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1 Introduction
Most equations coming frommathematicalmodeling of real processes canbewritten as a �xedpoint equation

u = N(u)

associated to some operatorN. In many cases, the equation also has a variational form, i.e. it is equivalent to
an equation of the type

E�(u) = 0,
where E is the “energy” functional and E� is its derivative. Thus, the �xed points of the operatorN appear as
critical points of the functional E. The critical points could be minima, maxima or saddle points, conferring
to the �xed points a variational property. Thus it makes sense to askwhether a �xed point ofN is aminimum,
or amaximumora saddlepoint ofE. Section 2of this paper is dealingwith this problem.Theproblembecomes
even more interesting in case of a system

{
u = N1(u, v),
v = N2(u, v),

which has not a variational form, but each of its component equations has, i.e. there exist the functionals E1
and E2 such that the system is equivalent to the equations

{
E11(u, v) = 0,
E22(u, v) = 0,

where E11(u, v) is the partial derivative of E1 with respect to u, and E22(u, v) is the partial derivative of E2
with respect to v. How are connected the �xed points (u, v) of the operator N = (N1, N2) with the variational
properties of the two functionals? One possible situation, which �ts to physical principles, is that a �xed
point (u∗, v∗) ofN is a Nash-type equilibrium of the functionals E1, E2 (see, e.g., [6]), that is,

E1(u∗, v∗) = minu E1(u, v∗),
E2(u∗, v∗) = minv E2(u∗, v).

In Section 3, the main part of the paper, we will focus on this problem. An iterative scheme for �nding
a Nash-type equilibrium is introduced and its convergence is studied. Finally in Section 4 we illustrate
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the theory by giving an application to periodic solutions for a second order di�erential system. The model
is inspired by the oscillations of two pendulums under interconnection forces, where the solution, as
a Nash-type equilibrium, is such that the motion of each pendulum is conformed to the minimum energy
principle by taking into account the motion of the other.

Themain tool of our approach is the Bishop–Phelps Theorem [1, 4], an equivalent statement of Ekeland’s
variational principle (see [2, 3, 7]).

Theorem 1.1 (Bishop–Phelps’ theorem). Let (M, d) be a complete metric space, let E : M → ℝ be lower semi-
continuous and bounded from below and let ù > 0. Then for any u0 ∈ M, there exists a point u ∈ M such that

E(u) ≤ E(u0) − ùd(u0, u)
and

E(u) < E(v) + ùd(u, v)

for every v ̸= u.

For a C1-functional E on a Banach spaceX, this result guarantees (take ù = 1n and u0 with E(u0) ≤ infX E + 1n )
the existence of a sequence (un) with

E(un) → infX E and E�(un) → 0.

2 A minimum property for classical contractions
In this sectionX is a Hilbert space with inner product and norm denoted by ( ⋅ , ⋅ ) and | ⋅ |, which is identi�ed
to its dual. We start with the case of contractions on the whole space.

Theorem 2.1. LetN : X → X be a contraction with the unique �xed point u∗ (guaranteed by Banach’s contrac-
tion theorem). If there exists a C1-functional E bounded from below such that

E�(u) = u − N(u) for all u ∈ X, (2.1)

then u∗ minimizes the functional E, i.e.
E(u∗) = infX E.

Proof. As a consequence of Bishop–Phelps’ theorem, there is a sequence (un) with

E(un) → infX E and E�(un) → 0. (2.2)

Let vn := E�(un) = un − N(un). We have vn → 0 and

|un+p − un| ≤ |N(un+p) − N(un)| + |vn+p − vn| ≤ a|un+p − un| + |vn+p − vn|.
Here a ∈ [0, 1) is the contraction constant ofN. Hence

|un+p − un| ≤ 1
1 − a

|vn+p − vn|.
Since (vn) is convergent (so Cauchy), this implies that (un) is Cauchy too. Hence un → u for some u. Now (2.2)
yields E(u) = infX E and E�(u) = 0. The relation E�(u) = 0 shows that u is a �xed point of N, and since N has
a unique �xed point, u = u∗.

An analogue result holds for contractions on a ball BR = {u ∈ X : |u| ≤ R} of the Hilbert spaceX.

