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A multiplicity result for the scalar �eld equation
Abstract: We prove the existence of N − 1 distinct pairs of nontrivial solutions of the scalar �eld equation
in ℝN under a slow decay condition on the potential near in�nity, without any symmetry assumptions. Our
result gives more solutions than the existing results in the literature when N ≥ 6. When the ground state is
the only positive solution, we also obtain the stronger result that at least N − 1 of the �rst N minimax levels
are critical, i.e., we locate our solutions on particular energy levels with variational characterizations. Finally
we prove a symmetry breaking result when the potential is radial. To overcome the di�culties arising from
the lack of compactness we use the concentration compactness principle of Lions, expressed as a suitable
pro�le decomposition for critical sequences.
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1 Introduction
Consider the eigenvalue problem for the scalar �eld equation−Δu + V(x)u = ë|u|p−2u, u ∈ H1(ℝN), (1.1)

whereN ≥ 2, V ∈ L∞(ℝN) satis�es lim
|x|→∞

V(x) = V∞ > 0, (1.2)p ∈ (2, 2∗), and 2∗ = 2N/(N − 2) ifN ≥ 3 and 2∗ = ∞ ifN = 2. LetI(u) := ∫
ℝN |u|p and J(u) := ∫

ℝN |∇u|2 + V(x)u2, u ∈ H1(ℝN).
Then the eigenfunctions of (1.1) on the manifold

M := {u ∈ H1(ℝN) : I(u) = 1}
and the corresponding eigenvalues coincide with the critical points and the corresponding critical values of
the constrained functional J|M, respectively. Equation (1.1) has extensively been studied for more than three
decades (see Bahri and Lions [1] for a detailed account). The main di�culty here is the lack of compactness
inherent in this problem. This lack of compactness originates from the invariance of ℝN under the action of
the noncompact group of translations, andmanifests itself in the noncompactness of the Sobolev imbeddingH1(ℝN) í→ Lp(ℝN). This in turn implies that the manifold M is not weakly closed in H1(ℝN) and that J|M
does not satisfy the usual Palais–Smale compactness condition at all energy levels.

Least energy solutions, also called ground states, are well-understood. In general, the in�mumë1 := infu∈M
J(u)

is not attained. For the autonomous problem at in�nity,−Δu + V∞u = ë|u|p−2u, u ∈ H1(ℝN), (1.3)
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the corresponding functional J∞(u) := ∫
ℝN |∇u|2 + V∞u2

attains its in�mum ë∞
1 := inf

u∈M
J∞(u) > 0

at a radial function w∞
1 > 0 and this minimizer is unique up to translations (see Berestycki and Lions [6] and

Kwong [17]). For the nonautonomous problem, we have ë1 ≤ ë∞
1 by (1.2) and the translation invariance of J∞,

and ë1 is attained if ë1 < ë∞
1 (see Lions [19, 20]).

As for higher energy solutions, also called bound states, radial solutions have extensively been studied
when the potential V is radially symmetric (see, e.g., Berestycki and Lions [7], Grillakis [15], Bartsch and
Willem [4], and Conti, Merizzi and Terracini [11]). The subspace H1

r (ℝN) of H1(ℝN) consisting of radially
symmetric functions is compactly imbedded intoLp(ℝN) forp ∈ (2, 2∗)bya compactness result of Strauss [24],
so in this case the restrictions of J and J∞ to M ∩ H1

r (ℝN) have increasing and unbounded sequences of
critical values given by a standard minimax scheme. Furthermore, Sobolev imbeddings remain compact for
subspaceswith any su�ciently robust symmetry (see, e.g., Bartsch andWillem [3], Bartsch andWang [2], and
Devillanova and Solimini [13]).

As for multiplicity in the nonsymmetric case, Zhu [27], Hirano [16], and Clapp and Weth [10] have given
su�cient conditions for the existence of 2, 3, and N/2 + 1 pairs of solutions, respectively (see also Li [18]).
Let us also mention that Cerami, Devillanova and Solimini [9] have obtained in�nitely many solutions under
considerably strong additional asymptotic assumptions. There is also an extensive literature on multiple
solutions of scalar �eld equations in topologically nontrivial unbounded domains (see the survey paper of
Cerami [8]). In the present paper we obtainN − 1 pairs of solutions in thewhole space, without any symmetry
assumptions. We assume that W := V∞ − V ∈ Lp/(p−2)(ℝN),
and write | ⋅ |q for the norm in Lq(ℝN). Our multiplicity result is the following.

