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Solitons in gauge theories: Existence and dependence on
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Abstract: In this paper we review recent results on the existence of non-topological solitons in classical

relativistic nonlinear �eld theories. We follow the Coleman approach, which is based on the existence

of two conservation laws, energy and charge. In particular we show that under mild assumptions on the

nonlinear term it is possible to prove the existence of solitons for a set of admissible charges. This set has

been studied for the nonlinear Klein–Gordon equation, and in this paperwe state new results in this direction

for the Klein–Gordon–Maxwell system.
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1 Introduction
In this paper we are interested in the existence of non-topological soliton solutions in relativistic classical �eld

theories. The principle governing the existence of these solutions, which contrarily to the topological ones

are assumed to vanish at in�nity, is due to Coleman [13] and is given by the presence of two conservation

laws, energy and charge. In fact solitons are found as critical points of the energy functional restricted to the

manifold of function with �xed charge, and in particular as global minimizers of the energy on the mani-

fold. These two properties together imply the main feature of a soliton solution, namely concentration and

orbital stability.

The main �eld theories are built on the existence of a variational principle, and the corresponding equa-

tions are found as Euler–Lagrange equations of an action functional. Moreover it is nowadays well known

that the existence of concentrated solutions for �eld equations is implied by the presence of a nonlinear

term in the equation. A �rst appearance of this principle can be identi�ed in the words of Louis de Broglie

([15, p. 99]):

“Considerations lead me today to believe that the particle must be represented, not by a true point
singularity of u, but by a very small singular region in space where u would take on a very large value
and would obey a non-linear equation, of which the linear equation of Wave Mechanics would be only
an approximate form valid outside the singular region. The idea that the equation of propagation of u,
unlike the classical equation of ×, is in principle non-linear now strikes me as absolutely essential.”

Finally, for equations of variational nature, the classical Noether’s theorem states that the existence of con-

servation laws follows from the existence of group actions which leave the Lagrangian density invariant.

So if we want to study �eld theories to which to apply the Coleman approach, we have to consider non-

linear �eld equations with symmetries, and in particular gauge symmetries which are related to the charge

invariance.

In this paper we review some recent results in this direction [2–5, 7, 8, 11] for relativistic theories, keeping

the discussion to a level as general as possible. Many results are available for non-relativistic theories, for

example for the nonlinear Schrödinger equations the existence of solitons has been proved in [12], as well
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for relativistic theories, see [17] for a general theory of orbital stability for solutions of Hamiltonian systems.

We believe that the advantages of our approach are that the assumptions can be always explicitly veri�ed for

a given model.

In Section 2 we introduce the notions of matter �eld and gauge potentials, the de�nition of solitons and

the abstract principle which implies their existence. Then in Sections 3 and 5we show the applications of this

principle to relativistic gauge theories, where our aim is to impose on the nonlinear term as less assumptions

as possible but su�cient for the existence of solitons. Our approach makes evident the role of the charge,

indeed our assumptions are su�cient to prove existence of solitons for a given set of charges. So in general

we pay theweakness of the assumptions by the impossibility of proving the existence of solitons for any given

charge. The set of admissible charges has been discussed in [11] for the nonlinear Klein–Gordon equation of

Section 3. In this paper we prove in Section 5.1 similar new results for the nonlinear Klein–Gordon–Maxwell

system, showing in particular that there exist solitons with arbitrarily big electric charge, see Theorem 5.6.

2 The abstract theory
In this section we introduce the abstract framework in which we give precise de�nitions of solitary waves,

solitons and vortices. We refer to [3, 4, 9] for more details and discussions.

When talking about gauge theories we mean equations for a couple of �elds (÷(t, x), Ã(t, x)) ∈ X with

÷ : ℝ × ℝ3 → ℂN, N ≥ 1,

and Ã = (Ãj) for j = 0, 1, 2, 3 with

Ãj : ℝ × ℝ3 → g, j = 0, 1, 2, 3,

where g is the Lie algebra of a subgroup G of the unitary group U(N). We call ÷ the matter �eld and Ã the

gauge potentials. These equations are assumed to be the Euler–Lagrange equations of an action functional

S = ∫ℝ×ℝ3 L(t, x, ÷, àt÷, ∇÷, Ã, àtÃ, ∇Ã) dtdx
with Lagrangian densityL. In variational systems, the Noether Theorem implies the existence of a conserva-

tion law for any one-parameter Lie group of transformations which leaves invariant the Lagrangian. At least

two kind of group actions can be considered:¹

∙ actions on the variables – this is the case of a groupH = {ℎë}which acts onℝ × ℝ3 and induces onX the

representation

H × X ∋ (ℎë, ÷, Ã) Ü→ (Tℎë÷, TℎëÃ)(t, x) = (÷(ℎë[t, x]), Ã(ℎë[t, x])) ∈ X,

∙ gauge actions - this is the case of a groupH = {ℎë} which acts on ℂN × g and induces onX the represen-

tation

H × X ∋ (ℎë, ÷, Ã) Ü→ (Tℎë÷, TℎëÃ)(t, x) = ℎë[÷(t, x), Ã(t, x)] ∈ X.

For the �rst kind in this paper we consider Lagrangian densities which are invariant under the action of the

Poincaré group, giving rise to second order equations in time. Hence we have the following ten conservation

laws:

∙ E – energy, the quantity associated to the invariance of the Lagrangian density with respect to time trans-

lations ℎë(t, x) = (t + ë, x). We assume that the energy assumes non-negative values,

∙ P⃗ –momentum, the quantity associated to the invariance of the Lagrangian density with respect to space

translations, namely the action ℎë(t, x) = (t, x + ëv) for any direction v ∈ ℝ3,
1 We denote by square brackets the action of a group member, not to make confusion with the dependence on the space-time

variables.
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∙ L⃗ – angular momentum, the quantity associated to the invariance of the Lagrangian density with re-

spect to space rotations, namely any one-parameter subgroup {ℎë} of the orthogonal group O(3), acting
as ℎë(t, x) = (t, ℎë(x)),

∙ V⃗ – ergocenter velocity, the quantity associated to the invariance of the Lagrangian density with respect

to Lorentz boosts.

For the second kind we consider the case of actions of G < U(N) on ℂN by standard matrix representation,

and on g by a translate of the adjoint representation. However, looking atℂN × g as the �ber of a trivial bundle

with ℝ × ℝ3 as base space, the main feature is whether the gauge action depends or not on the point of the

base space. This is discussed in Section4andgives rise to thenotions of global and local gaugeactions. In both

cases, associated to the gauge actionswehave k (= dimG) conservation laws, andwe call hylomorphic charges
the respective invariant quantities C.