Theorem 2.2. LetN : BR → X be a contraction satisfying the Leray–Schauder condition

u ̸= ëN(u) for |u| = R and ë ∈ (0, 1), (2.3)
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and let u∗ be the unique �xed point ofN (guaranteed by the nonlinear alternative). If there exists a C1-functio-
nal E bounded from below on BR such that

E�(u) = u − N(u) for all u ∈ BR,
then u∗ minimizes the functional E on BR, i.e.

E(u∗) = infBR E.

Proof. As a consequence of Schechter’s critical point theorem in a ball (see [11, 12]), there is a sequence (un)
of elements from BR with

E(un) → infBR E

and either
E�(un) → 0

or

E�(un) − (E�(un), un)
R2 un → 0, |un| = R, (E�(un), un) ≤ 0.

In the �rst case, when E�(un) → 0, we repeat the argument from the proof of Theorem 2.1. In the second case,
since (E�(un), un) = R2 − (N(un), un) andN is bounded as a contraction,wemay pass to a subsequence in order
to assume the convergence ìn := − (E�(un),un)R2 → ì ≥ 0. Furthermore, if vn := E�(un) + ìnun, then

(1 + ì)un = vn + N(un) + zn
with zn = (ì − ìn)un. Clearly zn → 0. Next

(1 + ì)|un+p − un| ≤ |vn+p − vn| + a|un+p − un| + |zn+p − zn|
and so

|un+p − un| ≤ 1
1 + ì − a

(|vn+p − vn| + |zn+p − zn|).
This implies that (un) is Cauchy. Let u be its limit. Then

E(u) = infBR E and E�(u) + ìu = 0,
where |u| = R and ì ≥ 0. We claim that the case ì > 0 is not possible. Indeed, if we assume that ì > 0, then
from u − N(u) + ìu = 0wewould have u = 11+ìN(u)which has been excluded by (2.3). Hence ì = 0, E�(u) = 0,
i.e. u = N(u). Again the uniqueness of the �xed point guarantees u = u∗.
In the setting of critical point theory, a sequence (un)with the properties that (E(un)) converges andE�(un) → 0
is called a Palais–Smale sequence. A functional is said to satisfy the Palais–Smale condition if each Palais–
Smale sequence has a convergent subsequence. Thus Theorem 2.1 says that ifE� is represented by (2.1), thenE
satis�es more than the Palais–Smale condition, in the sense that the Palais–Smale sequences are entirely
(not only some of their subsequences) convergent.

Remark 2.3. If in Theorem 2.2 the operator N is assumed to be more general condensing, then the min-
imizing sequence (un) has a subsequence converging to the absolute minimum of E on BR. Indeed, if (un)
satis�es E�(un) → 0, then using a measure á of noncompactness with respect to whom N is condensing,
we �nd

á({un}) = á({E�(un) + N(un)}) ≤ á({E�(un)}) + á({N(un)}) = á({N(un)}). (2.4)

If {un} is not relatively compact, that is, á({un}) > 0, then by the condensing property, á({N(un)}) < á({un}),
which in view of (2.4) yields the contradiction á({un}) < á({un}). Hence {un} is relatively compact, as desired.

Note that the remark is also true for Theorem 2.1 if any minimizing sequence is bounded.
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If we focus on critical points of a functional E, and not on the �xed points of an operatorN, then we can state
the following more general results:

Theorem 2.4. LetX be a Banach space with norm | ⋅ | and let E be a C1-functional bounded from below with E�
strongly monotone, that is,

(E�(u) − E�(v), u − v) ≥ a|u − v|2 for all u, v ∈ X,

and some a > 0. Then there is u∗ ∈ X with

E(u∗) = infX E and E�(u∗) = 0.
Proof. As in the proof of Theorem 2.1, let (un) satisfy

E(un) → infX E and E�(un) → 0.

Denote vn := E�(un). We have vn → 0 inX� and
a|un+p − un|2 ≤ (E�(un+p) − E�(un), un+p − un) = (vn+p − vn, un+p − un) ≤ |vn+p − vn||un+p − un|.

It follows that
|un+p − un| ≤ 1

a
|vn+p − vn|

and the assertion follows as above.

Similarly we have the following generalization of Theorem 2.2.

Theorem 2.5. LetX be a Hilbert space and let E be aC1 functional such that E� is strongly monotone on BR and

E�(u) + ìu ̸= 0 for |u| = R and ì > 0.

Then there exists u∗ ∈ BR with
E(u∗) = infBR E and E�(u∗) = 0.

