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1 Introduction

In this paper we discuss the following elliptic problems on smooth and bounded domain with the discontin-

uous nonlinearity:
|N/N-1

—Ayu = A(h(u)e
u>0 inQ, (1.1)

u=0 on Q,

+Xuzau?) inQ,

where Q c RY is a bounded domain, A, a >0 and 0 < g < N - 1. The N-Laplacian operator is defined
as Ayu := |Vu|N-2vu. Here we study the elliptic problem with discontinuous nonlinearity motivated from the
following Trudinger—Moser inequality given in [21, 27]:

sup J ean VN (1.2)
"u”Wé,NSl a
where ay = Na)ll\,/ W~ _1), wy is the volume of SN-1 and ||ll"Wé,N = fQ |Vu|N. We also have the following assump-

tions on h(t).
(A1) Onehas h(t) € C*(0, ), h(0) = 0, h(t) > O for t > 0 and f(t) = h(t)e
(A2) Foralle > 0,

N/N-1 . . .
It is nondecreasing in t.

elth/Nfl _ _elth/N—l

and limsup h(t)e =0.

lim inf h(t)e
t—oo t—00
(A3) There exists a constant K > 0 such that
t
F(t) = If(s) ds < K(f(t) + 1).
0
Problems with discontinuous nonlinearities have widely been studied in the last two decades because of
their occurrence in mathematical physics. Such problems occur in various branches of mathematical physics,
for example the obstacle problem, seepage surface problem and the Elenbass equations ([11-13]). Starting
with the pioneering work of Ambrosetti, Brezis and Cerami in [7], there are many references where the
existence and multiplicity results for the elliptic equation with continuous nonlinearity of concave-convex
type are addressed. Subsequently, the quasilinear elliptic equations of concave-convex type continuous
nonlinearities are studied in [16].
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The main difficulty in studying the elliptic equations with discontinuous nonlinearities is the non-
smoothness of the associated functional. Therefore, we need to use the notion of generalized gradients as
discussed in the pioneering work of Clarke [14] which was later applied to the differential equation setting
by Chang [13]. Adopting the generalized critical point theory in [8], the authors have studied the semilin-
ear elliptic equation with concave-convex type discontinuous nonlinearity in bounded domain. In [18], the
existence and multiplicity results for the semilinear elliptic equations with discontinuous and sublinear
nonlinearities are studied in RY. In [26], the authors have proved the existence and multiplicity of solutions
of (1.1) for N = 2. Also in [15], the existence of multiple solutions of the critical problem with discontinuous
and singular nonlinearity is obtained. The quasilinear elliptic equations with discontinuous nonlinearities
have been studied in [5] and [24].

With this introduction we state the main result of this paper.

Theorem 1.1. There exists a constant A > 0 such that for all A € (0, Al, there exists a solution of (1.1).

The rest of the paper is organized as follows. In Section 2 we discuss some of the preliminary definitions and
results which are required for setting the variational framework and for subsequent analysis. In Section 3 we
prove the existence of the solution of (1.1). Lastly we conclude the paper in Section 4 quoting some open
problems in this direction.

2 Preliminaries

We consider the following preliminary notions. Let X be a real Banach space, let X* be its dual spaceand (-, - )
denotes its duality action. Then for x, v € X and a locally Lipschitz continuous function f, the generalized
directional derivative fO(x, v) (of f at x along v) is defined as

fox,v) =1imsupf(x+h+/lv)—f(x+h).

h—0 A
110

The generalized gradient of f at x, denoted by 0f(x), is defined as
of(x) € X*, w e df(x) ifand only if (w, v) < fO(x, v) forall v € X.

We recall some properties of of which are proved in [13].

Lemma 2.1. The generalized gradient of a locally Lipschitz continuous function f has the following properties.
(i) Forallk € R, o(kf)(x) = kof(x).

(ii) Iff, g arelocally Lipschitz functions, then o(f + g)(x) C of(x) + 9g(x).

(iii) If f is convex, then of(x) coincides with the sub-differential of f in the sense of convex analysis.

(iv) Foreachv € X, fO(x, v) = max{{&, v) : & € of(x)}.

(v) Ifxis alocal minimum point for f, then O € 9f(x).

(vi) If f is differentiable in x with differential f' (x) € X*, then of(x) = {f' (x)}.

Definition 2.1. A point x € X is said to be a critical point of f if 0 € of(x).

The functional I, : Wé’N (Q) — Rassociated to (1.1) is given by

B = [1vul -2 [ Fao -4 [ 6w,
Q Q Q

where

s
G(s) = JX{tga}tq dt.
0
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Now in view of [13, Theorem 2.1 and Theorem 2.2], w € oI(u) if and only if there exists a function w € L*®(Q)
such that
(w,v) = I [VulN"2vu - vv - A Jf(u)v -2 J wiwv forallv e Wi¥(Q)
Q Q Q
and

Wx) € [x

—{u(x)ga}’)_({“(x)sa}] forae.x € Q,
where

Xiuo<a) = l(im inf)X{soosa} and  Xyp<a = 1(im SUP X{s(x<aj-
S(x

s(x)—u(x Y—u(x)

Note that y(u(x)<a} @0d X{(x)<q; are the characteristic functions of the set theoretical upper and lower limits of
sub level sets. Hence u defines a critical point for I, if and only if there exists a function w € L*°(Q) such that

J [VulN=2vu - vv - A Jf(u)v -A J ulwv =0 forallv e WyN(Q) (2.1)
Q Q Q
with
w(x) € D_({u(x)ga}’)_({u(x)iﬂ}] for a.e. x € Q. (2.2)

Definition 2.2. A solution of (1.1) is a function u € Wé’N(Q) such that u > 0 in Q and u satisfies (2.1)-(2.2).