To give de�nitions of solitary waves and solitons, we need to introduce a dynamical point of view. We can

think of the solutions (÷(t, x), Ã(t, x)) ∈ X of our �eld equations as orbits of a dynamical system de�ned by

a time evolution map U : ℝ × Y → Y de�ned for all t ∈ ℝ, where Y is the phase space of the system given by

the couples (×, Ø), with × = (÷, àt÷) and Ø = (Ã, àtÃ). The form of Y comes from the fact that the equations

are of second order in time. So if (×0, Ø0) ∈ Y are the initial conditions of our equations, the evolution of the

system is described by

(×(t, x), Ø(t, x)) = U(t, (×0, Ø0)). (2.1)

We assume that for all (÷, Ã) ∈ X it holds÷ ∈ L2(ℝ3, ℂN). This implies that for the orbits of our systemwe

can de�ne the barycenter of the matter �eld as

⃗q÷(t) = ∫ℝ3 x|÷(t, x)|2ℂN dx

∫ℝ3 |÷(t, x)|2ℂN dx
.

The term solitary wave is usually used for solutions of �eld equations for which the energy of the matter �eld

is localized. Using the notion of barycenter, we give a formal de�nition of solitary wave.

De�nition 2.1. A state (×0, Ø0) is called solitary wave if for any ù > 0 there exists a radius R > 0 such that for

all t ∈ ℝ

∫ℝ3 |÷(t, x)|2ℂN dx − ∫BR( ⃗q÷(t)) |÷(t, x)|2ℂN dx < ù,

where ×(t, x) = (÷(t, x), àt÷(t, x)) and (×(t, x), Ø(t, x)) = U(t, (×0, Ø0)). Moreover BR( ⃗q÷(t)) denotes the ball

inℝ3 of radius R and center ⃗q×(t).
De�nition 2.2. A vortex state (×0, Ø0) is a solitary wave with non-vanishing angular momentum.

The solitons are solitary waves which are orbitally stable.

De�nition 2.3. A state (×0, Ø0) is called soliton if it is a solitary wave and the matter �eld is orbitally stable,

that is there exists a �nite dimensional manifoldM with ×0 ∈ M such that:

∙ M is U-invariant, that is for any state (Õ0, Ø̃0) with Õ0 ∈ M, it holds Õ(t, x) ∈ M for all t ∈ ℝ, where

(Õ(t, x), Ø̃(t, x)) is the evolution of (Õ0, Ø̃0) as de�ned in (2.1),

∙ M is U-stable, that is for any ù > 0 there exists ä > 0 such that if d(Õ0,M) < ä for some (Õ0, Ø̃0), then
d(Õ(t, x),M) < ù for all t ∈ ℝ, where (Õ(t, x), Ø̃(t, x)) is de�ned as above and d is a distance on the space

of matter �elds.

In our approach the existence of conservation laws is fundamental to obtain solitons. Indeed given the set of

functions with �xed charge

Òò = {(÷, Ã) ∈ X : C(÷, Ã) = ò}

we obtain solitons �rst proving that the energy E has minimum on Òò, then showing that the set Mò of

minimizers is made of solitary waves and that Mò is a �nite dimensional manifold which is U-invariant

and U-stable. For an approach to stability of solitary waves in Hamiltonian PDEs see [17]. The main di�er-
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ence with our approach is that we give su�cient conditions for stability which depend only on the energy

functional, whereas to check the su�cient conditions given in [17] one needs to havemore information about

the solution.

3 Global gauge theory: The nonlinear Klein–Gordon equation
In this section we review the results for the case of global gauge actions, namely for the case of a group

H = {ℎë}ë∈ℝ acting on ℂN × g, where the elements ℎë do not depend on the variables (t, x). In particular we

consider the simplest dynamical system which is generated by a Lagrangian density which is invariant for

the action of the Poincaré group.

Let Ã ≡ 0 and the matter �eld ÷(t, x) ∈ H1(ℝ × ℝ3, ℂ) = X. We consider the Lagrangian density

L(÷, àt÷) = 1
2
|àt÷|2 − 1

2
|∇÷|2 −W(|÷|) (3.1)

for a C2
-functionW: ℝ+ → ℝ. The Euler–Lagrange equation of L is the nonlinear Klein–Gordon equation

à2t÷ − Δ÷ +W�(|÷|) ÷
|÷|

= 0. (NLKG)

The Lagrangian density (3.1) is invariant for the action of the Poincaré group on (t, x), which implies the exis-

tence of ten conservation laws: energy,momentum, angularmomentumand ergocenter velocity. In particular

energy takes the form

E(÷, àt÷) = ∫ℝ3(12 |àt÷|2 + 1
2
|∇÷|2 +W(|÷|)) dx (3.2)

and the angular momentum is given by

L⃗(÷, àt÷) = ℜ ∫ℝ3 ( ⃗x × ∇÷) àt÷dx.

Moreover, since the LagrangianL only depends on themodulus of÷ and àt÷, it is invariant also for the action

of the one-dimensional global gauge group U(1) ≅ S1 = {eië}ë∈ℝ which is given by

S1 × X ∋ (eië, ÷) Ü→ eië÷(t, x) ∈ X. (3.3)

By Noether’s theorem we obtain one more conservation law, which we call hylomorphic charge C, and which

is given by

C(÷, ÷t) = ℑ ∫ℝ3 ÷ àt÷dx.

For equation (NLKG), the easiest way to produce a solitary wave solution is to look for solutions of the form

÷(t, x) = u(x)e−iøt (3.4)

for u(x) : ℝ3 → ℝ+ in H1(ℝ3) and ø ∈ ℝ. Notice that these functions are an orbit of u(x) for the action of the

gauge group S1 with ë = −øt. A function of the form (3.4) is a solution of (NLKG) if it satis�es

−Δu − ø2u + W�(u) = 0. (3.5)

It is immediate to verify that functions of the form (3.4) satisfy De�nition 2.1 with ⃗q÷(t) = ⃗q÷(0) for all t ∈ ℝ.
We can introduce the space of solitary waves of form (3.4)

XS := {(u, ø) ∈ H1(ℝ3, ℝ+) × ℝ}
which is embedded intoX by

XS ∋ (u, ø) Ü→ u(x)e−iøt ∈ X.
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Moreover we consider the energy and charge functionals onXS. We get

E(u, ø) := E|XS = ∫ℝ3(12 |∇u|2 +W(u) +
1
2
ø2u2) dx,

C(u, ø) := C|XS = − ∫ℝ3 øu2 dx.
Moreover notice that L⃗|XS ≡ 0, henceXS does not contain vortices.

We now sketch the steps to prove the existence of solitons for (NLKG). First of all we need to show that

there are solitary waves, namely couples (u, ø) ∈ XS solutions of (3.5). The �rst result of existence of solutions
for equations like (3.5) in a general form dates back to the classical paper by Berestycki and Lions [10], see

also [14]. Here we use the following simple remark

Proposition 3.1 ([2]). A couple (u, ø) ∈ XS is a solution of equation (3.5) if and only if (u, ø) is a critical point of
the energy E(u, ø) constrained to the manifold

ÒSò := {(u, ø) ∈ XS : C(u, ø) = ò}.

We are then reduced to prove the existence of critical points ofE constrained toÒSò for some ò ∈ ℝ. The easiest
way to prove the existence of a such critical point is to show that E, which is a di�erentiable functional, has

a point of minimum on ÒSò. It turns out that points of minima are relevant also for the second part of the

existence of a soliton for (NLKG), namely the proof that the found solitary wave is orbitally stable.