Theorem 1.1. Assume thatN ≥ 3, V ∈ L∞(ℝN) satis�es (1.2), p ∈ (2, 2∗), andW ∈ Lp/(p−2)(ℝN) satis�es|W|p/(p−2) < (2(p−2)/p − 1)ë∞
1 (1.4)

and W(x) ≥ c0e−a|x| for all x ∈ ℝN (1.5)

for some constants 0 < a < 2√V∞ and c0 > 0. Then equation (1.1) hasN − 1 pairs of eigenfunctions onM.

Our result givesmore solutions than [10]whenN ≥ 6. Moreover, our proof is simpler than that in [10] and does
not involve any dynamical systems theory arguments. Note also that we do not assume that V is a positive
function as in [10].

We obtain a stronger result when ë1 is the only eigenvalue of (1.1) with a positive eigenfunction on M.
LetA denote the class of all nonempty closed symmetric subsets ofM, letã(A) := inf{l ≥ 1 : there exists an odd continuous map A → ℝl \ {0}}
be the genus of A ∈ A, and setëj := infA∈A

ã(A)≥j

sup
u∈A

J(u), ë∞
j := inf

A∈A
ã(A)≥j

sup
u∈A

J∞(u), j ≥ 2.
We have ëj ≤ ë∞

j by (1.2) and the translation invariance of J∞, and it is known thatë∞
j = 2(p−2)/pë∞

1 , j = 2, . . . , N (1.6)

(see Perera and Tintarev [22]), so ë1 ≤ ⋅ ⋅ ⋅ ≤ ëN ≤ 2(p−2)/pë∞
1 . (1.7)

Under the hypotheses of Theorem 1.1, ë1 < ë∞
1 and hence ë1 is an eigenvalue of (1.1), and it was recently

shown in Perera and Tintarev [22] that ë2 is also an eigenvalue.
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Theorem 1.2. Assume that N ≥ 3, V ∈ L∞(ℝN) satis�es (1.2), p ∈ (2, 2∗), and W ∈ Lp/(p−2)(ℝN) satis�es (1.4)
and (1.5). If (1.1) has no positive eigenfunctions on M corresponding to eigenvalues in (ë1, ë∞

1 ), and has only
a �nite number of eigenfunctions on M corresponding to eigenvalues in (ë1, 2(p−2)/pë∞

1 ), then at least N − 1 of
the minimax levels ë1, . . . , ëN are eigenvalues of (1.1).

Finally we prove a symmetry breaking result whenV is radial. LetAr denote the class of all nonempty closed
symmetric subsets ofMr =M ∩ H1

r (ℝN) and setëj, r := infA∈Ar
ã(A)≥j

sup
u∈A

J(u), ë∞
j, r := infA∈Ar

ã(A)≥j

sup
u∈A

J∞(u), j ≥ 1.
Since the imbedding H1

r (ℝN) í→ Lp(ℝN) is compact, these radial minimax levels are critical for the con-
strained functionals J|Mr and J∞|Mr , respectively. We have ë1,r = ë1 and ë∞

1,r = ë∞
1 . In general, ëj ≤ ëj, r

and ë∞
j ≤ ë∞

j, r, and it is known that ë∞
2 is not critical for J∞|M (see, e.g., Weth [26]), so ë∞

2 < ë∞
2,r.

