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1 Introduction
In this paper we discuss the following elliptic problems on smooth and bounded domain with the discontin-
uous nonlinearity:

{{{
{{{
{

−∆Nu = λ(h(u)e|u|
N/N−1
+ χ{u≤a}uq) in Ω,

u > 0 in Ω,
u = 0 on Ω,

(1.1)

where Ω ⊂ ℝN is a bounded domain, λ, a > 0 and 0 < q < N − 1. The N-Laplacian operator is de�ned
as ∆Nu := |∇u|N−2∇u. Here we study the elliptic problemwith discontinuous nonlinearity motivated from the
following Trudinger–Moser inequality given in [21, 27]:

sup
‖u‖W1,N

0
≤1

∫
Ω

eαN |u|N/(N−1) < ∞ (1.2)

where αN = Nω1/(N−1)
N , ωN is the volume of SN−1 and ‖u‖W1,N

0
= ∫Ω |∇u|N . We also have the following assump-

tions on h(t).
(A1) One has h(t) ∈ C1(0,∞), h(0) = 0, h(t) > 0 for t > 0 and f(t) = h(t)e|t|N/N−1 is nondecreasing in t.
(A2) For all ϵ > 0,

lim inf
t→∞

h(t)eϵ|t|N/N−1 = ∞ and lim sup
t→∞

h(t)e−ϵ|t|N/N−1 = 0.
(A3) There exists a constant K > 0 such that

F(t) =
t

∫
0

f(s) ds < K(f(t) + 1).

Problems with discontinuous nonlinearities have widely been studied in the last two decades because of
their occurrence inmathematical physics. Such problems occur in various branches ofmathematical physics,
for example the obstacle problem, seepage surface problem and the Elenbass equations ([11–13]). Starting
with the pioneering work of Ambrosetti, Brezis and Cerami in [7], there are many references where the
existence and multiplicity results for the elliptic equation with continuous nonlinearity of concave-convex
type are addressed. Subsequently, the quasilinear elliptic equations of concave-convex type continuous
nonlinearities are studied in [16].
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The main di�culty in studying the elliptic equations with discontinuous nonlinearities is the non-
smoothness of the associated functional. Therefore, we need to use the notion of generalized gradients as
discussed in the pioneering work of Clarke [14] which was later applied to the di�erential equation setting
by Chang [13]. Adopting the generalized critical point theory in [8], the authors have studied the semilin-
ear elliptic equation with concave-convex type discontinuous nonlinearity in bounded domain. In [18], the
existence and multiplicity results for the semilinear elliptic equations with discontinuous and sublinear
nonlinearities are studied inℝN . In [26], the authors have proved the existence and multiplicity of solutions
of (1.1) for N = 2. Also in [15], the existence of multiple solutions of the critical problem with discontinuous
and singular nonlinearity is obtained. The quasilinear elliptic equations with discontinuous nonlinearities
have been studied in [5] and [24].

With this introduction we state the main result of this paper.

Theorem 1.1. There exists a constant Λ > 0 such that for all λ ∈ (0, Λ], there exists a solution of (1.1).

The rest of the paper is organized as follows. In Section 2 we discuss some of the preliminary de�nitions and
results which are required for setting the variational framework and for subsequent analysis. In Section 3 we
prove the existence of the solution of (1.1). Lastly we conclude the paper in Section 4 quoting some open
problems in this direction.

2 Preliminaries
Weconsider the followingpreliminary notions. Let X be a real Banach space, let X∗ be its dual space and ⟨ ⋅ , ⋅ ⟩
denotes its duality action. Then for x, v ∈ X and a locally Lipschitz continuous function f , the generalized
directional derivative f 0(x, v) (of f at x along v) is de�ned as

f 0(x, v) = lim sup
h→0
λ↓0

f(x + h + λv) − f(x + h)
λ

.

The generalized gradient of f at x, denoted by ∂f(x), is de�ned as

∂f(x) ⊆ X∗, w ∈ ∂f(x) if and only if ⟨w, v⟩ ≤ f 0(x, v) for all v ∈ X.

We recall some properties of ∂f which are proved in [13].

Lemma 2.1. The generalized gradient of a locally Lipschitz continuous function f has the following properties.
(i) For all k ∈ ℝ, ∂(kf)(x) = k∂f(x).
(ii) If f, g are locally Lipschitz functions, then ∂(f + g)(x) ⊂ ∂f(x) + ∂g(x).
(iii) If f is convex, then ∂f(x) coincides with the sub-di�erential of f in the sense of convex analysis.
(iv) For each v ∈ X, f 0(x, v) = max{⟨ξ, v⟩ : ξ ∈ ∂f(x)}.
(v) If x is a local minimum point for f , then 0 ∈ ∂f(x).
(vi) If f is di�erentiable in x with di�erential f �(x) ∈ X∗, then ∂f(x) = {f �(x)}.

De�nition 2.1. A point x ∈ X is said to be a critical point of f if 0 ∈ ∂f(x).