Let (u0, ø0) ∈ XS be a minimizer of E on ÒSò, where ò = C(u0, ø0). Then, since the energy E is invariant

under the action of the Poincaré group and of the gauge group S1, it follows that we actually have a �nite

dimensional manifold of minimizers for E, and henceforth for E, given by

M(u0, ø0) = {÷(t, x) = u0(x + a)ei(−ø0t+è) : a ∈ ℝ3, è ∈ ℝ}.

Notice that for all ÷ ∈ M(u0, ø0) we have C(÷) = C(u0, ø0) = ò.
We say that (u0, ø0) is an isolated point of minimum for E if for any other minimizer (u1, ø1) ∈ ÒSò,

with u1(x)e−iø1t ̸∈ M(u0, ø0), it holds
M(u0, ø0) ∩M(u1, ø1) = 0.

Theorem 3.2 ([2]). If (u0, ø0) is an isolated point of local minimum for E constrained to ÒSò, then M(u0, ø0) is
a stable manifold for the �ow associated to the nonlinear Klein–Gordon equation. In particular the function
÷(t, x) = u0(x)e−iø0t is a soliton solution to (NLKG).

Hence, putting together Proposition 3.1 and Theorem 3.2 we need to show the existence of an isolated point

of local minimum for E constrained to ÒSò for some ò. It follows from [2] and [11] that it is possible to study the

existence of such point of minimum depending on the value of ò.
We now introduce the assumptions on the nonlinear term W: ℝ+ → ℝ. We assume that W is of class C2

and of the form

W(s) =
1
2
m2s2 + R(s)

such that

(W0) m > 0 and R(0) = R�(0) = R��(0) = 0,
(W1) R(s) ≥ − 12m2s2 for all s ∈ ℝ+,
(W2) there exists an s0 > 0 such that R(s0) < 0,
(W3) there exist positive constants c1, c2 such that

|R��(s)| ≤ c1sp−2 + c2sq−2
for all s ∈ ℝ+ and some 2 < p, q < 6.

We brie�y comment on these assumptions: (W0) simply implies W��(0) = m2 ̸= 0, which can be interpreted

as a non-vanishing condition for the “mass” of the matter �eld ÷; (W1) implies that W(s) ≥ 0, so that the

energy (3.2) is non-negative; (W2) and (W3) are standard assumptions in the variational approach to elliptic
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equations. In particular (W2) is fundamental for the existence of solitary waves, as was already observed

in [10]. Finally (W3) says that W is sub-critical with respect to the Sobolev embedding. This assumption can

be weakened as discussed for example in [2].

Let us introduce the notation

X−S := {u ∈ H1(ℝ3, ℝ+) : J(u) := ∫ℝ3(12 |∇u|2 + R(u)) dx < 0}

and

òg := infu∈X−S(m‖u‖2L2 − ‖u‖L2√2 |J(u)|) ≥ 0.

Putting together the results from [2] and [11] we state the following:

Theorem 3.3 ([2, 11]). Under assumptions (W0)–(W3) on the nonlinear termW, we have:
(i) if |ò| > òg, then E(u, ø) admits a point of global minimum on ÒSò;
(ii) if |ò| ≤ òg, then infÒSò E(u, ø) is not attained,
(iii) if there exist á > 0 and ù ∈ (0, 43 ) such thatR(s) < 0 for s ∈ (0, á) and lim sups→0+ (|R(s)|/s2+ù) > 0, then òg = 0,
(iv) if òg = 0, then there exists á > 0 such that R(s) < 0 for s ∈ (0, á) and lim sups→0+ (|R(s)|/s2+ 43 ) > 0,
(v) if òg > 0, there exists òb < òg such that if ò ∈ (òb, òg] then E(u, ø) admits a point of local minimum on ÒSò,
(vi) if òg > 0 and there exists s1 > 0 such that R(s1) = − 12m2s21, then òb = 0.

It follows from Theorem 3.3 that we have information about the existence of a soliton of charge ò according

to the behavior of the nonlinear termW(s). See [16] for a result on a system of Klein–Gordon equations using

this approach.

We now consider the existence of vortices for the nonlinear Klein–Gordon equation. We refer to [4] for

more details (see also [1]). As stated above, functions of the form (3.4) have vanishing angular momentum.

Hence we have to change the ansatz. For x ∈ ℝ3 let us write x = (y, z) ∈ ℝ2 × ℝ, and consider functions of the

form

÷(t, x) = u(x)ei(ℓè(y)−øt) (3.6)

for u(x) : ℝ3 → ℝ+ inH1(ℝ3), ø ∈ ℝ, ℓ ∈ ℤ and

è(y) := ℑ log(y1 + iy2) ∈ ℝ/2ðℤ (3.7)

is the angular variable in the (y1, y2)-plane. Letting r := √y21 + y22 , by de�nition è satis�es

Δè = 0, ∇è = (−
y2
r2 , y1r2 , 0), |∇è| =

1
r
.

It follows that a function ÷ of the form (3.6) is a solution of (NLKG) if the triple (u, ø, ℓ) is a solution of

−Δu + (
ℓ2
r2 − ø2)u + W�(u) = 0. (3.8)

Computing the energy, charge and angular momentum on functions of the form (3.6) we �nd

E(u, ø, ℓ) := ∫ℝ3(12 |∇u|2 +W(u) +
1
2
(
ℓ2
r2 + ø2)u2) dx,

C(u, ø, ℓ) := − ∫ℝ3 øu2 dx
L⃗(u, ø, ℓ) := (0, 0, − ∫ℝ3 ℓøu2 dx) = (0, 0, ℓC(u, ø, ℓ)).

Hence if we �nd a solution to (3.8) with ℓ ̸= 0 and non-vanishing charge, then we have a vortex solution

to (NLKG). This is accomplished as for solitary waves by �rst noticing that the analogous of Proposition 3.1

holds. Namely,

Proposition 3.4 ([4]). Let ℓ ∈ ℤ \ {0} be �xed. The triple (u, ø, ℓ) is a solution of equation (3.8) if and only if (u, ø)
is a critical point of the energy E(u, ø, ℓ) constrained to the manifold ÒSò.
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Again the easiest way to �nd constrained critical points for E(u, ø, ℓ) is to look for minimizers onÒSò. A weaker

version of Theorem 3.3 holds:

Theorem 3.5 ([4]). Under assumptions (W0)–(W3) and for any �xed ℓ ∈ ℤ \ {0}, there exists ò0 > 0 such that
if |ò| > ò0, then the energy E(u, ø, ℓ) admits a point of global minimum on ÒSò. In particular the nonlinear
Klein–Gordon equation admits a vortex solution with �nite energy, charge ò and angular momentum ℓò.

The orbital stability of these vortex solutions is open at this moment. However in [4] we give some analytical

and numerical results that suggest that these solutions are unstable.