Theorem 1.3. Assume that N ≥ 3, V ∈ L∞(ℝN) is radial and satis�es (1.2), p ∈ (2, 2∗), and W ∈ Lp/(p−2)(ℝN)
satis�es (1.4), (1.5), and |W|p/(p−2) ≤ ë∞

2,r − ë∞
2 . (1.8)

Then equation (1.1) has N − 2 pairs of eigenfunctions on M corresponding to eigenvalues in (ë1,r, ë2,r). If, in
addition, (1.1) has no positive eigenfunctions on M corresponding to eigenvalues in (ë1,r, ë∞

1,r), and has only
a �nite number of eigenfunctions on M corresponding to eigenvalues in (ë1,r, ë∞

2 ), then at least N − 2 of the
minimax levels ë2, . . . , ëN are eigenvalues of (1.1) in (ë1,r, ë2,r).
Our proofs will use the concentration compactness principle of Lions [19–21], expressed as a suitable pro�le
decomposition for critical sequences of J|M, to overcome the di�culties arising from the lack of compactness.

2 Preliminaries
We will use the norm ‖u‖ = √J∞(u)
on H1(ℝN), which is equivalent to the standard norm. In the absence of a compact Sobolev imbedding, the
main technical tool we use here for handling the convergence matters is the following pro�le decomposition
of Solimini [23] for bounded sequences inH1(ℝN).
Lemma 2.1. Let uk ∈ H1(ℝN) be a bounded sequence, and assume that there is a constant ä > 0 such that
if uk( ⋅ + yk) ⇀ w ̸= 0 on a renumbered subsequence for some yk ∈ ℝN with |yk| → ∞, then ‖w‖ ≥ ä. Then
there are m ∈ ℕ, w(n) ∈ H1(ℝN), y(n)

k ∈ ℝN, y(1)
k = 0 with k ∈ ℕ, n ∈ {1, . . . , m}, w(n) ̸= 0 for n ≥ 2, such that, on

a renumbered subsequence, uk( ⋅ + y(n)
k ) ⇀ w(n), (2.1)|y(n)

k − y(l)
k | → ∞ for n ̸= l,

m∑
n=1

‖w(n)‖2 ≤ lim inf ‖uk‖2,uk − m∑
n=1

w(n)( ⋅ − y(n)
k ) → 0 in Lp(ℝN) for all p ∈ (2, 2∗). (2.2)

Recall that uk ∈M is a critical sequence for J|M at the level c ∈ ℝ ifJ�(uk) − ìkI�(uk) → 0 and J(uk) → c (2.3)

for some sequence ìk ∈ ℝ. By the Hölder inequality,|J∞(u) − J(u)| ≤ ∫
ℝN |W(x)|u2 ≤ |W|p/(p−2)|u|2p = |W|p/(p−2) for all u ∈M, (2.4)
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so uk is bounded. Equation (2.3) implies−Δuk + V(x)uk = ck|uk|p−2uk + o(1), (2.5)

where ck = (p/2)ìk → c since(J�(uk), uk) = 2J(uk) and (I�(uk), uk) = pI(uk) = p.
So if uk( ⋅ + yk) ⇀ w on a renumbered subsequence for some yk ∈ ℝN with |yk| → ∞, then w solves (1.3)
with ë = c by (1.2), in particular, ‖w‖2 = c|w|pp. If w ̸= 0, it follows that c > 0 and ‖w‖ ≥ [(ë∞

1 )p/c]1/2(p−1)
since ‖w‖2/|w|2p ≥ ë∞

1 . Thus, we have the following pro�le decomposition of Benci and Cerami [5] for critical
sequences of J|M.

Lemma 2.2. Let uk ∈M be a critical sequence for J|M at the level c ∈ ℝ. Then it admits a renumbered subse-
quence that satis�es the conclusions of Lemma 2.1 for somem ∈ ℕ, and, in addition,−Δw(1) + V(x)w(1) = c|w(1)|p−2w(1),−Δw(n) + V∞w(n) = c|w(n)|p−2w(n), n = 2, . . . , m, (2.6)J(w(1)) = c I(w(1)), J∞(w(n)) = c I(w(n)), n = 2, . . . , m, (2.7)

m∑
n=1

I(w(n)) = 1, J(w(1)) + m∑
n=2

J∞(w(n)) = c, (2.8)uk − m∑
n=1

w(n)( ⋅ − y(n)
k ) → 0 inH1(ℝN). (2.9)

Proof. The proof is based on standard arguments and we only sketch it. The equations in (2.6) follow
from (2.5), (2.1), and (1.2), and (2.7) is immediate from (2.6). The �rst equation in (2.8) is a particular case
of Tintarev and Fieseler [25, Lemma 3.4], and the second follows from (2.7) and the �rst. The limit (2.9)
follows from (2.2), (2.5), and the continuity of the Sobolev imbedding.