The functional Iλ : W1,N
0 (Ω) → ℝ associated to (1.1) is given by

Iλ(u) =
1
N ∫
Ω

|∇u|N − λ∫
Ω

F(u) − λ∫
Ω

G(u),

where

G(s) =
s

∫
0

χ{t≤a}tq dt.
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Now in view of [13, Theorem2.1 and Theorem2.2],w ∈ ∂Iλ(u) if and only if there exists a functionw ∈ L∞(Ω)
such that

⟨w, v⟩ = ∫
Ω

|∇u|N−2∇u ⋅ ∇v − λ∫
Ω

f(u)v − λ∫
Ω

uqwv for all v ∈ W1N
0 (Ω)

and
w(x) ∈ [χ

{u(x)≤a}
, χ{u(x)≤a}] for a.e. x ∈ Ω,

where
χ{u(x)≤a} = lim inf

s(x)→u(x)
χ{s(x)≤a} and χ{u(x)≤a} = lim sup

s(x)→u(x)
χ{s(x)≤a}.

Note that χ{u(x)≤a} and χ{u(x)≤a} are the characteristic functions of the set theoretical upper and lower limits of
sub level sets. Hence u de�nes a critical point for Iλ if and only if there exists a function w ∈ L∞(Ω) such that

∫
Ω

|∇u|N−2∇u ⋅ ∇v − λ∫
Ω

f(u)v − λ∫
Ω

uqwv = 0 for all v ∈ W1,N
0 (Ω) (2.1)

with
w(x) ∈ [χ

{u(x)≤a}
, χ{u(x)≤a}] for a.e. x ∈ Ω. (2.2)

De�nition 2.2. A solution of (1.1) is a function u ∈ W1,N
0 (Ω) such that u > 0 in Ω and u satis�es (2.1)–(2.2).

De�nition 2.3. The non-smooth functional Iλ : W1,N
0 (Ω) → ℝ is said to satisfy the Palais–Smale condition

at c ∈ ℝ if for every sequence {un} ⊂ W1,N
0 (Ω) such that I(un) → c and ‖wn‖W−1,N� = minw∈∂I(un) ‖w‖W−1,N� → 0,

there exists a subsequence of {un} which converges strongly in W1,N
0 (Ω), where W−1,N� (Ω) is the dual space

ofW1,N
0 (Ω).

Remark 2.1. By elliptic regularity, such a solution u ∈ W2,p(Ω) for any p ≥ 1. Thus on Ωa = {x ∈ Ω : u(x) = a}
we get (−f(x, a)) ∈ [0, 1] which is a contradiction as f(x, a) > 0. Hence |Ωa| = 0, where |Ωa| is the N-dimen-
sional Lebesgue measure of Ωa.

Now we recall the following result proved by Brezis–Lieb in [9].

Lemma 2.2. LetΩ ⊂ ℝN be aboundeddomain, {un} ⊂ Lp(Ω),1 ≤ p < ∞, be such that ‖un‖Lp ≤ C for some C > 0
and un → u a.e. in Ω. Then

lim
n→∞

[‖un − u‖
p
Lp − ‖un‖

p
Lp + ‖u‖

p
Lp ] = 0.

Also we recall the following inequalities of [19, Lemma 4.1]. For ξ, ζ ∈ ℝN ,

{{
{{
{

[(|ξ|p−2ξ − |ζ|p−2ζ) ⋅ (ξ − ζ)](|ξ|p + |ζ|p)(2−p)/p ≥ (p − 1)|ξ − ζ|p , 1 < p < 2,

(|ξ|p−2ξ − |ζ|p−2ζ) ⋅ (ξ − ζ) ≥ (12)
p
|ξ − ζ|p , p ≥ 2.

(2.3)

3 Existence of a solution of (1.1)
In this section, we prove the existence of a solution of (1.1). First we note that the functional Iλ is locally
Lipschitz and non-di�erentiable. We also prove the following result about Iλ.

Lemma 3.1. The functional Iλ satis�es the mountain pass geometry near 0.

Proof. First we prove that there exist δ0, r, λ0 > 0 such that Iλ(u) > δ0 for all u ∈ W1,N
0 (Ω) with ‖u‖W1,N

0
= r

and λ ∈ (0, λ0). Note that
!!!!!!!!!
∫
Ω

G(u)
!!!!!!!!!
≤ C1‖u‖

q+1
W1,N

0
,
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and from (A2) and (1.2) we have

∫
Ω

F(u) = ∫
Ω

u

∫
0

h(s)e|s|N/N−1 ds ≤ C2 + ∫
Ω

e(2|u|)
N/N−1
≤ C3

for ‖u‖W1,N
0
≤ 1

2 . Thus for r <
1
2 , λ0 su�ciently small and ‖u‖W1,N

0
= r, we get δ0 > 0 such that for all λ ∈ (0, λ0),

Iλ(u) ≥
1
N
‖u‖N

W1,N
0
− λC3 − λC1‖u‖

q+1
W1,N

0
> δ0.

Also for ϕ ∈ C∞c (Ω), Iλ(tϕ) → −∞ as t →∞ and for t → 0+ we have Iλ(u) < 0. Thus Iλ satis�es the mountain
pass geometry near 0.