4 Global vs local gauge theories
In the last sectionwehave considered the Euler–Lagrange equations related to a simple Lagrangian densityL

depending only on the matter �eld. The Lagrangian L was invariant under the action of the global gauge

group S1. Now we examine how a Lagrangian density has to change if we want to consider the action of

a local gauge group. For this section we refer to [20].

Let us consider the Lagrangian density (3.1) with ÷(t, x) ∈ ℂN and a group G < U(N) with Lie algebra g.

Let us consider the gauge action on ℂN of G-valued functions g(t, x) ∈ G de�ned in ℝ × ℝ3. So for each

(t, x) ∈ ℝ × ℝ3, we consider the action

G × ℂN ∋ (g(t, x), ÷(t, x)) Ü→ g(t, x)[÷(t, x)] ∈ ℂN.
Let us see howL changes when evaluated on g(t, x)[÷(t, x)]. The last term is unchanged,W(|g[÷]|) = W(|÷|),
since g(t, x) ∈ G < U(N) for each (t, x). Instead the terms containing the derivatives of ÷ become

|àj(g(t, x)[÷(t, x)])| = |(àjg(t, x))÷(t, x) + g(t, x) àj÷(t, x)|
for j = 0, 1, 2, 3, where² à0 = −àt and ∇ = (à1, à2, à3). One way to keep invariance also of the terms with deriva-

tives is to substitute {àj}j=0,1,2,3 with the covariant derivatives

Dj := àj + q Ãj(t, x), j = 0, 1, 2, 3, (4.1)

where q > 0 is a real parameter, which is the strength of the action of Ã on the matter �eld, and Ã = (Ãj) are
the gauge potentials, that is g-valued functions. The covariant derivatives have been introduced in di�erential

geometry to di�erentiate functions de�ned on manifolds along tangent vectors. In this approach the gauge

potentials are called connection. We refer the reader to [18].

Hence let

L0(÷, àt÷, ∇÷) := 1
2
|D0÷|2 − 1

2

3
∑j=1 |Dj÷|2 −W(|÷|). (4.2)

Denoting Ã̃j(t, x) = g(t, x)[Ãj(t, x)], we have

|(àj + q Ã̃j(t, x))(g(t, x)[÷(t, x)])| = |(àjg(t, x))÷(t, x) + g(t, x) àj÷(t, x) + q Ã̃j(t, x)g(t, x)[÷(t, x)]|
= |g(t, x)[àj÷(t, x) + (q g−1(t, x)Ã̃j(t, x)g(t, x) + g−1(t, x)àjg(t, x))÷(t, x)]|
= |àj÷(t, x) + (q g−1(t, x)Ã̃j(t, x)g(t, x) + g−1(t, x)àjg(t, x))÷(t, x)|,

where in the last equality we have used again that g(t, x) ∈ G < U(N) for each (t, x). Finally, letting

q g−1(t, x)Ã̃j(t, x)g(t, x) + g−1(t, x)àjg(t, x) = q Ãj(t, x)
it follows that

|(àj + q Ã̃j(t, x))(g(t, x)[÷(t, x)])| = |(àj + q Ã̃j(t, x))÷(t, x)|.
2 The signs come from the choice of a metric onℝ × ℝ3 (see [5]).
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Hence the Lagrangian density (4.2) is invariant for the action of a local gauge groupG < U(N) if we de�ne the

gauge action of G on the gauge potentials Ã by

g(t, x)[Ãj(t, x)] = g(t, x)Ãj(t, x)g−1(t, x) − 1
q
(àjg(t, x))g−1(t, x). (4.3)

Finally typically one wants to study systems in which the gauge potentials are not an external action

on the matter �eld, but are instead part of the system. In this case one needs to add another term to the

Lagrangian density to drive the evolution of Ã. It turns out that one of the simplest terms which is invariant

under the action (4.3) of the gauge group is given by

L1(Ã, àtÃ, ∇Ã) := 1
2

3
∑j=1 ‖F0j‖2 − 1

4

3
∑k,j=1 ‖Fkj‖2, (4.4)

where F = (Fkj) is the strength of the gauge �eld, or the curvature of the connection Ã in di�erential geometry,

with

Fkj := àkÃj − àjÃk + q [Ãk, Ãj] ∈ g (4.5)

and [ ⋅ , ⋅ ] is the standard commutator, and �nally ‖U‖2 := trace(U∗U) is the Hilbert norm on g.

In the next sections we study local gauge theories with N = 1 and N = 2 using the Lagrangian den-

sity L = L0 + L1.
5 Local gauge theory: The Abelian case
We �rst consider the case N = 1 and G = U(1), so that ÷(t, x) ∈ ℂ and Ã = (Ãj) with Ãj(t, x) ∈ g = u(1) = i ℝ.
This is called the Abelian case because the gauge group G is Abelian.

The system of equations that we obtain is called Klein–Gordon–Maxwell system, since as we show below,

it can be interpreted as the system for a charged particle interacting with itself through the nonlinear termW
and with an electromagnetic �eld with potentials Ã. For this reason we use the notation of Ã as a four-vector

with components

Ã = (−iÿ, iA) where A = (A1, A2, A3).
The covariant derivatives (4.1) then take the form

D0÷ := (−àt − iqÿ)÷, Dj÷ := (àj + iqAj)÷, j = 1, 2, 3.

Using this notation we rewrite L0 in (4.2) as follows:

L0(÷, àt÷, ∇÷) = 1
2
|àt÷ + iqÿ÷|2 − 1

2
|∇÷ + iqA÷|2 −W(|÷|). (5.1)

To write L1 in (4.4) we �rst compute the components Fkj de�ned in (4.5), which in this case are complex

numbers given by

F0j = −iàtAj + iàjÿ, j = 1, 2, 3,

Fkj = iàkAj − iàjAk, k, j = 1, 2, 3,

and ‖Fkj‖2 = |Fkj|2. It follows that3
∑j=1 ‖F0j‖2 = 3

∑j=1(àtAj − àjÿ)2 = |àtA − ∇ÿ|2,
3
∑k,j=1 ‖Fij‖2 = 2(|F12|2 + |F23|2 + |F31|2) = 2|∇ × A|2

and

L1(Ã, àtÃ, ∇Ã) = 1
2
|àtA − ∇ÿ|2 − 1

2
|∇ × A|2. (5.2)
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In this case the gauge action on the matter �eld ÷ is the same as in the Klein–Gordon equation and is given

by (3.3), and the action (4.3) becomes

eië(t,x)[Ãj(t, x)] = Ãj(t, x) − i
q
àjë(t, x). (5.3)

Using (5.3) it is easy to verify that eië(t,x)[Fkj(t, x)] = Fkj(t, x) for each k, j = 0, 1, 2, 3.
To obtain the Klein–Gordon–Maxwell systemof equations, wemake the variations of S = ∫(L0 + L1)with

respect to ÷, ÿ and A, and obtain

D20÷ −
3
∑j=1D2j÷ +W�(÷) = 0, (5.4)

∇ ⋅ (àtA − ∇ÿ) + qℜ(i÷àt÷̄) + q2|÷|2ÿ = 0, (5.5)