Proof. With the notations from the proof of Theorem 2.2, we have

a|un+p − un|2 ≤ (E�(un+p) − E�(un), un+p − un)
= (vn+p − vn, un+p − un) − ì(un+p − un, un+p − un)

+ (ì − ìn+p)(un+p, un+p − un) − (ì − ìn)(un, un+p − un).
Hence

(a + ì)|un+p − un| ≤ |vn+p − vn| + R(|ì − ìn+p| + |ì − ìn|),
which implies that (un) is Cauchy.
3 Nash-type equilibrium for Perov contractions
Let (Xi, | ⋅ |i), i = 1, 2, be Hilbert spaces identi�ed with their duals and letX = X1 × X2. Consider the system

{
u = N1(u, v),
v = N2(u, v),

where (u, v) ∈ X. Assume that each equation of the system has a variational form, i.e. that there exist contin-
uous functionals E1, E2 : X → ℝ such that E1( ⋅ , v) is Fréchet di�erentiable for every v ∈ X2, E2(u, ⋅ ) is Fréchet
di�erentiable for every u ∈ X1, and

E11(u, v) = u − N1(u, v),
E22(u, v) = v − N2(u, v). (3.1)

Here E11( ⋅ , v), E22(u, ⋅ ) are the Fréchet derivatives of E1( ⋅ , v) and E2(u, ⋅ ), respectively.



R. Precup, Nash-type equilibria and periodic solutions to nonvariational systems | 201

We say that the operatorN : X → X,N(u, v) = (N1(u, v), N2(u, v)), is a Perov contraction [8] if there exists
a matrix M = [mij] ∈M2,2(ℝ+) such that Mn tends to the zero matrix 0 and the following matricial Lipschitz
condition is satis�ed:

[
|N1(u, v) − N1(u, v)|1
|N2(u, v) − N2(u, v)|2] ≤ M[

|u − u|1
|v − v|2] (3.2)

for every u, u ∈ X1 and v, v ∈ X2.
Notice that the property Mn → 0 is equivalent to ñ(M) < 1, where ñ(M) is the spectral radius of the

matrix M, and also to the fact that I − M is nonsingular and all the entries of the matrix (I − M)−1 are
nonnegative (see, e.g., [9, 10]).

Theorem 3.1. Assume that the above conditions are satis�ed. In addition assume that E1( ⋅ , v) and E2(u, ⋅ )
are bounded from below for every u ∈ X1, v ∈ X2, and that there are R, a > 0 such that one of the following
conditions holds:

E1(u, v) ≥ infX1 E1( ⋅ , v) + a for |u|1 ≥ R and all v ∈ X2,
E2(u, v) ≥ infX2 E2(u, ⋅ ) + a for |v|2 ≥ R and all u ∈ X1. (3.3)

Then the unique �xed point (u∗, v∗) ofN (guaranteed by Perov’s �xed point theorem) is a Nash-type equilibrium
of the pair of functionals (E1, E2), i.e.

E1(u∗, v∗) = infX1 E1( ⋅ , v∗),
E2(u∗, v∗) = infX2 E2(u∗, ⋅ ).

Proof. Assume that (3.3) holds for E2. We shall construct recursively two sequences (un) and (vn) based on
Bishop–Phelps’ theorem. Let v0 be any element of X2. At any step n (n ≥ 1) we may �nd elements un ∈ X1
and vn ∈ X2 such that

E1(un, vn−1) ≤ infX1 E1( ⋅ , vn−1) + 1n , |E11(un, vn−1)|1 ≤ 1
n
, (3.4)

E2(un, vn) ≤ infX2 E2(un, ⋅ ) + 1n , |E22(un, vn)|2 ≤ 1
n
. (3.5)

For 1n < a, from (3.3) and (3.5) we have |vn|2 < R. Hence the sequence (vn) is bounded. Let án := E11(un, vn−1)
and ân := E22(un, vn). Clearly án, ân → 0. Also

un − N1(un, vn−1) = án and vn − N2(un, vn) = ân.
It follows that

|un+p − un|1 ≤ |N1(un+p, vn+p−1) − N1(un, vn−1)|1 + |án+p − án|1
≤ m11|un+p − un|1 + m12|vn+p−1 − vn−1|2 + |án+p − án|1
≤ m11|un+p − un|1 + m12|vn+p − vn|2 + |án+p − án|1 + m12(|vn+p−1 − vn−1|2 − |vn+p − vn|2).