We need the following lemma to prove Theorem 1.1.

Lemma 3.2. Let {un} be a Palais–Smale sequence for Iλ. Then there exists some u ∈ W1,N
0 (Ω) such that un ⇀ u

and u is a critical point of Iλ.

Proof. Here we follow the approach as in [23] and [25]. Let {un} be a Palais–Smale sequence at c ∈ ℝ. Then
Iλ(un) → c and ‖wn‖W−1,N� = minw∈∂Iλ(un) ‖w‖W−1,N� → 0, where W−1,N� (Ω) denotes the dual of W1,N

0
(Ω). This

implies
1
N ∫
Ω

|∇un|N − λ∫
Ω

F(un) − λ∫
Ω

G(un) = c + o(1) (3.1)

and there exists some wn(x) ∈ [χ{un(x)≤a}, χ{un(x)≤a}] such that

⟨wn , v⟩ = ∫
Ω

|∇un|N−2∇un ⋅ ∇v − λ∫
Ω

f(un)v − λ∫
Ω

wnu
q
nv (3.2)

for all v ∈ W1,N
0 (Ω), where ⟨w, v⟩ denotes the duality action ofW−1,N� (Ω) onW1,N

0 (Ω).
By assumption (A3), there exist K1 > 0 and K2 > N such that

F(t) ≤ K1 +
tf(t)
K2

for all t > 0.

Thus (3.1) and (3.2) give

c + λ∫
Ω

G(un) + K1|Ω| + o(1) ≥
1
N ∫
Ω

|∇un|N −
λ
K2

∫
Ω

f(un)un

≥ (
1
N
−

1
K2

)‖un‖NW1,N
0
+
λ
K2

∫
Ω

wnu
q+1
n +

1
K2

⟨wn , un⟩.

This implies {un} is bounded inW1,N
0 (Ω). Let un ⇀ u weakly inW1,N

0 (Ω). Also as ‖wn‖L∞ ≤ 1, we can assume
wn → w in L∞(Ω) in weak* topology, where w(x) ∈ [χ

{u(x)≤a}
, χ{u(x)≤a}]. Now note that {|∇un|N−2∇un} is

bounded in (LN/N−1(Ω))N . Thus

|∇un|N ⇀ µ in D�(Ω),
|∇un|N−2∇un ⇀ ν weakly in (LN/N−1(Ω))N ,

where µ is a nonnegative regular measure and D�(Ω) are the distributions on Ω. Let σ > 0 and

Aσ = {x ∈ Ω : for all r > 0, µ(Br(x) ∩ Ω) ≥ σ}.

Note that Aσ is a �nite set. If not, then there exists a sequence of distinct points {xk} in Aσ. Since for all r > 0,
µ(Br(x) ∩ Ω) ≥ σ, we get µ({xk}) ≥ σ. This implies µ(Aσ) = ∞. But

µ(Aσ) = lim
n→∞

∫
Aσ

|∇un|N ≤ C < ∞.
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Thus Aσ = {x1, x2, . . . , xm}. Let u ∈ W1,N
0 (O) and O ⊂ ℝN be a bounded domain. Then there exist r1 and C1

depending only on N such that

∫
O

e
r1( |u|‖∇u‖LN (O) )N/N−1 ≤ C1. (3.3)

Assertion 1. For any relatively compact subsetK ⊂ Ω \ Aσ and σ > 0 such that σ1/N−1r1 < 1, we have

lim
n→∞

∫
K

f(un)un = ∫
K

f(u)u.

For this let x0 ∈ K and r0 > 0 such that µ(Br0 (x0) ∩ Ω) < σ. Let ϕ ∈ C∞0 (Ω) such that 0 ≤ ϕ ≤ 1, ϕ ≡ 1 in
B r0

2
(Ω) ∩ Ω and ϕ ≡ 0 in Ω \ Br0 (x0). Thus

lim
n→∞

∫

Br0 (x0)∩Ω

|∇un|Nϕ dx = ∫

Br0 (x0)∩Ω

ϕ dµ ≤ µ(Br0 (x0) ∩ Ω) ≤ (1 − ϵ)σ.

Therefore for n ∈ ℕ su�ciently large and ϵ > 0 su�ciently small, we have

lim
n→∞

∫

B r0
2
(x0)∩Ω

|∇un|N ≤ (1 − ϵ)σ. (3.4)

Using this in (3.3) we get
∫

B r0
2
(x0)∩Ω

|f(un)|q ≤ C, (3.5)

where q > 1 such that qσ
1/N−1
r1 < 1.

Now we estimate
∫

B r0
2
(x0)∩Ω

|f(un)un − f(u)u| ≤ I1 + I2, (3.6)

where
I1 = ∫

B r0
2
(x0)∩Ω

|f(un) − f(u)||u|, I2 = ∫

B r0
2
(x0)∩Ω

|f(un)||un − u|.