àt(àtA − ∇ÿ) + ∇ × (∇ × A) + qℜ(i÷∇÷̄) + q2|÷|2A = 0, (5.6)

and we look for solutions

(÷, ÿ,A) ∈ X = H1(ℝ × ℝ3, ℂ) × Ḣ1(ℝ × ℝ3, ℝ) × (Ḣ1(ℝ × ℝ3, ℝ))3.
A useful approach to equations (5.4)–(5.6) is to look for solutions ÷(t, x) ∈ ℂ written in polar form,

that is

÷(t, x) = u(t, x)ei S(t,x), u ∈ ℝ+, S ∈ ℝ/2ðℤ. (5.7)

Using notation (5.7), equation (5.4) splits into the equations

à2t u − Δu + [|∇S + qA|2 − (àtS + qÿ)2]u + W�(u) = 0, (5.8)

àt[(àtS + qÿ)u2] − ∇ ⋅ [(∇S + qA)u2] = 0, (5.9)

and (5.5) and (5.6) become

∇ ⋅ (àtA − ∇ÿ) + q(àtS + qÿ)u2 = 0, (5.10)

àt(àtA − ∇ÿ) + ∇ × (∇ × A) + q(∇S + qA)u2 = 0. (5.11)

If we make the identi�cations

E = −àtA + ∇ÿ, H = ∇ × A

with E the electric �eld andH the magnetic �eld, and

ñ = q(àtS + qÿ)u2, j = −q(∇S + qA)u2
with ñ the electric charge density and j the electric current density, it follows that equation (5.9) is the conti-

nuity equation for the electric charge density, equation (5.10) is the Gauss equation and equation (5.11) is the

Ampère equation. Moreover the Faraday equation and the null-divergence equation for themagnetic �eld are

automatically satis�ed. Hence (5.8)–(5.11) is called the Klein–Gordon–Maxwell system.

The Lagrangian density L = L0 + L1 given by (5.1) and (5.2) is invariant for the action of the Poincaré

group, hence we obtain the ten conservation laws given by energy

E =
1
2
∫ℝ3 [(àtu)2 + |∇u|2 + ñ2 + |j|2

q2u2 + 2W(u) + |àtA − ∇ÿ|2 + |∇ × A|2] dx,
momentum P⃗, angular momentum

L⃗ = ∫ℝ3 x × [àtu∇u −
ñ∇S
q2u2 + (àtA + ∇ÿ) × (∇ × A)] dx

and velocity of the ergocenter V⃗. Finally the gauge action gives one more conservation law, the hylomorphic

charge

C = ∫ℝ3 ñ dx = q ∫(àtS + qÿ)u2 dx. (5.12)
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The existence of soliton and vortex solutions to equations (5.8)–(5.11) has been proved in [7, 8] using the

ansatz (3.6)

÷(t, x) = u(x)ei(ℓè(y)−øt).
These solutions have non-vanishing matter angular momentum (see [7])

L⃗m := ∫ℝ3 ℓu2(−ø + qÿ)( ⃗x × ∇è) dx

when ℓ ̸= 0. We recall the notation x = (y, z) ∈ ℝ2 × ℝ and r = √y21 + y22 . Benci and Fortunato proved:

Theorem 5.1 ([7, 8]). Let W satisfy (W0)–(W3) of Section 3. Then for all ℓ ∈ ℤ there exists q0 > 0 such that for
every q ∈ (0, q0) the system (5.8)–(5.11) admits a �nite energy solution (u, ø, ÿ,A) in the sense of distributions
with u = u(r, z) ̸≡ 0, ø > 0, ÿ = ÿ(r, z) ̸≡ 0, A = a(r, z)∇è with A ≡ 0 if and only if ℓ = 0. Moreover, if ℓ = 0, these
solutions are orbitally stable.

This theorem shows the existence of solitons and vortices for small enough interaction between the matter

and the gauge �eld as quanti�ed by the parameter q. In the next subsection we give more details of the proof

of Theorem 5.1 for solitary waves, that is for ℓ = 0, studying the dependence on the charge (5.12), showing the

existence of solitary waves for arbitrarily large q or electric charge.

5.1 Solitary waves in Abelian gauge theories

Here we follow the approach in [6] (see also [19]). We look for solitary waves solutions to system (5.8)–(5.11)

using the ansatz (3.4)

÷(t, x) = u(x)e−iøt
with ø ̸= 0, so that by Theorem 5.1 we also have A ≡ 0, and we also assume ÿ = ÿ(x) and introduce the nota-

tion õ(x) = ÿ(x)ø . Hence the Klein–Gordon–Maxwell system reduces to the equations

−Δu − ø2(qõ − 1)2u + W�(u) = 0, (5.13)

−Δõ + q(qõ − 1)u2 = 0 (5.14)

with equations (5.9) and (5.11) being identically satis�ed. So we consider the space of solitary waves

XS := {(u, ø, õ) ∈ H1(ℝ3, ℝ+) × ℝ × Ḣ1(ℝ3, ℝ)}
which is embedded intoX by

XS ∋ (u, ø, õ) Ü→ (u(x)e−iøt, øõ(x), 0) ∈ X.

Energy and charge onXS are given by

̃E(u, ø, õ) := E|XS = ∫ℝ3(12 |∇u|2 + 1
2
ø2(qõ − 1)2u2 +W(u) +

1
2
ø2|∇õ|2) dx,

C̃(u, ø, õ) := C|XS = q ∫ℝ3 ø(qõ − 1)u2 dx.
In their approach to system (5.13)–(5.14), Benci and Fortunato �rst prove that for any u ∈ H1

there exists

a unique solution õu ∈ Ḣ1
to (5.14), with the map

H1 ∋ u Ü→ õu ∈ Ḣ1
being of class C1

, and

0 ≤ õu(x) ≤ 1
q
. (5.15)
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Hence they introduce onH1
the C1

-functional

K(u) := ∫ℝ3 (|∇õu|2 + (qõu − 1)2u2) dx = ∫ℝ3 (1 − qõu)u2 dx (5.16)

which satis�es (cf. [6, Lemma 8] and [19, Lemma 2.1])

K�(u) = 2u(1 − qõu)2.
Hence if we consider the reduced energy and charge

E(u, ø) := ̃E(u, ø, õu) = ∫ℝ3(12 |∇u|2 +W(u)) dx +
1
2
ø2K(u),

C(u, ø) := C̃(u, ø, õu) = −qøK(u),

we get:

Proposition 5.2 ([6]). A triple (u, ø, õ) ∈ XS is a solution of system (5.13)–(5.14) if and only if õ = õu solves equa-
tion (5.14) and the couple (u, ø) is a critical point of the energy E(u, ø) constrained to the manifold

ÒSò := {(u, ø) ∈ H1 × ℝ : C(u, ø) = qò}.

Here q is a �xedparameter and,without loss of generality,we assumeò > 0 andø < 0, sinceK(u) ≥ 0by (5.15).
Using the notation

W(s) =
1
2
m2s2 + R(s)

with R(s) satisfying (W0)–(W3) of Section 3, we de�ne

J(u) := ∫ℝ3(12 |∇u|2 + R(u) +
1
2
m2qõu u2) dx (5.17)

and we write the energy E(u, ø) on ÒSò as

Eò(u) := E|ÒSò = J(u) +
1
2
(m2K(u) +

ò2
K(u)

).

