nonempty closed
symmetric subsets of M, = M n H!(R") and set
Aj, = Aiélf, il:}:](ll), A‘fr = Aigjf{r f}:}: J®w), j=1
y(A)zj y(A)zj
Since the imbedding H!(R") < LP(R") is compact, these radial minimax levels are critical for the con-
strained functionals J|, and J*|,, , respectively. We have A,, = A, and A7, = A{". In general, A; < A;,
and /\‘]?0 < /\‘fr, and it is known that A3° is not critical for ]|, (see, e.g., Weth [26]), so A3” < A7..

Theorem 1.3. Assume that N > 3, V € L°(RY) is radial and satisfies (1.2), p € (2,2"), and W e LF/P~2(RN)
satisfies (1.4), (1.5), and

Wlpp-2) < A =A% (1.8)
Then equation (1.1) has N - 2 pairs of eigenfunctions on M corresponding to eigenvalues in (A,,, A, ). If, in
addition, (1.1) has no positive eigenfunctions on M corresponding to eigenvalues in (A,,, AT}), and has only
a finite number of eigenfunctions on M corresponding to eigenvalues in (A, ,,3’), then at least N - 2 of the
minimax levels A,, ..., Ay are eigenvalues of (1.1)in (A, ,, A, ).

Our proofs will use the concentration compactness principle of Lions [19-21], expressed as a suitable profile
decomposition for critical sequences of ]|, to overcome the difficulties arising from the lack of compactness.

2 Preliminaries

We will use the norm
leell = VT (u)

on H'(RY), which is equivalent to the standard norm. In the absence of a compact Sobolev imbedding, the
main technical tool we use here for handling the convergence matters is the following profile decomposition
of Solimini [23] for bounded sequences in H(RY).

Lemma 2.1. Let u, € H YRY) be a bounded sequence, and assume that there is a constant & > 0 such that
if u (- + y.) — w# 0 on a renumbered subsequence for some y, € RY with | Y| — oo, then ||w| > 8. Then
there are m € N, w™ € H'(RY), y” e RV, y\V = owithk € N, n € {1,...,m}, w™ # 0 for n > 2, such that, on
a renumbered subsequence,

(- + y,((")) — ™, (0X)

-1 > 00 forn#l,

m
> ™ < lim inf g,

n=1

ue— Y w( =y >0 inLP(RY) forall p e (2,2%). 2.2)
n=1

Recall that u;, € M is a critical sequence for ]|, at the level ¢ € R if
J () - ‘ukI'(uk) -0 and J(u) —c 2.3)

for some sequence y;, € R. By the Holder inequality,

12 =Tl < [ WGl < Wy lull = Wi,z forallu e M, (2:4)

RN
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so u; is bounded. Equation (2.3) implies
~Auy + V(%) = ¢ |ug P uy + o(1), (2.5)
where ¢ = (p/2)w, — c since
J (we),uy) =2J(w) and  (I'(w), uy) = pI(uy) = p.

So if (- + y,) — w on a renumbered subsequence for some y, € RN with | ¥l — 00, then w solves (1.3)
with A = ¢ by (1.2), in particular, |w|* = clw|5. If w # 0, it follows that ¢ > 0 and [w] > [(A{*)?/c]"/*®~"
since [Jw|*/ lef, > A{°. Thus, we have the following profile decomposition of Benci and Cerami [5] for critical
sequences of J|.

Lemma 2.2. Let u, € M be a critical sequence for ]| at the level ¢ € R. Then it admits a renumbered subse-
quence that satisfies the conclusions of Lemma 2.1 for some m € N, and, in addition,

~Aw? + V(x)w = clw? P,

_Aw™ 4 VO™ = Clw(n)lp—Zw(n)) n=2....m, (2:6)
Jw®) = c 1), J®w™) = cIw™), n=2,...,m, 2.7
m m
YIw™) =1, Jw)+ Y 1w = (2.8)
n=1 n=2
m
we— Y w”( -y >0 inH'RY). 2.9)
n=1

Proof. The proof is based on standard arguments and we only sketch it. The equations in (2.6) follow
from (2.5), (2.1), and (1.2), and (2.7) is immediate from (2.6). The first equation in (2.8) is a particular case
of Tintarev and Fieseler [25, Lemma 3.4], and the second follows from (2.7) and the first. The limit (2.9)
follows from (2.2), (2.5), and the continuity of the Sobolev imbedding. O

By (2.4),
0< /\‘J’." ~ A < Wl forallj=1,

and combining this with (1.4), (1.6), and (1.7) gives

0<A AP <Ay <o < Ay <2072/P), (2.10)
Set
A M{/(p—a + (AP ED)DIp ¢ (o0 52/ )o0)
and let
m(u) = .
|ul,

be the radial projection of u € H'(RY) \ {0} on M.