By (3.5) and Hölder’s inequality, I2 → 0 as n →∞. To estimate I1, let ϕ ∈ C∞c (Ω) such that ‖u − ϕ‖Lq� < ϵ.
Then

I1 ≤ ∫

B r0
2
(x0)∩Ω

|f(un)||u − ϕ| + ∫

B r0
2
(x0)∩Ω

|f(un) − f(u)||ϕ| + ∫

B r0
2
(x0)∩Ω

|f(u)||u − ϕ|. (3.7)

Now using (3.5) and Hölder’s inequality, it is easy to check that the �rst and the last terms of the right-hand
side of (3.7) go to zero as n →∞. Now we claim that the middle term also goes to zero. Note that for un → u
in L1(Ω)with f(un) ∈ L1(Ω) and ∫Ω f(un)un ≤ C1 we have f(un) → f(u) in L1(Ω). Indeed for ϵ > 0, there exists
a constant δ > 0 such that for any A ⊂ Ω, |A| ≤ δ, we have

∫
A

|u| < ϵ and ∫
A

|f(u)| < ϵ.

Now let M1 > 0 such that |{x ∈ Ω : |u(x)| ≥ M1}| ≤ δ. Take M = max{M1, C1ϵ }. Then
!!!!!!!!!
∫
Ω

f(un) − f(u)
!!!!!!!!!
≤ T1 + T2 + T3,

where
T1 = ∫

{|un |≥M}

|f(un)|, T2 = ∫
{|u|≥M}

|f(u)|, T3 = | ∫
{|un |<M}

|f(un)| − ∫
{|u|<M}

|f(u)||.
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Now
T1 = ∫

{|un |≥M}

|f(un)un|
|un|
≤
C1
M1
≤ ϵ

and
T2 = ∫

{|u|≥M}

|f(u)| < ϵ

since |{x ∈ Ω : |u(x)| ≥ M1}| ≤ δ. Also

T3 =
!!!!!!!!!

∫
{|un |<M}

|f(un)| − ∫
{|u|<M}

|f(u)|
!!!!!!!!!

≤
!!!!!!!!!
∫
Ω

χ{|un |<M}(|f(un)| − |f(u)|)
!!!!!!!!!
+
!!!!!!!!!
∫
Ω

(χ{|un |<M} − χ{|u|<M})|f(u)|
!!!!!!!!!
. (3.8)

Note that χ{|un |<M}(|f(un)| − |f(u)|) → 0 a.e. in Ω. Also

|χ{|un |<M}(|f(un)| − |f(u)|)| ≤
{
{
{

|f(u)| if |un| ≥ M,
C + |f(u)| if |un| < M,

where C = sup{|un |}<M |f(un)|. Thus by the Lebesgue Dominated Convergence Theorem, the �rst term on the
right-hand side of (3.8) goes to zero as n →∞. Also since

{x ∈ Ω : |un(x)| < M} \ {x ∈ Ω : |u(x)| < M} ⊂ {x ∈ Ω : |u(x)| ≥ M},

this implies
∫
Ω

(χ{|un |<M} − χ{|u|<M})|f(u)| ≤ ∫
{|u|≥M}

|f(u)| < ϵ.

Thus the second term on the right-hand side of (3.8) also goes to zero as n →∞. Using this in (3.6) and (3.7)
we get

∫

B r0
2
(x0)∩Ω

|f(un)un − f(u)u| → 0 as n →∞

and asK is compact, Assertion 1 follows.

Assertion 2. Let ϵ0 > 0 be such that Bϵ0 (xi) ∩ Bϵ0 (xj) = 0 if i ̸= j and

Ωϵ0 = {x ∈ Ω : |x − xj| ≥ ϵ0, j = 1, 2, . . . ,m}.

Then
∫
Ωϵ0

(|∇un|N−2∇un − |∇u|N−2∇u) ⋅ (∇un − ∇u) → 0. (3.9)

Indeed, let 0 < ϵ < ϵ0 and ϕ ∈ C∞c (ℝN) such that ϕ ≡ 1 in B1/2(0) and ϕ ≡ 0 in Ω \ B1(0). Take

ψϵ = 1 −
m
∑
j=1
ϕ(

x − xj
ϵ ).

Then 0 ≤ ψϵ ≤ 1, ψϵ ≡ 1 in Ωϵ = Ω \ ⋃m
j=1 Bϵ(xj), ψϵ ≡ 0 in ⋃m

j=1 Bϵ/2(xj) and {ψϵun} is bounded inW1,N
0 (Ω).

Now taking v = ψϵun in (3.2) we get

∫
Ω

[|∇un|Nψϵ + |∇un|N−2∇un ⋅ ∇ψϵun − λf(un)unψϵ − λwnu
q+1
n ψϵ] ≤ ϵn‖ψϵun‖W1,N

0
. (3.10)

Again taking v = −ψϵu in (3.2) we get

∫
Ω

[−|∇un|N−2∇un ⋅ ∇uψϵ − |∇un|N−2∇un ⋅ ∇ψϵu + λf(un)uψϵ + λwnu
q
nuψϵ] ≤ ϵn‖ψϵu‖W1,N

0
. (3.11)
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Also from the convexity of t Ü→ |t|N for t ∈ ℝN , we have

0 ≤ ∫
Ωϵ0

(|∇un|N−2∇un − |∇u|N−2∇u) ⋅ (∇un − ∇u)

≤ ∫
Ω

(|∇un|N−2∇un − |∇u|N−2∇u) ⋅ (∇un − ∇u)ψϵ .