By Proposition 5.2 we are reduced as in Section 3 to look for critical points of E(u, ø) constrained to ÒSò. In [6]

and [8], Benci and Fortunato show that the analogous of Theorem 3.2 holds. Hence the existence of a soliton

solution to system (5.13)–(5.14) is implied by the existence of a point of local minimum for E(u, ø) constrained
to ÒSò. Benci and Fortunato use the so-called hylomorphy ratio Ë(u) given by

Ë(u, ø) :=
E(u, ø)
−øK(u)

=
Eò(u)
ò

, (5.18)

introduced in [3], and show that if there exists (ū, ø̄) ∈ ÒSò such that Ë(ū, ø̄) < m, then, assuming (W0)–(W3),

E(u, ø) admits a globalminimizer on themanifoldÒSò, hence there exists a soliton solution to (5.13)–(5.14)with

electric charge C = qò. By (5.18) this is equivalent to show that, using ò as a parameter, there exists ū ∈ H1
such that Eò(ū) < mò (cf. [8, Lemma 19]).

We now argue as in [11] to give more information on the values of ò and q for which we have a soliton

solution to system (5.13)–(5.14) with electric charge C = qò. First we prove the analogous of Theorem 3.3 (i).

Let

J− := {u ∈ H1(ℝ3, ℝ+) : J(u) < 0}

with J(u) de�ned in (5.17). Then

Proposition 5.3. Under assumptions (W0)–(W3), E(u, ø) admits a point of global minimum on ÒSò for all
ò ∈ (òg, òG), where

òg := infu∈J− (mK(u) − √2K(u)|J(u)|),

òG := supu∈J− (mK(u) + √2K(u)|J(u)|),

and òg = òG = +∞ if J− = 0.
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Proof. We follow the proof of [11, Proposition 2.4]. By the results by Benci and Fortunato, we need only show

that for all ò ∈ (òg, òG) we have

infu∈H1 Eò(u)
ò

= infu∈H1 [ 1òJ(u) + 1
2
(
m2
ò

K(u) +
ò

K(u)
)] < m. (5.19)

We recall thatK(u) ≥ 0 by (5.15), andK(u) ̸= 0 for all u ∈ H1
because ÿu ∈ Ḣ1

, hence

infu∈H1 12(m
2
ò

K(u) +
ò

K(u)
) ≥ m.

It follows that Eò < mò implies J(u) < 0, hence we have to consider only functions in J−. Moreover, writing Ë
in (5.18) as a function of u and ò, from basic algebra it follows that

Ë(u, ò) =
Eò(u)
ò

≥ m ⇐⇒ ò ∈ ℝ+ \ (òg(u), òG(u))
with

òg(u) := mK(u) − √2K(u)|J(u)|, (5.20)

òG(u) := mK(u) + √2K(u)|J(u)|. (5.21)

Whence Eò ≥ mò for all u ∈ J− if and only if ò ∈ ℝ+ \ (òg, òG), where we have used continuity of the func-

tions òg,G(u) and the non-vanishing ofK to show that

⋃u∈H1(òg(u), òG(u)) = (òg, òG).
Inequality (5.19) for ò ∈ (òg, òG) is proved.
Proposition 5.3 implies that soliton solutions exist for all electric charges C ∈ (qòg, qòG) if J− ̸= 0, where we

remark that the quantities òg,G depend on q sinceK(u) and J(u) do. Benci and Fortunato have shown that if q
is small enough, then J− ̸= 0, giving no information on the values of òg,G. They conjecture that qòG < ∞.

We now study the possible values of q for which J− ̸= 0. Let us denote by c3 the best constant in the

Gagliardo–Nirenberg inequality inℝ3, that is
c3(∫ℝ3 |õ|6 dx)

13
≤ ∫ℝ3 |∇õ|2 dx (5.22)

for all õ ∈ Ḣ1
.

Proposition 5.4. For any �xed q > 0 we assume that W satis�es (W0)–(W3) and that there exist s1, r > 0
and ℎ ∈ (0, 1) such that:
(W4) W is non-decreasing in (0, s1) and

−
1
2
m2s21 ≤ R(s1) < 1

2
s21[(1 + m2ℎ2) r3

(r + 1)3 − (1 + m2)], (5.23)

and

(
c3

48
13 ð 23 )

12 1 − ℎ
qℎ

> s1r. (5.24)

Then there exists u ∈ H1 such that J(u) < 0.

Proof. We�rst analyze the term ∫m2qõuu2 in J(u). We recall from [6] that, for any �xed u ∈ H1
, the solution õu

of (5.14) is the unique critical point of the functional

K(u, õ) = ∫ℝ3 (|∇õ|2 + (qõ − 1)2u2) dx,
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in particular õu is the global minimizer ofK(u, õ). The functionalK(u) de�ned in (5.16) satis�es

K(u) = K(u, õu),
and it follows that

1
2
m2 ∫R3 qõuu2 dx =

1
2
m2(‖u‖22 − K(u)).

Hence, letting

I(u) := minõ∈Ḣ1 (K(u, õ) − ‖u‖22) = K(u) − ‖u‖22, (5.25)

we write

1
2
m2 ∫R3 qõuu2 dx = −

1
2
m2I(u) = −

1
2
m2 minõ∈Ḣ1 (K(u, õ) − ‖u‖22).

Let s1, r > 0 and ℎ ∈ (0, 1) such that (W4) and (5.24) are satis�ed. Then we de�ne

ur(x) := {{{
{{{
{

s1, if |x| ≤ r,

s1(r + 1 − |x|), if r ≤ |x| ≤ r + 1,

0, if |x| ≥ r + 1,

(5.26)

for which

‖ur‖22 = 4
3
ðs21r3 + 4ðs21 r+1

∫r (r + 1 − t)2t2 dt. (5.27)

Then we claim that

I(ur) ≥ (ℎ2 − 1)‖ur‖22. (5.28)

We �rst show that (5.28) implies J(ur) < 0. We have

J(ur) = ∫ℝ3(12 |∇ur|2 + R(ur)) dx −
1
2
m2I(ur)

≤ ∫ℝ3(12 |∇ur|2 + R(ur)) dx −
1
2
m2(ℎ2 − 1)‖ur‖22

= ∫ℝ3(12 |∇ur|2 +W(ur)) dx −
1
2
m2ℎ2‖ur‖22.

Now, using (5.26), the fact thatW is non-decreasing in (0, s1) by (W4) and (5.27), we have

J(ur) ≤ 2ð
3
s21((r + 1)3 − r3) + 4ð

3
W(s1)(r + 1)3 − 2ð

3
m2ℎ2s21r3,

which implies J(ur) < 0 by (5.23).