By (2.4), 0 ≤ ë∞
j − ëj ≤ |W|p/(p−2) for all j ≥ 1,

and combining this with (1.4), (1.6), and (1.7) gives0 < ë1 ≤ ë∞
1 < ë2 ≤ ⋅ ⋅ ⋅ ≤ ëN ≤ 2(p−2)/pë∞

1 . (2.10)

Set ë# := [ëp/(p−2)
1 + (ë∞

1 )p/(p−2)](p−2)/p ∈ (ë∞
1 , 2(p−2)/pë∞

1 ],
and let ð(u) := u|u|p
be the radial projection of u ∈ H1(ℝN) \ {0} onM.

Lemma 2.3. Assume that ë∞
1 < ëj < 2(p−2)/pë∞

1 , let uk ∈M be a critical sequence of J|M at the level ëj, and
consider the pro�le decomposition of uk given in Lemma 2.2.
(i) If ëj < ë#, thenm = 1, uk → w(1), w(1) is a critical point of J|M, and J(w(1)) = ëj.
(ii) If ëj ≥ ë# and uk ��  w(1), thenm = 2, w(1) ̸= 0, ð(w(1)) is a critical point of J|M,J(ð(w(1))) = [ëp/(p−2)

j − (ë∞
1 )p/(p−2)](p−2)/p ∈ [ë1, ë∞

1 ), (2.11)

and ð(w(1)) has �xed sign.

Proof. Set tn := I(w(n)). Then tn ≥ 0 and
m∑
n=1

tn = 1 (2.12)



K. Perera, A multiplicity result for the scalar �eld equation | s51

by (2.8), so each tn ∈ [0, 1]. For n ≥ 2, tn ̸= 0 and ë∞
1 t2/pn ≤ J∞(w(n)) = ëjtn by (2.7), sotn ≥ (ë∞

1ëj
)p/(p−2), n = 2, . . . , m. (2.13)

Combining (2.12) and (2.13) gives (m − 1)(p−2)/pë∞
1 ≤ ëj < 2(p−2)/pë∞

1 ,
som ≤ 2. If t1 = 0, thenm = 2 and t2 = 1 by (2.12), sow(2) is a solution of (1.3) onMwith ë = ëj by (2.6), which
is a contradiction since ë∞

1 < ëj < 2(p−2)/pë∞
1 (see, e.g., Cerami [8]). Hence t1 ̸= 0, and ë1t2/p1 ≤ J(w(1)) = ëjt1

by (2.7), so t1 ≥ (ë1ëj
)p/(p−2). (2.14)

Combining (2.12)–(2.14) now gives[ëp/(p−2)
1 + (m − 1)(ë∞

1 )p/(p−2)](p−2)/p ≤ ëj. (2.15)

(i) If ëj < ë#, then m = 1 by (2.15) and hence t1 = 1 by (2.12), so uk → w(1) by (2.9) and w(1) is a solution
of (1.1) onM with ë = ëj by (2.6).

(ii) If uk ��  w(1), thenm ≥ 2 by (2.9) and hencem = 2, andw(1) ̸= 0 since t1 ̸= 0. By (2.6), ð(w(1)) and ð(w(2))
are solutions of (1.1) and (1.3) onM with ë = t(p−2)/p1 ëj and ë = t(p−2)/p2 ëj, respectively. SinceJ∞(ð(w(2))) = t(p−2)/p2 ëj < 2(p−2)/pë∞

1 ,
we get t(p−2)/p2 ëj = ë∞

1 , and combining this with t1 + t2 = 1, J(ð(w(1))) = t(p−2)/p1 ëj, and ë# ≤ ëj < 2(p−2)/pë∞
1

gives (2.11). Since J(ð(w(1))) < ë∞
1 < ë2 by (2.10), ð(w(1)) has �xed sign (see, e.g., Cerami [8]).

The proof of the following lemma is similar to that of Clapp andWeth [10, Lemma 8] and is therefore omitted
(see also Devillanova and Solimini [12, Lemma 2.4]).