Denote an,p = |un+p − un|1, bn,p = |vn+p − vn|2, cn,p = |án+p − án|1, dn,p = |ân+p − ân|2. Then
an,p ≤ m11an,p + m12bn,p + cn,p + m12(bn−1,p − bn,p). (3.6)

Similarly

bn,p ≤ m21an,p + m22bn,p + dn,p.
Hence

[
an,p
bn,p] ≤ M[

an,p
bn,p] + [cn,p + m12(bn−1,p − bn,p)

dn,p ] .
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Consequently, since I − M is invertible and its inverse contains only nonnegative entries, we may write

[
an,p
bn,p] ≤ (I − M)−1 [cn,p + m12(bn−1,p − bn,p)

dn,p ] .

Let (I − M)−1 = [ãij]. Then
an,p ≤ ã11(cn,p + m12(bn−1,p − bn,p)) + ã12dn,p and bn,p ≤ ã21(cn,p + m12(bn−1,p − bn,p)) + ã22dn,p. (3.7)

From the second inequality, one has

bn,p ≤ ã21m12
1 + ã21m12 bn−1,p + ã21cn,p + ã22dn,p

1 + ã21m12 . (3.8)

Clearly (bn,p) is bounded uniformly with respect to p. Lemma 3.2 below shows that bn,p → 0 uniformly
for p ∈ ℕ, and hence (vn) is Cauchy. The �rst inequality in (3.7) implies that (un) is also Cauchy. Let u∗, v∗ be
the limits of (un), (vn) respectively. The conclusion now follows if we pass to the limit in (3.4) and (3.5).

In case thatE1 satis�es (3.3), we interchangeE1,E2 in the construction of the two sequences,more exactly
we will obtain

E2(un−1, vn) ≤ infX2 E2(un−1, ⋅ ) + 1n , |E22(un−1, vn)|2 ≤ 1
n
,

E1(un, vn) ≤ infX1 E1( ⋅ , vn) + 1n , |E11(un, vn)|1 ≤ 1
n
.

Furthermore, the reasoning is similar.

The lemma that was used is more or less similar to other results guaranteeing the convergence of iterative
schema (see, for instance, [13]).

Lemma 3.2. Let (xn,p) and (yn,p) be two sequences of real numbers depending on a parameter p such that (xn,p)
is bounded uniformly with respect to p, and

0 ≤ xn,p ≤ ëxn−1,p + yn,p for all n, p and some ë ∈ [0, 1). (3.9)

If yn,p → 0 uniformly with respect to p, then xn,p → 0 uniformly with respect to p too.

Proof. Let ù > 0 be any number. Since yn,p → 0 uniformly with respect to p, there exists an n1 (not depending
on p) such that yn,p ≤ ù for all n ≥ n1. From xn,p ≤ ëxn−1,p + ù (n ≥ n1) we deduce

xn,p ≤ ën−n1xn1 + ù(ë + ë2 + ⋅ ⋅ ⋅ + ën−n1 ) ≤ ën−n1c + ù ë
1 − ë

,

where c is a bound for xn,p. This yields xn,p → 0 uniformly in p.

Remark 3.3. Condition (3.3) is not necessary if one can prove that one of the “minimizing” sequences (un)
and (vn) is bounded.
Remark 3.4. If instead of condition (3.3) we assume that there exist convergent subsequences (unj ) and (vnj )
of the sequences (un) and (vn) given by (3.4) and (3.5), then the conclusion of Theorem 3.1 remains true.
To prove this, we �rst show that the sequence (bnj−1,1), bnj−1,1 = |vnj − vnj−1|2, is bounded. Indeed, from (3.8),
we obtain that

bnj−1,1 ≤ ëbnj−2,1 + (1 − ë)2, j ≥ j1.
This yields

bnj−1,1 ≤ ënj−nj−1bnj−1−1,1 + 1 − ë, j ≥ j2,
whence

bnj−1,1 − 1 ≤ ë(bnj−1−1,1 − 1), j ≥ j2. (3.10)