It remains to prove (5.28). First, since ur is radially symmetric, by [6, Lemma 6] and [19, Proposition 2.2],

the minimumK(u)will be achieved for õu radially symmetric. Hence by (5.25), and the Gagliardo–Nirenberg

inequality (5.22), we have

I(ur) ≥ infõ∈Ḣ1r[c3(∫ℝ3 |õ|6 dx)
13
+ ∫ℝ3 (qõ − 1)2u2r dx] − ‖ur‖22,

where Ḣ1r is the set of radially symmetric functions in Ḣ1
. For any õ ∈ Ḣ1r we de�ne

ñõ := inf {ñ > 0 : õ(x) ≤
1
q
(1 − ℎ) for all |x| > ñ}

and write

∫ℝ3 |õ|6 dx ≥ ∫B(0,ñõ)[
1
q
(1 − ℎ)]

6
dx =

4ð
3

(1 − ℎ)6
q6 ñ3õ,
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where B(0, ñ) is the ball inℝ3 centered in 0 and of radius ñ, and, using (5.26),

∫ℝ3 (qõ − 1)2u2r dx ≥ ∫ℝ3\B(0,ñõ) ℎ2u2r dx (5.29)

=

{{{{
{{{{
{

4ð3 ℎ2s21(r3 − ñ3õ) + 4ðℎ2s21 ∫r+1r (r + 1 − t)2 t2 dt, if ñõ < r,

4ðℎ2s21 ∫r+1ñõ (r + 1 − t)2 t2 dt, if r ≤ ñõ < r + 1,

0, if ñõ ≥ r + 1.

(5.30)

Hence, if we de�ne the function f(ñ) onℝ+ by

f(ñ) := c3(4ð3 )
13 (1 − ℎ)2

q2 ñ + ∫ℝ3\B(0,ñ) ℎ2u2r dx,
it follows that

I(ur) ≥ infℝ+ f(ñ) − ‖ur‖22.
The function f is continuous and by (5.30)

f�(ñ) = {{{{{
{{{{{
{

c3( 4ð3 ) 13 (1−ℎ)2q2 − 4ðℎ2s21ñ2, if ñ < r,

c3( 4ð3 ) 13 (1−ℎ)2q2 − 4ðℎ2s21(r + 1 − ñ)2ñ2, if r ≤ ñ < r + 1,

c3( 4ð3 ) 13 (1−ℎ)2q2 , if ñ ≥ r + 1.

Then if (5.24) holds, there are no critical points and f is increasing in (0, r). Moreover,

4ðℎ2s21(r + 1 − ñ)2ñ2 ≤ 4ðℎ2s21r2 if r ≤ ñ < r + 1,

hence (5.24) implies that f�(ñ) > 0 also in (r, r + 1). It follows that f is an increasing function. Hence

I(ur) ≥ infℝ+ f(ñ) − ‖ur‖22 = f(0) − ‖ur‖22 = (ℎ2 − 1)‖ur‖22
and (5.28) is proved. This �nishes the proof of the proposition.

We now discuss assumptions (5.23) and (5.24). First of all (5.23) can be written as

0 ≤ W(s1) < 1
2
s21[(1 + m2ℎ2) r3

(r + 1)3 − 1], (5.31)

where the inequality on the left is satis�ed by (W1), hence it is necessary that

m2ℎ2r3 − 3r2 − 3r − 1 > 0. (5.32)

So, for example, if we �x ℎ and r such that (5.32) is satis�ed, then we choose s1 so that (5.24) is satis�ed, and

impose (5.31) onW at that s1. Notice that (5.31) is not in contradictionwith (W3)which prescribes the behavior

of R at s = 0.
Putting together Propositions 5.2, 5.3 and 5.4, we prove that

Corollary 5.5. For any �xed q > 0, let W(s), s1, r and ℎ satisfy (W0)–(W4), (5.23) and (5.24). Then there exist
soliton solutions to system (5.13)–(5.14) for any electric charge C ∈ (qòg(ur), qòG(ur)), where ur(x) is de�ned
in (5.26) and òg,G(ur) are given by (5.20) and (5.21).

Proof. By Proposition 5.4 it holds ur ∈ J−, whence òg,G de�ned in Proposition 5.3 satisfy

òg ≤ òg(ur), òG ≥ òG(ur).
Hence E(u, ø) admits a point of global minimum on ÒSò for all ò ∈ (òg(ur), òG(ur)), and there exists a triple

(u, ø, õu)which is a solution to system (5.13)–(5.14) for all C ∈ (qòg(ur), qòG(ur)). That this solution is a soliton

is given by Benci–Fortunato’s results in [8].
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Finally we show that it is possible to have soliton solutions with arbitrarily large electric charge by changing

the interaction parameter q.

Theorem 5.6. Let W be a non-decreasing function satisfying (W0)–(W3) of Section 3. Then for any C̄ > 0 there
exists q > 0 such that the system (5.13)–(5.14) admits a soliton solution with electric charge C ≥ C̄.

Proof. Let s0 given in (W2) and �x s1 = s0. Then
ë :=

W(s0)12 s20 < m2
and there exists á > 0 such that

ë < m2(1 − á) − á. (5.33)

We now choose r > 0 such that

r3
(r + 1)3 > 1 − á ⇐⇒ r >

1

(1 − á)− 13 − 1
,

and ℎ such that (5.23) is satis�ed, that is, using (5.31),

ë < (1 + m2ℎ2)(1 − á) − 1 < (1 + m2ℎ2) r3
(r + 1)3 − 1. (5.34)

It is possible to choose such an ℎ, since (5.34) implies

ℎ2 ∈ (
ë + á

m2(1 − á)
, 1),

which is consistent by (5.33).

So far we have �xed s1 and ℎ, and have found that (W4) of Proposition 5.4 is satis�ed for r big enough. To

satisfy also (5.24), we can still move q. So for any r let us choose

q =
1
2
(

c3
48

13 ð 23 )
12 1 − ℎ
ℎs1r < (

c3
48

13 ð 23 )
12 1 − ℎ
ℎs1r , (5.35)

so that (5.24) is satis�ed, and we still can move r. Then we can apply Corollary 5.5 and �nd a soliton solution

with electric charge

C = qmK(ur) ∈ (qòg(ur), qòG(ur)),
where ur is de�ned in (5.26). To �nish the proof of the theorem, we use consecutively (5.25), (5.28) and (5.27)

to show that

qmK(ur) = qm(I(ur) + ‖ur‖22) ≥ qmℎ2‖ur‖22 ≥ 4ð
3
qmℎ2s21r3.

Finally from (5.35), we get

qmK(ur) ≥ 2ð
3
(

c3
48

13 ð 23 )
12
mℎ(1 − ℎ)s1r2,

where ℎ and s1 are �xed. Hence for any C̄, we can choose r big enough so that

r >
1

(1 − á)− 13 − 1
and qmK(ur) ≥ C̄

and the proof is �nished.