Lemma 2.4. If ë∞
1 < ëj = ëj+1 < 2(p−2)/pë∞

1 , then J|M has in�nitely many critical points with value ≤ ëj.

Theorems 1.1 and 1.2 will follow from the following proposition.

Proposition 2.5. IfN ≥ 3, V ∈ L∞(ℝN) satis�es (1.2), p ∈ (2, 2∗), and0 < ë1 < ë∞
1 < ë2 ≤ ⋅ ⋅ ⋅ ≤ ëN < 2(p−2)/pë∞

1 ,
then (1.1) has N − 1 pairs of eigenfunctions on M. If, in addition, (1.1) has no positive eigenfunctions on M

corresponding to eigenvalues in (ë1, ë∞
1 ), and only a �nite number of eigenfunctions on M corresponding to

eigenvalues in (ë1, 2(p−2)/pë∞
1 ), then at leastN − 1 of the minimax levels ë1, . . . , ëN are eigenvalues of (1.1).

Proof. We may assume that ë2 < ⋅ ⋅ ⋅ < ëN in view of Lemma 2.4. For each j ∈ {2, . . . , N}, either ëj > ë∞
1 is an

eigenvalue, or ë̃j := [ëp/(p−2)
j − (ë∞

1 )p/(p−2)](p−2)/p < ë∞
1 (2.16)

is an eigenvalue with a positive eigenfunction on M by Lemma 2.3. It follows that at least N − 1 of the
levels ë̃2 < ⋅ ⋅ ⋅ < ë̃N < ë2 < ⋅ ⋅ ⋅ < ëN are eigenvalues. If ë1 is the only eigenvalue < ë∞

1 with a positive eigen-
function onM, then any ë̃j ̸= ë1 is not an eigenvalue by (2.16).

3 Proofs of Theorems 1.1–1.3
In view of Proposition 2.5 and (2.10), to complete the proofs of Theorems 1.1 and 1.2, it only remains to show
that ë1 < ë∞

1 and ëN < 2(p−2)/pë∞
1 when (1.5) holds. We haveë1 ≤ J(w∞

1 ) = J∞(w∞
1 ) − ∫
ℝN W(x)w∞

1 (x)2 dx ≤ ë∞
1 − c0 ∫

ℝN e−a|x|w∞
1 (x)2 dx < ë∞

1 .
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We will show that there exists an R > 0 such that, for the odd continuous map ℎ from the unit sphereSN−1 ⊂ ℝN toM de�ned by ℎ(y) := w∞
1 ( ⋅ + Ry) − w∞

1 ( ⋅ − Ry)|w∞
1 ( ⋅ + Ry) − w∞

1 ( ⋅ − Ry)|p , y ∈ SN−1,
we have sup

u∈ℎ(SN−1) J(u) < 2(p−2)/pë∞
1 . (3.1)

Since ã(ℎ(SN−1)) ≥ ã(SN−1) = N, it follows thatëN < 2(p−2)/pë∞
1 . (3.2)

First we prove an elementary inequality.

Lemma 3.1. For all a, b ∈ ℝ and p ≥ 2,|a + b|p ≥ |a|p + |b|p − p|a|p−1|b| − p|a||b|p−1. (3.3)

Proof. The inequality is clearly true if a or b is zero, or if a and b have the same sign, so suppose that0 < |b| ≤ |a| and that a and b have opposite signs. Then (3.3) is equivalent to(1 − x)p ≥ 1 + xp − px − pxp−1 for all x ∈ [0, 1], (3.4)

where x = |b/a|. Let f(x) := (1 − x)p − 1 − xp + px, x ∈ [0, 1].
Then f(0) = 0, and f�(x) = p[1 − (1 − x)p−1 − xp−1] ≥ p[1 − (1 − x) − x] = 0 since p − 1 ≥ 1, so f(x) ≥ 0, from
which (3.4) follows.

Recall that w∞
1 (x) ∼ C0

e−√V∞|x||x|(N−1)/2 as |x| → ∞ (3.5)

for some constant C0 > 0 (see Gidas, Ni and Nirenberg [14]).