Denote zj = bnj−1,1. The case zj > 1 for all j ≥ j2 is not possible, since otherwise 0 ≤ zj − 1 ≤ ëj−j2 (zj2 − 1),
whence zj → 1. However, by (3.9) this would imply the contradiction 1 ≤ 1 − ë. Therefore, there is j3 ≥ j2
with zj3 ≤ 1. Then (3.10) implies that zj ≤ 1 for all j ≥ j3, that is, (zj) is bounded as claimed.
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Next, from Lemma 3.2, applied for p = 1 and xj,1 := bnj−1,1, we �nd that bnj−1,1 → 0 as j → ∞. Hence the
sequence (vnj−1) is convergent to the limit v∗ of (vnj ). The conclusion follows if we let j → ∞ in (3.4) and (3.5)
with n = nj.
An analogue result holds for Perov contractions on the cartesian product BR1 × BR2 of two balls ofX1 andX2.
Theorem 3.5. Let N : BR1 × BR2 → X, N = (N1, N2), be a Perov generalized contraction, i.e. (3.2) is satis�ed
for u, u ∈ BR1 and v, v ∈ BR2 . Assume that for every ë ∈ (0, 1),

u ̸= ëN1(u, v) if |u|1 = R1, v ∈ BR2 ,
v ̸= ëN2(u, v) if |v|2 = R2, u ∈ BR1 .

In addition assume that the representation (3.1) holds onBR1×BR2 for two continuous functionalsE1, E2 : X → ℝ
such thatE1( ⋅ , v) is Fréchet di�erentiable for every v ∈ X2,E2(u, ⋅ ) is Fréchet di�erentiable for every u ∈ X1, and
that E1( ⋅ , v), E2(u, ⋅ ) are bounded from below on BR1 and BR2 respectively, for every u ∈ BR1 , v ∈ BR2 . Then the
unique �xed point (u∗, v∗) ∈ BR1 × BR2 ofN (guaranteed by the nonlinear alternative for Perov contractions [9])
is a Nash-type equilibrium in BR1 × BR2 of the pair of functionals (E1, E2), i.e.

E1(u∗, v∗) = infBR1 E1( ⋅ , v∗) and E2(u∗, v∗) = infBR2 E2(u∗, ⋅ ).
The proof uses arguments from the proofs of Theorems 2.2 and 3.1.

4 Application to periodic solutions of second order systems
To illustrate the theory, let us consider the periodic problem

{{{{{{
{{{{{{
{

u��(t) = ∇xF(t, u(t), v(t)) a.e. on (0, T),

v��(t) = ∇yG(t, u(t), v(t)) a.e. on (0, T),

u(0) − u(T) = u�(0) − u�(T) = 0,
v(0) − v(T) = v�(0) − v�(T) = 0,

(4.1)

where F, G : (0, T) × ℝk1 × ℝk2 → ℝ.
All functions of the type H : (0, T) × ℝn → ℝm, H = H(t, x) (n, m ≥ 1), including F, G, ∇xF and ∇yG,

will be assumed to be L1-Carathéodory, i.e. with H( ⋅ , x)-measurable for each x ∈ ℝn, H(t, ⋅ )-continuous for
a.e. t ∈ (0, T), and such that for each R > 0, there is bR ∈ L1(0, T; ℝ+)with |H(t, x)| ≤ bR(t) for a.e. t ∈ (0, T) and
all x ∈ ℝn, |x| ≤ R.

We refer to [5], for a survey on the periodic problem for systems having a variational form. In our case, the
system has not a variational form, but it splits into two subsystems having each one a variational structure.

It is known (see [5]) that a pair (u, v) ∈ H1p(0, T; ℝk1 ) × H1p(0, T; ℝk2 ) is a solution of (4.1) if and only if

E11(u, v) = 0 and E22(u, v) = 0,
where E1, E2 : H1p(0, T; ℝk1 ) × H1p(0, T; ℝk2 ) → ℝ are given by

E1(u, v) = T
∫0 (12 |u�|2 + F(t, u(t), v(t)))dt and E2(u, v) = T

∫0 (12 |v�|2 + G(t, u(t), v(t)))dt. (4.2)

HereH1p(0, T; ℝk) is the space of functions of the form

u(t) =
t
∫0 v(s)ds + c
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with u(0) = u(T), c ∈ ℝk and v ∈ L2(0, T; ℝk). We shall de�ne a scalar product inH1p(0, T; ℝki ) (i = 1, 2) by
(u, v)i = T

∫0 [(u�(t), v�(t)) + m2i (u(t), v(t))]dt,
wheremi ̸= 0; the corresponding norm is

|u|i = ( T
∫0 (|u�(t)|2 + m2i |u(t)|2)dt)1/2

.