6 Local gauge theory: The non-Abelian case
In this section we brie�y review the results proved in [5]. We consider the caseN = 2with non-Abelian gauge

group G = SU(2), so that ÷(t, x) ∈ ℂ2 and Ã = (Ãj)with Ãj(t, x) ∈ g = su(2). The real Lie algebra su(2) is gener-
ated by i times the Pauli matrices

ó1 := iòx = (
0 i
� 0

) , ó2 := iòy = (
0 1
−1 0

) , ó3 := iòz = (
i 0
0 −i

) .
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By the properties of compact Lie groups, the exponential map exp : su(2) → SU(2) is surjective and for

each g ∈ SU(2) there exists a triple S = (S1, S2, S3) ∈ ℝ3 with∑3j=1 S2j ≤ ð2
such that

g = exp(S1ó1 + S2ó2 + S3ó3)
and it is unique when∑3j=1 S2j < ð2

. Given (S1, S2, S3) ∈ ℝ3 we introduce the notation

S(t, x) := S1(t, x)ó1 + S2(t, x)ó2 + S3(t, x)ó3, |S|2 := |S|2 = 3
∑j=1 S2j (6.1)

and the operations

àjS := àjS1(t, x)ó1 + àjS2(t, x)ó2 + àjS3(t, x)ó3, (6.2)

S × S̃ := (S × ̃S)1ó1 + (S × ̃S)2ó2 + (S × ̃S)3ó3 = −
1
2
[S, S̃], (6.3)

S ⋅ S̃ := S1 ̃S1 + S2 ̃S2 + S3 ̃S3 = 1
2
⟨S, S̃⟩, (6.4)

SS̃ := −S ⋅ S̃ − S × S̃, (6.5)

where [ ⋅ , ⋅ ] is the standard Lie bracket and in the last equation on the left hand side we use the usual matrix

product. Finally for the gauge potentials with abuse of notation we write

Ãj := ãj,1ó1 + ãj,2ó2 + ãj,3ó3, j = 0, 1, 2, 3, (6.6)

as in (6.1), and extend to Ãj the operations (6.2) and (6.3). We then introduce the polar form for matter �elds

÷(t, x) = u(t, x)eS(t,x)÷0, u ∈ ℝ+, |S(t, x)| ≤ ð,

for a �xed vector ÷0 ∈ ℂ2, |÷0|ℂ2 = 1. We �rst have

Lemma 6.1 ([5]). For all S ∈ su(2) with regular functions Si(t, x), it holds
àj exp(S) = C(S, àjS) exp(S) (6.7)

with
C(S, àjS) := àjS + 1

2
(1 − cos 2)(àjS × S) + 1

2
(2 − sin 2)((àjS × S) × S) ∈ su(2).

Using (6.7) the covariant derivatives (4.1) write

Dj(ueS÷0) = [àju + uC(S, àjS) + quÃj]eS÷0
and

|Dj(ueS÷0)|2ℂ2 = |àju|2 + u2|C(S, àjS) + qÃj|2.
Hence we have for L0 de�ned in (4.2)

L0 =12 |àtu|2 − 1
2
|∇u|2 −W(u) +

1
2
u2[|C(S, àtS) − qÃ0|2 − 3

∑j=1 |C(S, àjS) + qÃj|2].
Moreover, since Fkj ∈ su(2), we have

‖Fkj‖2 = − trace(F2kj) = 2|àkÃj − àjÃk − 2q(Ãk × Ãj)|2,
where for Ãj we have used notation (6.6) and (6.3). Hence from (4.4) we get

L1 = 3
∑j=1 |àtÃj + àjÃ0 + 2q(Ã0 × Ãj)|2 − 1

2

3
∑k,j=1 |àkÃj − àjÃk − 2q(Ãk × Ãj)|2.
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Hence we get the Yang–Mills–Higgs system of equations,³ which is the analogous of system (5.8)–(5.11) and

is given by two equations describing the evolution of the matter �eld

à2t u − Δu + [
3
∑j=1 |C(S, àjS) + qÃj|2 − |C(S, àtS) − qÃ0|2]u + W�(u) = 0, (6.8)

D0((C(S, à0S) + qÃ0)u2) − 3
∑j=1Dj((C(S, àjS) + qÃj)u2) = 0, (6.9)

and a system of four equations for the gauge �eld

2
3
∑j=1DjF0j − qu2[C(S, àtS) − qÃ0] = 0, (6.10)

2D0F0j − 2∑ℓ ̸=jDℓFℓj + qu2[C(S, àjS) + qÃj] = 0, j = 1, 2, 3. (6.11)

For �elds which vanish at in�nity su�ciently fast, energy and charge have the form

E = ∫ℝ3[12 |àtu|2 + 1
2
|∇u|2 +W(u) +

1
2
u2[|C(S, àtS) − qÃ0|2 + 3

∑j=1 |C(S, àjS) + qÃj|2] +
3
∑j=1 ‖F0j‖2 + 1

2

3
∑k,j=1 ‖Fkj‖2] dx,

C = ∫ℝ3[u2(C(S, àtS) − qÃ0) − 2
3
∑j=1[Ãj, F0j]] dx ∈ su(2).

We now introduce the ansatz analogous to (3.6) to �nd solitary waves solutions for system (6.8)–(6.11), that is

÷(t, x) = u(r, z)eS(t,x)óm÷0, u ∈ ℝ+, m = 1, 2, 3, |S(t, x)| ≤ ð,

where S(t, x) = ℓè(y) − øt, with ø ∈ ℝ, ℓ ∈ ℤ and è(y) de�ned in (3.7). For the gauge �eld we assume analo-

gously that

Ã0 = ã0(r, z)óm, (
Ã1
Ã2
Ã3) = ã(r, z)∇èóm.

For these functions the matter angular momentum is given by

L⃗m = − ∫ℝ3 ℓu2(ø + qã0)( ⃗x × ∇è) dx,

hence it does not vanish if ℓ ̸= 0. We �nd the following equations for the variables (u, ℓ, ø, ã0, ã), with equa-

tion (6.9) identically satis�ed,

−Δu(x) + [|(ℓ + qã(x))∇è|2 − (ø + qã0(x))2]u + f�(u) = 0, (6.12)

−2Δã0(x) + q(ø + qã0(x))u2 = 0, (6.13)

2∇ × (∇ × ã(x)∇è) + q(ℓ + qã(x))u2∇è = 0. (6.14)

Our main existence result is

Theorem 6.2 ([5]). Let W satisfy (W0)–(W3) of Section 3. Then for all ℓ ∈ ℤ there exists q0 > 0 such that for
every q ∈ (0, q0) the system (6.12)–(6.14) admits a �nite energy solution (u, ø, ã0, ã) in the sense of distributions
with u = u(r, z) ̸≡ 0, ø > 0, ã0 = ã0(r, z) ̸≡ 0, ã = ã(r, z). Moreover, ã ≡ 0 if and only if ℓ = 0.

This theorem shows the existence of a particular class of solitarywaves and vortices for the Yang–Mills–Higgs

system for small interaction parameter q. Results about stability of these solitary waves and dependence on

the charge, analogous to those in Section 5.1, are not available at the moment. We also hope in the future to

prove existence of more general soliton solutions.

3 This system does not coincide with classical Yang–Mills–Higgs equations because of the properties of the nonlinear term W.

For a discussion of this remark we refer to [5].
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