Lemma 3.2. Let a < b < 2√V∞. Then as R → ∞, uniformly in y ∈ SN−1,
(i) ∫

ℝN w∞
1 (x + Ry)q−1w∞

1 (x − Ry) dx = O(e−bR) for all q ≥ 2,
(ii) J(w∞

1 ( ⋅ + Ry) − w∞
1 ( ⋅ − Ry)) ≤ 2ë∞

1 − ∫
ℝN W(x)w∞

1 (x + Ry)2 dx + O(e−bR),
(iii) |w∞

1 ( ⋅ + Ry) − w∞
1 ( ⋅ − Ry)|p ≥ 21/p + O(e−bR).

Proof. (i) Making the change of variable x Ü→ x + Ry gives∫
ℝN w∞

1 (x + Ry)q−1w∞
1 (x − Ry) dx = ∫

ℝN w∞
1 (x)q−1w∞

1 (x − 2Ry) dx.
By (3.5), w∞

1 (x) ≤ Ce−√V∞|x| for some C > 0, so the integral on the right is bounded by a constant multiple of∫
ℝN e−√V∞[(q−1)|x|+|x−2Ry|] dx ≤ ∫

ℝN e−√V∞|x|−b(2R−|x|)/2 dx
= e−bR ∫

ℝN e−(√V∞−b/2)|x| dx,
and the last integral is �nite since b < 2√V∞.
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(ii) We haveJ(w∞
1 ( ⋅ + Ry) − w∞

1 ( ⋅ − Ry)) = J∞(w1( ⋅ + Ry)) + J∞(w∞
1 ( ⋅ − Ry)) − ∫

ℝN W(x)(w∞
1 (x + Ry) − w∞

1 (x − Ry))2 dx
− 2 ∫
ℝN (∇w∞

1 (x + Ry) ⋅ ∇w∞
1 (x − Ry) + V∞w∞

1 (x + Ry)w∞
1 (x − Ry)) dx

≤ 2ë∞
1 − ∫
ℝN W(x)w∞

1 (x + Ry)2 dx + 2|W|∞ ∫
ℝN w∞

1 (x + Ry)w∞
1 (x − Ry) dx

− 2ë∞
1 ∫
ℝN w∞

1 (x + Ry)p−1w∞
1 (x − Ry) dx

since w∞
1 ( ⋅ + Ry) solves (1.3) with ë = ë∞

1 , and the last two terms are of the orderO(e−bR) by part (i).
(iii) By Lemma 3.1,|w∞

1 ( ⋅ + Ry) − w∞
1 ( ⋅ − Ry)|p ≥ (|w∞

1 ( ⋅ + Ry)|pp + |w∞
1 ( ⋅ − Ry)|pp − p ∫

ℝN w∞
1 (x + Ry)p−1w∞

1 (x − Ry) dx
− p ∫
ℝN w∞

1 (x − Ry)p−1w∞
1 (x + Ry) dx)1/p

= (2 + O(e−bR))1/p
by part (i), and the conclusion follows.

We are now ready to prove (3.1). By (1.5),∫
ℝN W(x)w∞

1 (x + Ry)2 dx = ∫
ℝN W(x − Ry)w∞

1 (x)2 dx ≥ ce−aR for all R > 0, y ∈ SN−1,
for some c > 0. This together with Lemma 3.2 givessup

y∈SN−1 J(ℎ(y)) = supy∈SN−1 J(w∞
1 ( ⋅ + Ry) − w∞

1 ( ⋅ − Ry))|w∞
1 ( ⋅ + Ry) − w∞

1 ( ⋅ − Ry)|2p≤ 2ë∞
1 − ce−aR22/p + O(e−bR)< 2(p−2)/pë∞

1

if R is su�ciently large, since a < b.
Since ë1,r < ë2 by (2.10), to complete the proof of Theorem 1.3, it only remains to show that ëN < ë2,r

when (1.8) holds. By (2.4), ë∞
2,r − ë2,r ≤ |W|p/(p−2), and combining this with (3.2), (1.6), and (1.8) givesëN < ë∞

2 ≤ ë∞
2,r − |W|p/(p−2) ≤ ë2,r.
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