We shall identify the dual (H1p(0, T; ℝki ))� withH1p(0, T; ℝki ), via the mapping Ji, ℎ ∈ (H1p(0, T; ℝki ))� Ü→ Jiℎ = u,
the unique weak solution of the problem

−u�� + m2i u = ℎ a.e. on (0, T), u(0) − u(T) = u�(0) − u�(T) = 0.
Then

E11(u, v) = u − J1(m21u − ∇xF( ⋅ , u, v)) and E22(u, v) = v − J2(m22v − ∇yG( ⋅ , u, v)).
Hence

N1(u, v) = J1(m21u − ∇xF( ⋅ , u, v)) and N2(u, v) = J2(m22v − ∇yG( ⋅ , u, v)).
In what follows we shall use the obvious inequality

|u|L2 ≤ 1
mi |u|i, u ∈ H1p(0, T; ℝki ), (4.3)

and the estimation of the norm of Ji, as a linear operator from L2(0, T; ℝki ) to H1p(0, T; ℝki ). To obtain this,
we start with the de�nition of the operator Ji, which gives

|Jiℎ|2i = (Jiℎ, Jiℎ)i = (ℎ, Jiℎ)L2 ≤ |ℎ|L2 |Jiℎ|L2 ≤ 1
mi |ℎ|L2 |Jiℎ|i.

Hence
|Jiℎ|i ≤ 1

mi |ℎ|L2 , ℎ ∈ L2(0, T; ℝki ). (4.4)

We shall say that a function H : (0, T) × ℝk → R is of coercive-type if the functional E : H1p(0, T; ℝk) → ℝ
given by

E(u) =
T
∫0 (12 |u�(t)|2 + H(t, u(t)))dt (4.5)

is coercive, i.e. E(u) → +∞ as |u| → ∞. Here

|u| = (
T
∫0 (|u�(t)|2 + |u(t)|2)dt)

1/2
.

Lemma 4.1. If for some ã ∈ ℝ \ {0}, ∇(H − ã2|x|2) is bounded by an L1-function for all x ∈ ℝk and the average
of H(t, x) − ã2|x|2 with respect to t is bounded from bellow, more exactly

|∇(H(t, x) − ã2|x|2)| ≤ a(t)
for a.e. t ∈ (0, T), all x ∈ ℝk, some a ∈ L1(0, T; ℝ+), andT

∫0 H(t, x)dt − Tã2|x|2 ≥ C > −∞
for all x ∈ ℝk and some constant C, then the functional (4.5) is coercive.

Proof. We follow the idea from [5, proof of Theorem 1.5]. Denote

Hã(t, x) = H(t, x) − ã2|x|2.
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For u ∈ H1p(0, T; ℝk), we have u = u + û, where u = 1T ∫
T0 u(t)dt and û = u − u. Then

E(u) =
T
∫0 (12 |u�(t)|2 + ã2|u(t)|2)dt +

T
∫0 Hã(t, u)dt + T

∫0 [Hã(t, u(t)) − Hã(t, u)]dt
≥ min{1, 2ã2}|u|2 + C + T

∫0
1
∫0 (∇Hã(t, u + sû(t)), û(t))dsdt

≥ min{1, 2ã2}|u|2 + C − |a|L1 |û|∞.

Since |û|∞ ≤ c|û| ≤ c|u|, we deduce that

E(u) ≥ min{1, 2ã2}|u|2 + C − c|a|L1 |u| → ∞ as |u| → ∞.

Notice that if H is of coercive-type, then the functional (4.5) is bounded from below. Indeed, the coercivity
property implies that there exists a number R > 0 such that E(u) ≥ 0 if |u| > R. As the injection ofH1p(0, T; ℝk)
into C(0, T; ℝk) is continuous, there is c > 0 such that

|u|∞ ≤ c|u| for every u ∈ H1p(0, T; ℝk).
Then, for |u| ≤ R, we have |u|∞ ≤ cR, and since H is L1-Carathéodory, H(t, u(t)) ≥ −b(t) for a.e. t ∈ (0, T).
As a result, for |u| ≤ R, one has E(u) ≥ −|b|L1 . Hence E(u) ≥ −|b|L1 for all u ∈ H1p(0, T; ℝk) as we claimed.