Lemma 2.3. Assume that A° < /\j < 2(1"2)/1’/\‘1’0, let u; € M be a critical sequence of ]|, at the level )tj, and
consider the profile decomposition of u,. given in Lemma 2.2.

() IfA; < M, thenm = 1, u, — w", wV is a critical point of |y, and J(w") = A

(i) IfA; > A and uy, -+ w, thenm = 2, WV # 0, (W) is a critical point of ]|,

Jr@™)) = D - Q)P0 € 3, A9), (211)
and n(w") has fixed sign.

Proof. Sett, := I(w™). Thent, > 0 and
(212

M=
:H

I

—_

B
I
—
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by (2.8), so each t, € [0,1]. Forn > 2, ¢, # 0 and A‘f"ti/" < J®w™) = Ajt, by 2.7), so

A%\ P/(p=2)
tnz(A—l) , n=2,...,m (213)
i

Combining (2.12) and (2.13) giVeS
p-2)/py00 p-2)/py00
(m - 1)( ) /\1 < A’] < 2( ) /\1 >

som < 2.1ft, = 0, thenm = 2and t, = 1 by (2.12), so w® is a solution of (1.3) on M with A = A;by (2.6), which
is a contradiction since A" < A; < Z(P‘Z)/PA‘IX’ (see, e.g., Cerami [8]). Hence ¢; # 0, and /\ltf/p < JwW) = Aty

by (2.7), so
A, \P/(P-D)
t, > (—1) : (2.14)
Aj
Combining (2.12)—(2.14) now gives
D 4 m - AP ED)0DIP < ) (215

(i) If A; < A%, then m = 1 by (2.15) and hence t, = 1 by (2.12), so u, — w' by (2.9) and w'" is a solution
of (1.1) on M with A = A;by (2.6).

(ii) If u, + w'", then m > 2 by (2.9) and hence m = 2, and w'" # 0sincet, # 0. By (2.6), 7(w™") and 7 (w®)
are solutions of (1.1) and (1.3) on M with A = tip 2Py jand A = tgp —2Ip), j» respectively. Since

]Oo(n(w(l))) — t;P—Z)/PAj < Z(P—Z)/PA(I’O,

we get tg;;—z)/ij = 1%, and combining this with ¢, +t, = 1, J(z(w™")) = tﬁ"‘”“’lj, and M < M < 2(P2/p)%0

gives (2.11). Since J(z(w'")) < A < A, by (2.10), 7(w™) has fixed sign (see, e.g., Cerami [8]). O

The proof of the following lemma is similar to that of Clapp and Weth [10, Lemma 8] and is therefore omitted
(see also Devillanova and Solimini [12, Lemma 2.4]).

Lemma2.4. IfAT <A; =1, < 2(1"2)/1’){‘;", then ]|y has infinitely many critical points with value < A ;.
Theorems 1.1 and 1.2 will follow from the following proposition.
Proposition 2.5. If N >3,V e L°(R") satisfies (1.2), p € (2,2*), and

0< A <AC <Ay <o Ay <2072/P)%

then (1.1) has N - 1 pairs of eigenfunctions on M. If, in addition, (1.1) has no positive eigenfunctions on M
corresponding to eigenvalues in (A, "), and only a finite number of eigenfunctions on M corresponding to
eigenvalues in (\,, 272/ PAY®), then at least N — 1 of the minimax levels A, ..., A are eigenvalues of (1.1).

Proof. We may assume that A, < --- < Ay in view of Lemma 2.4. For each j € {2,..., N}, either 1, > A7’ is an
eigenvalue, or
X = AEIP7D — )/ (p 2l ¢ oo (2.16)

is an eigenvalue with a positive eigenfunction on M by Lemma 2.3. It follows that at least N — 1 of the
levels 1, < --- < Ay < A, < -+ < Ay are eigenvalues. If A, is the only eigenvalue < A$° with a positive eigen-
function on M, then any 1 j # Ay is not an eigenvalue by (2.16). O

3 Proofs of Theorems 1.1-1.3

In view of Proposition 2.5 and (2.10), to complete the proofs of Theorems 1.1 and 1.2, it only remains to show
that 1, < 1%° and A, < 27"2/P1%° when (1.5) holds. We have

A< @) = TP W) - J W(x)w(x)* dx < AP - j e M (x)* dx < 1.