Rewriting this as

0 ≤ ∫
Ω

|∇un|Nψϵ − |∇un|N−2∇un ⋅ ∇uψϵ − |∇u|N−2∇u ⋅ ∇unψϵ + |∇u|Nψϵ , (3.12)

from (3.10), (3.11) and (3.12) we get

0 ≤ ∫
Ω

|∇un|N−2∇un ⋅ ∇ψϵ(un − u) + ∫
Ω

ψϵ|∇u|N−2∇u ⋅ (∇u − ∇un)

+ λ∫
Ω

f(un)(un − u)ψϵ + λ∫
Ω

wnu
q
n(un − u)ψϵ + ϵn‖ψϵun‖ + ϵn‖ψϵu‖W1,N

0
.

Now as by Young’s inequality, for given δ > 0, there exists a constant Cδ > 0 such that

∫
Ω

|∇un|N−2∇un ⋅ ∇ψϵ(un − u) ≤ δ∫
Ω

|∇un|N + Cδ ∫
Ω

|∇ψϵ|N |un − u|N

≤ δC + Cδ(∫
Ω

|∇ψϵ|Nr)
1/r

(∫
Ω

|un − u|Ns)
1/s
, (3.13)

where C, r and s > 0 with 1
r +

1
s = 1. Thus we get

lim sup
n→∞

∫
Ω

|∇un|N−2∇un ⋅ ∇ψϵ(un − u) ≤ 0. (3.14)

Also noting that un ⇀ u weakly inW1,N
0 (Ω) we have

lim
n→∞

∫
Ω

ψϵ|∇u|N−2∇u ⋅ (∇u − ∇un) = 0 (3.15)

and
lim
n→∞

∫
Ω

wnu
q
n(un − u)ψϵ = 0. (3.16)

Also by Assertion 1, takingK = Ωϵ/2 one can check that

lim
n→∞

∫
Ω

f(un)(un − u)ψϵ = 0. (3.17)

Now from (3.14)–(3.17), (3.9) follows.
Since ϵ0 is arbitrary, we get ∇un(x) → ∇u(x) a.e. in Ω and hence |∇un|N−2∇un ⇀ |∇u|N−2∇u weakly

in (LN/N−1(Ω))N . Thus passing to the limit in (3.2), for any v ∈ W1,N
0 (Ω), we get

∫
Ω

|∇u|N−2∇u ⋅ ∇v − λ∫
Ω

f(u)v − λ∫
Ω

wv = 0.

This implies that u is a critical point of Iλ.

Now we prove the following compactness result.
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Lemma 3.3. Let {un} be a Palais–Smale sequence at c ∈ ℝ with

lim inf
n→∞

‖un‖W1,N
0
< (αN)N−1,

where αN = Nω1/(N−1)
N and ωN is the volume of SN−1. Then, up to a subsequence, {un} converges strongly

in W1,N
0 (Ω).

Proof. As {un} is a Palais–Smale sequence at c ∈ ℝ, then as in Lemma 3.2 un ⇀ u0 weakly in W1,N
0 (Ω) for

some u0 ∈ W1,N
0 (Ω). Let rn = un − u0. Then we have rn ⇀ 0 and

‖un‖NW1,N
0
= ‖rn‖NW1,N

0
+ ‖u0‖NW1,N

0
+ o(1),

thanks to Lemma 2.2. Also,
∫
Ω

f(un)u0 → ∫
Ω

f(u0)u0

and for each n ∈ ℕ, there exists some ρn(x) ∈ [χ{un(x)≤a}, χ{un(x)≤a}] such that

∫
Ω

|∇un|N−2∇un∇ϕ − λ∫
Ω

f(un)ϕ − λ∫
Ω

ρnu
q
nϕ ≤ ϵ‖ϕ‖W1,N

0

for all ϕ ∈ W1,N
0 (Ω) and ϵ ↓ 0. Now taking ϕ = un and using Lemma 2.2, we get

‖rn‖NW1,N
0
+ ‖u0‖NW1,N

0
− λ∫

Ω

f(un)un − λ∫
Ω

ρnu
q+1
n ≤ ϵ‖un‖W1,N

0
+ o(1). (3.18)

Now as ‖ρn‖L∞ ≤ 1, we can assume ρn → ρ in L∞(Ω) as n →∞ with respect to the weak* topology and
ρ(x) ∈ [χ

{u0(x)≤a}
, χ{u0(x)≤a}]. Thus using the Lebesgue Dominated Convergence Theorem, equation (3.18)

implies
‖rn‖NW1,N

0
+ ‖u0‖NW1,N

0
− λ∫

Ω

f(u0)u0 − λ∫
Ω

ρuq+10 ≤ ϵ‖un‖W1,N
0
+ λ∫

Ω

f(un)rn + o(1). (3.19)