Our hypotheses are as follows:
(H1) for each R > 0, there exist ò1, ò2 ∈ L1(0, T; ℝ+) and ã ̸= 0 such that

F(t, x, y) ≥ ã2|x|2 − ò1(t)|x| − ò2(t)
for a.e. t ∈ (0, T), all x ∈ ℝk1 and y ∈ ℝk2 with |y| ≤ R,

(H2) there exist g, g1 : (0, T) × ℝk2 → ℝ of coercive-type with

g(t, y) ≤ G(t, x, y) ≤ g1(t, y) (4.6)

for all x ∈ ℝk1 , y ∈ ℝk2 and a.e. t ∈ (0, T),
(H3) there existmij ∈ ℝ+ (i, j = 1, 2) with

|m21(x − x) − ∇x(F(t, x, y) − F(t, x, y))| ≤ m11|x − x| + m12|y − y|,
|m22(y − y) − ∇y(G(t, x, y) − G(t, x, y))| ≤ m21|x − x| + m22|y − y| (4.7)

for all x, x ∈ ℝk1 , y, y ∈ ℝk2 and a.e. t ∈ (0, T) such that the spectral radius of the matrix

M = [
m11m21 m12m1m2m21m1m2 m22m22 ] (4.8)

is strictly less than one.

Theorem 4.2. Under the assumptions (H1)–(H3), problem (4.1) has a unique solution

(u, v) ∈ H1p(0, 1; ℝk1 ) × H1p(0, 1; ℝk2 )
which is a Nash-type equilibrium of the pair of energy functionals (E1, E2) given by (4.2).

Proof. From (H1) we have that E1( ⋅ , v) is bounded from below for each v ∈ H1p(0, 1; ℝk2 ). Indeed, if R = |v|∞,
then

E1(u, v) ≥ T
∫0 (12 |u�(t)|2 + ã2|u(t)|2 − ò1(t)|u(t)| − ò2(t))dt ≥ C1|u|21 − C2|u|1 − C3,

whence the desired conclusion. Next, using the �rst inequality in (4.6), we have

E2(u, v) ≥ õ(v) := T
∫0 (12 |v�(t)|2 + g(t, v(t)))dt.

Since g is of coercive-type, õ is bounded from below. Thus E2(u, ⋅ ) is bounded from bellow even uniformly
with respect to u.
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Furthermore, if we also denote

õ1(v) = T
∫0 (12 |v�(t)|2 + g1(t, v(t)))dt,

we �x any number a > 0, we use (4.6) and the coercivity of õ, then we may �nd a number R > 0 such that

inf E2(u, ⋅ ) + a ≤ inf õ1 + a ≤ õ(v)
for |v|2 ≥ R. Since E2(u, v) ≥ õ(v), this shows that condition (3.3) is satis�ed by E2.

Finally using (4.3), (4.4) and (4.7), we obtain

|N1(u, v) − N1(u, v)|1 = |J1(m21(u − u) − ∇x(F( ⋅ , u, v) − F( ⋅ , u, v)))|1
≤

1
m1 |m21(u − u) − ∇x(F( ⋅ , u, v) − F( ⋅ , u, v))|L2
≤

m11
m1 |u − u|L2 + m12

m1 |v − v|L2
≤

m11
m21 |u − u|1 + m12

m1m2 |v − v|2.
A similar inequality holds forN2 and so condition (3.2) is satis�edwith thematrixM given by (4.8). Therefore
all the hypotheses of Theorem 3.1 are ful�lled.

Example 4.3. Consider the system of two scalar equations

{
u�� = 2ã21u + a(t) sin u(t) + b(t) cos u(t) cos v(t) + c(t),
v�� = 2ã22v + A(t) sin u(t) cos v(t) + B(t) cos v(t), (4.9)

where ã1, ã2 ̸= 0 and a, b, A, B ∈ L∞(0, T), c ∈ L1(0, T). In this case,

F(t, x, y) = ã21x2 − a(t) cos x + b(t) sin x cos y + c(t)x,
G(t, x, y) = ã22y2 + A(t) sin x sin y + B(t) sin y,

and we letmi = ãi√2 (i = 1, 2). If the spectral radius of the matrix

M = [

[

12ã21 (|a|∞ + |b|∞) |b|∞2ã1ã2|A|∞2ã1ã2 12ã22 (|A|∞ + |B|∞)
]

]

is strictly less than one, then system (4.9) has a unique T-periodic solution which is a Nash-type equilibrium
of the pair of energy functionals of the system.
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