RN RN
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We will show that there exists an R > 0 such that, for the odd continuous map h from the unit sphere
SN ¢ RN to M defined by

_ w’(+Ry) -w’(- - Ry) N-1
h(y) == — - ) ,
[w°(- + Ry) —wi(- - Ry)l,
we have
sup J(u) < 2(p_2)/PA(1>°. (3.1)
ueh(sN1)

Since y(h(SV ™)) = y(SV!) = N, it follows that

Ay < 272P)% (3.2
First we prove an elementary inequality.
Lemma3.1. Foralla,b € Rand p > 2,
la+bl? > lal? + bl - plal”™"|b] - plallbl?™". 33)

Proof. The inequality is clearly true if a or b is zero, or if a and b have the same sign, so suppose that
0 < |b| < |a|] and that a and b have opposite signs. Then (3.3) is equivalent to

(1-x)Pf>1+x" - px—pxf™" forallx e [0,1], (3.4)

where x = |b/al. Let

fX)=0-xf-1-x+px, xe€[01].
Then £(0) = 0, and f'(x) = p[1 - (1 - x)?"' =x?™'] > p[1 - (1 - x) — x] = 0 since p—1 > 1, so f(x) > 0, from
which (3.4) follows. O

Recall that
e VU x|

(0]
w; (x) ~ C0_|x|(N—1)/2

as |x| — oo (3.5
for some constant C,, > 0 (see Gidas, Ni and Nirenberg [14]).

Lemma 3.2. Leta < b < 2v/V®. Then as R — oo, uniformlyin y € SN,

(@ J w® (x + Ry)T'w®(x - Ry)dx = O(e™*®)  forallq > 2,
IRN
(if) JW*(-+ Ry) = wi*(- = Ry)) < 247" - j W (0w (x + Ry)? dx + O(e ™),
]RN
(iii) |w‘l>o( o+ Ry) _ w‘fo( L R)’)|p > 21/17 + O(e_bR),

Proof. (i) Making the change of variable x — x + Ry gives
J w®(x + Ry)q_lwfo(x -Ry)dx = J w (%) ' w(x — 2Ry) dx.
RN RN
By (3.5), w;°(x) < Ce” VWl for some C > 0, so the integral on the right is bounded by a constant multiple of

J o VRl Dlxl+lx-2Ryl] g0 J o~ WEIxl-bRR-Ix/2 g

RN RN
_ R J’ o~ (Wbl dx,

]RN

and the last integral is finite since b < 2V,
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(ii) We have
J®(-+ Ry) = wi°(- = Ry)) = J%(w, (- + Ry)) + ] (w°(- = Ry)) - J W (x)(w;?(x + Ry) - w(®(x - Ry))* dx
]RN
-2 J- (Vw(’(x + Ry) - Vw"(x = Ry) + V= w{"(x + Ry)w;"(x — Ry)) dx
]RN
<2M7° - j W(x)w!(x + Ry)*dx +2|W|,, J w®(x + Ry)w;°(x — Ry) dx
RN RN
=217 J wi®(x + Ry)Pilwa(x - Ry)dx
]RN

since w;°(- + Ry) solves (1.3) with A = A{°, and the last two terms are of the order O(e™*R) by part (i).
(iii) By Lemma 3.1,

W+ Ry) —wi®(- = Ry)l, > (Iwi"’( +RY)IG+ [w (= Ry)lp - p J wi®(x + Ry)? ' wi®(x - Ry) dx
]RN
1/p
-p I w®(x - Ry w®(x + Ry) dx)
]RN
=2 +0@ )P

by part (i), and the conclusion follows. O
We are now ready to prove (3.1). By (1.5),

J W(x)w! (x + Ry)’dx = j W(x - Ry)w‘fo(x)2 dx >ce™® forallR>0, y e SN,

RN RN
for some ¢ > 0. This together with Lemma 3.2 gives

J(W°(- + Ry) —wi®(- - Ry))

sup J(h(y)) = sup

yesh-1 yesh-1 [wi(- + Ry) —w(- - R;V)|f,
2N — ce R _
it S S tOe bRy

< 2P0

if R is sufficiently large, since a < b.
Since A, < A, by (2.10), to complete the proof of Theorem 1.3, it only remains to show that 1y < A,,
when (1.8) holds. By (2.4), A3, — A, < [W]| pl(p-2) and combining this with (3.2), (1.6), and (1.8) gives

(o) o0
Ay <AL <AL = Wlypoz) < Ay
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