Also as u0 is a critical point of Iλ, we have 0 ∈ ∂Iλ(u0). Thus for all ϕ ∈ W1,N
0 (Ω),

∫
Ω

|∇u0|N−2∇u0∇ϕ − λ∫
Ω

f(u0)ϕ − λ∫
Ω

ρuq0ϕ ≥ 0. (3.20)

Therefore (3.19) and (3.20) give

‖rn‖NW1,N
0
≤ ϵ‖un‖W1,N

0
+ λ∫

Ω

f(un)rn + o(1). (3.21)

Also usingHölder’s andSobolev inequalities and choosing n large such that for s > 1, s‖un‖N/N−1W1,N
0
≤ (αN)(N−1),

we have

∫
Ω

|f(un)rn| ≤ (∫
Ω

|f(un)|s)
1/s

(∫
Ω

|rn|s
�
)
1/s�

≤ (∫
Ω

exp(s‖un‖N/N−1W1,N
0

!!!!!!!
un

‖un‖W1,N
0

!!!!!!!

N/N−1
))

1/s
(∫
Ω

|rn|s
�
)
1/s�

≤ C‖rn‖Ls�
for some C > 0. Thus (3.21) implies ‖rn‖W1,N

0
→ 0. Hence up to a subsequence {un} converges strongly

inW1,N
0 (Ω).

Set Λ = sup{λ > 0 : problem (1.1) admits a solution}.

Lemma 3.4. We have 0 < Λ < ∞.
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Proof. Let ϕ ∈ C∞c (Ω). Then by Lemma 3.1, for λ ∈ (0, λ0) and ρ > 0 small we have

−∞ < c0 = inf
Bρ
Iλ < 0.

Now by applying Ekeland’s variational principle, there exists some uϵ ∈ Bρ such that
(i) Iλ(uϵ) < c0 + ϵ,
(ii) Iλ(uϵ) < Iλ(u) + ϵ‖u − uϵ‖W1,N

0
, for u ̸≡ uϵ, u ∈ Bρ.

As Iλ(uϵ) < c0 + ϵ < inf∂Bρ Iλ for 0 < ϵ < inf∂Bρ Iλ − infBρ Iλ, we have uϵ ∈ Bρ. Let t > 0 with vt = uϵ + tv ∈ Bρ
for v ∈ W1,N

0 (Ω). Thus from (ii) we get
Iλ(uϵ + tv) − Iλ(uϵ)

t
≥ −ϵ‖v‖W1,N

0
.

Now for t → 0+, this gives

−ϵ‖v‖W1,N
0
≤ (Iλ)0(uϵ , v) = max

w∈∂Iλ(uϵ)
⟨w, v⟩ for all v ∈ W1,N

0 (Ω).

Interchanging v and −v we get

min
w∈∂Iλ(uϵ)

⟨w, v⟩ ≤ ϵ‖v‖W1,N
0

for all v ∈ W1,N
0 (Ω)

and hence
sup

‖v‖W1,N
0
=1

min
w∈∂Iλ(uϵ)

⟨w, v⟩ ≤ ϵ.

This on applying Ky Fan’s min-max theorem ([10, Proposition 1.8]) implies minw∈∂Iλ(uϵ)⟨w, v⟩ ≤ ϵ which
ensures the existence of a Palais–Smale sequence {un} with Iλ(un) → c0 and

‖wn‖W−1,N� = min
w∈∂Iλ(un)

‖w‖W−1,N� → 0 as n →∞.

Then the existence of the solution uλ follows from Lemma 3.2. Also using Lemma 3.3 we have un → uλ
strongly in W1,N

0 (Ω). This implies Iλ(uλ) = c0 < 0 and hence uλ ̸≡ 0. Now the strong maximum principle
implies that uλ > 0. This proves Λ > 0.

Also by the isolatedness of the �rst eigenvalue of −∆N onW1,N
0 (Ω), it can be proved that Λ < ∞. Indeed,

for λn →∞ such that (1.1) admits a solution uλn for λ = λn, we can �nd λ∗ > 0 such that λf(t) > (λ1 + ϵ)tN−1
for all λ > λ∗ and t > 0. Then uλn is a super-solution and for µ < λ1 + ϵ such that µϕ1 ≤ uλn , µϕ1 is a sub-
solution of

{
−∆Nu = (λ1 + ϵ)uN−1 in Ω,

u = 0 in Ω,

where λ1 is the �rst eigenvalue of −∆N in W1,N
0 (Ω) and ϕ1 is the �rst eigenfunction. Then by the monotone

iteration method, for each ϵ > 0, the above problem admits a solution. This contradicts that λ1 is isolated.
Thus Λ < ∞.

We prove the following comparison principle for the N-Laplacian problem with discontinuous nonlinearity.

Lemma 3.5. Let v, w ∈ W1,N
0 (Ω) with v > 0, w ≥ 0 such that

{
−∆Nv ≥ χ{v≤a}vq in Ω,

v = 0 on Ω,
(3.22)

and

{
−∆Nw ≤ χ{w≤a}wq in Ω,

w = 0 on Ω.
(3.23)

Then v ≥ w a.e. in Ω.

Proof. Let A = {x ∈ Ω : w(x) > v(x)}. Then multiplying (3.22) by wN
vN−1 χA and (3.23) by wχA, where χA is the

characteristic function ofA, we get

∫
A

|∇v|N−2∇v ⋅ ∇( wN

vN−1
) ≥ ∫

A

χ{v≤a}vq
wN

vN−1
(3.24)
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and
∫
A

|∇w|N ≤ ∫
A

χ{w≤a}wqw. (3.25)

Now as by Picone’s identity for N-Laplacian in [4],

∫
A

|∇w|N ≥ ∫
A

|∇v|N−2∇v ⋅ ∇( wN

vN−1
),

from (3.24) and (3.25) we get
0 ≥ ∫

A

(
χ{v≤a}vq

vN−1
−
χ{w≤a}wq

wN−1
)wN . (3.26)

Note thatA = A1 ∪ A2 ∪ A3, where

A1 = {x ∈ Ω : w(x) > v(x)} ∩ {x ∈ Ω : a ≥ w(x)},
A2 = {x ∈ Ω : w(x) > v(x)} ∩ {x ∈ Ω : w(x) > a ≥ v(x)},
A3 = {x ∈ Ω : w(x) > v(x)} ∩ {x ∈ Ω : v(x) > a}.

Clearly,

∫
A3

(
χ{v≤a}vq

vN−1
−
χ{w≤a}wq

wN−1
)wN = 0.

Also as q < N − 1, using the de�nition of χ{t≤a} one can check that

∫
Ai

(
χ{v≤a}vq

vN−1
−
χ{w≤a}wq

wN−1
)wN ≥ 0

for i = 1, 2. Using this in (3.26) we infer that |A| = 0. Hence v ≥ w a.e. in Ω.

Lemma 3.6. For all λ ∈ (0, Λ), problem (1.1) admits a solution.

Proof. Let u be the minimal solution of

{
−∆Nu = λ(h(u)e|u|

N/N−1
+ uq) in Ω,

u = 0 on Ω,
(3.27)

with ‖u‖L∞ → 0 as λ → 0. The existence of u follows from [17]. Also by minimizing the corresponding
functional overW1,N

0 (Ω) one can easily show the existence of the unique solution u for λ > 0 of the following
problem:

{
−∆Nu = λχ{u≤a}uq in Ω,

u = 0 on Ω.
(3.28)

Then u and u are sub-solution and super-solution for (1.1), respectively. Also by Lemma 3.5, one has u ≤ u.
LetMλ = {u ∈ W1,N

0 (Ω) : u ≤ u ≤ u}. As Iλ is coercive andweakly lower semi-continuous overMλ, there exists
some uλ ∈ Mλ such that Iλ(uλ) = infu∈Mλ Iλ(u). Now we claim that uλ solves problem (1.1). For this, let
ϕ ∈ W1,N

0 (Ω) and vϵ = uλ + ϵϕ − ϕϵ + ϕϵ, where ϕϵ = (uλ + ϵϕ − u)+ and ϕϵ = (uλ + ϵϕ − u)−. Let 0 < t < 1
such that uλ + t(vϵ − uλ) ∈ Mλ. Then as

0 ≤ lim
t→0+ Iλ(uλ + t(vϵ − uλ)) − Iλ(uλ)t

≤ (Iλ)0(uλ , vϵ − uλ),

there exists some wϵ ∈ L∞(Ω), wϵ(x) ∈ [χ{uλ(x)≤a}, χ{uλ(x)≤a}] such that

∫
Ω

|∇uλ|N−2∇uλ ⋅ ∇(vϵ − uλ) − λ∫
Ω

f(uλ)(vϵ − uλ) − λ∫
Ω

wϵu
q
λ (vϵ − uλ) ≥ 0.

This implies
∫
Ω

|∇uλ|N−2∇uλ ⋅ ∇ϕ − λ∫
Ω

f(uλ)ϕ − λ∫
Ω

wϵu
q
λϕ ≥

1
ϵ
(Eϵ − Eϵ), (3.29)
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where
Eϵ = ∫

Ω

|∇uλ|N−2∇uλ ⋅ ∇ϕϵ − λ∫
Ω

f(uλ)ϕϵ − λ∫
Ω

wϵu
q
λϕ

ϵ

and
Eϵ = ∫

Ω

|∇uλ|N−2∇uλ ⋅ ∇ϕϵ − λ∫
Ω

f(uλ)ϕϵ − λ∫
Ω

wϵu
q
λϕϵ .

Now using (A1) we get

Eϵ

ϵ
≥
1
ϵ ∫
Ωϵ
(|∇uλ|N−2∇uλ ⋅ ∇ϕϵ − λf(uλ)ϕϵ − λwϵu

q
λϕ

ϵ)

=
1
ϵ ∫
Ωϵ
(|∇uλ|N−2∇uλ − |∇u|N−2∇u) ⋅ ∇ϕϵ +

1
ϵ ∫
Ωϵ
(|∇u|N−2∇u∇ϕϵ − λf(uλ)ϕϵ − λwϵu

q
λϕ

ϵ)

≥
1
ϵ ∫
Ωϵ
(|∇uλ|N−2∇uλ − |∇u|N−2∇u) ⋅ ∇ϕϵ +

λ
ϵ ∫
Ωϵ
((f(u) − f(uλ))ϕϵ +

λ
ϵ ∫
Ωϵ
(uq − wϵu

q
λ )ϕ

ϵ

≥
1
ϵ ∫
Ωϵ
(|∇uλ|N−2∇uλ − |∇u|N−2∇u) ⋅ ∇(u − uλ) + ∫

Ωϵ
(|∇uλ|N−2∇uλ − |∇u|N−2∇u) ⋅ ∇ϕ

≥ ∫
Ωϵ
(|∇uλ|N−2∇uλ − |∇u|N−2∇u) ⋅ ∇ϕ = oϵ(1),

where Ωϵ = {x ∈ Ω : (uλ + ϵϕ)(x) > u(x)} and the second last inequality follows from (2.3). Similarly, we can
show that Eϵϵ ≤ oϵ(1). Thus from (3.29) we get

∫
Ω

|∇uλ|N−2∇uλ ⋅ ∇ϕ − λ∫
Ω

f(uλ)ϕ − λ∫
Ω

wϵu
q
λϕ ≥ 0 for all ϕ ∈ W1,N

0 (Ω).

Hence uλ solves (1.1).

Lemma 3.7. For λ = Λ, problem (1.1) admits a solution.

Proof. To show the existence of a solution to (1.1) for λ = Λ,we take {λn} ⊂ (0, Λ) such that λn → Λ as n →∞.
As there exists a solution uλn of (1.1) for λ = λn, we have

∫
Ω

|∇uλn |N−2∇uλn ⋅ ∇ϕ = λn(∫
Ω

f(uλn )ϕ + ∫
Ω

χ{uλn (x)≤a}u
q
λnϕ) for all ϕ ∈ W1,N

0 (Ω). (3.30)

Taking ϕ = uλn in (3.30),

∫
Ω

|∇uλn |N = λn(∫
Ω

f(uλn )uλn + ∫
Ω

χ{uλn (x)≤a}u
q+1
λn ). (3.31)

Moreover, by the de�nition of uλn we have

Iλn (uλn ) = min
u∈Mλn

Iλn (u) ≤ Iλn (u) <
1
2 ‖u‖

N
W1,N

0
.

This implies
1
N
‖uλn‖NW1,N

0
<
1
N
‖u‖N

W1,N
0
+ λn ∫

Ω

F(uλn ) + λn ∫
Ω

G(uλn ). (3.32)

From (3.31) and (3.32) we get
1
N ∫
Ω

f(uλn )uλn − ∫
Ω

F(uλn ) <
1
Nλn

‖u‖2
W1,N

0
+ ∫
Ω

G(uλn ) −
1
N ∫
Ω

χ{uλn≤a}u
q+1
λn . (3.33)

Also, from (A3), for any K > 0, there exists a constant C > 0 such that
1
N
f(t)t − F(t) ≥ ( 1N −

1
K )f(t)t − C for all t > 0. (3.34)
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Thus, from (3.33) and (3.34), for K > N we have

(
1
N
−
1
K )∫

Ω

f(uλn )uλn <
1
Nλn

‖u‖2
W1,N

0
+ ∫
Ω

G(uλn ) −
1
N ∫
Ω

χ{uλn≤a}u
q+1
λn + C. (3.35)

Using (3.31), (3.35) and the Sobolev inequality, we estimate ‖uλn‖W1,N
0

as

‖uλn‖NW1,N
0
< K1‖u‖NW1,N

0
+ K2 ∫

Ω

uq+1λn + C ≤ K1‖u‖
N
W1,N

0
+ K2S‖uλn‖

q+1
W1,N

0
+ C, (3.36)

where S is the best constant in Sobolev embedding. As 0 < q < N − 1, {uλn } is bounded in W1,N
0 (Ω). Thus

uλn ⇀ uΛ weakly for some uΛ ∈ W1,N
0 (Ω). Now it is easy to show that uΛ solves (1.1) for λ = Λ.

The proof of Theorem 1.1 follows from Lemma 3.4, Lemma 3.6 and Lemma 3.7.

4 Conclusion
In this paper, we have discussed the existence of the solution of the critical elliptic problem with the regu-
lar and discontinuous nonlinearities of Heaviside type. The non-smoothness of the associated functional is
overcome by casting the sub-super solution method into a variational framework by a notion of generalized
gradient for Lipschitz continuous functional.

Themultiplicity results in case of N-Laplacian is an open problem in this direction. Here wewould like to
mention that for proving themultiplicity forN-Laplacian problemwith continuous nonlinearity, the standard
approach is to show that the �rst solution is a local minimum of the associated functional in C1 topology and
then use the “W1,N versus C1” arguments for establishing the mountain pass geometry around this solution.
But in case of the discontinuous nonlinearity, having a solution which is a local minimum of the associated
functional in C1 topology is itself an open question.
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