Definition 2.3. The non-smooth functional I : Wé’N(Q) — R is said to satisfy the Palais—-Smale condition
at ¢ € Rif for every sequence {uy} Wé’N(Q)Such that I(u,) — cand [wall - = minyesrq,) IWlly-.v — 0,
there exists a subsequence of {u,} which converges strongly in Wé’N (Q), where W1V (Q) is the dual space
of WM (Q).

Remark 2.1. By elliptic regularity, such a solution u € W??(Q)foranyp > 1.Thuson Q, = {x € Q : u(x) = a}
we get (—f(x, a)) € [0, 1] which is a contradiction as f(x, a) > 0. Hence |Q,| = 0, where |Q,] is the N-dimen-
sional Lebesgue measure of Q.

Now we recall the following result proved by Brezis-Lieb in [9].

Lemma 2.2. Let Q c RY be a bounded domain, {u,} c LP(Q), 1 < p < 00, be such that |u,l||» < C forsome C > 0
and u, — u a.e.in Q. Then

Jim [l = ul7, = lunlgy + lul,] = 0.
Also we recall the following inequalities of [19, Lemma 4.1]. For &, { € RY,
[(EP72E = 18P20) - (& = DINEP + [GPYCPP > (p-1)|E- P, 1<p<2,

(2.3)
162610720 - -0= (5 ) 1E-ar, p=2.

3 Existence of a solution of (1.1)

In this section, we prove the existence of a solution of (1.1). First we note that the functional I is locally
Lipschitz and non-differentiable. We also prove the following result about I,.

Lemma 3.1. The functional I, satisfies the mountain pass geometry near O.
Proof. First we prove that there exist 8o, r, Ao > 0 such that Iy(u) > 6o for all u € Wé’N(Q) with [Ju]| Wi =T

and A € (0, Ap). Note that

q+1

< Cl””llwé,]v;

J G(w)

Q
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and from (A2) and (1.2) we have

jﬂm=i

Q

h(s)e" " ds < ¢y + I @™ oo

Q

O e

for ”u”Wé,N < % Thus forr < %, Ag sufficiently small and ”u"Wé,N =r, we get §o > O such that forall A € (0, Ag),

1 1
Iy(u) > NIIMII%N - AC3 —ACllluII;;é,N > p.
Also for ¢ € C(Q), I (tp) - —coas t — oo and for t — 0* we have I (u) < 0. Thus I, satisfies the mountain
pass geometry near O. O
We need the following lemma to prove Theorem 1.1.

Lemma 3.2. Let {uy} be a Palais—Smale sequence for I. Then there exists some u € WS’N(Q) such thatu, — u
and u is a critical point of I,.

Proof. Here we follow the approach as in [23] and [25]. Let {u,,} be a Palais—Smale sequence at ¢ € R. Then
In(un) — c and [[Wpll -1 = minyeor,w,) IWlly-.v — 0, where W-LN'(Q) denotes the dual of Wé,N(Q). This
implies

1
3 [ vl <A P -4 [ Gun) = e+ 01 (3.1)
Q Q Q
and there exists some wy(x) € ¥ nG0<a)’ Xu,(0<ay) SUCh that
(Wp, V) = j Vi N 2Vu, - Vv - A Jf(u,,)v -2 J Wnulv (3.2)
Q Q Q

forallv e Wé’N(Q), where (w, v) denotes the duality action of W‘LN'(Q) on WS’N(Q).
By assumption (A3), there exist K; > 0 and K> > N such that

F(t) <Ky + @ forall ¢t > 0.
K>

Thus (3.1) and (3.2) give

c+ j Gun) + K1 1Q + 0(1) > — j unl® = 2 [ Funun
N K>

Q

[ S—

\%

Q

1 1 N A _— q+1 1

(N - E)”un”Wé,N e I Wnltn ™+ 1 (W, Un).
Q

This implies {uy} is bounded in W(l)’N (Q). Let u, — uweaklyin Wé’N (Q). Also as |[Wyllz~ < 1, we can assume
Wn — W in L%®(Q) in weak* topology, where W(x) € [)_({u(x)<a}’)_({"(x)ﬂﬂ}]' Now note that {|Vun|[N-2Vu,} is
bounded in (LN¥N-1(Q))N. Thus -

IVun|V — p inD"(Q),

[Vun|N2Vu, — v weakly in (LNN-1(Q))V,
where u is a nonnegative regular measure and D’ (Q) are the distributions on Q. Let 6 > 0 and
Ag={xeQ: forallr> 0, u(Br(x) nQ) > a}.

Note that A, is a finite set. If not, then there exists a sequence of distinct points {xx} in A,. Since forall r > 0,
UB,(x) N Q) > o, we get u({xx}) > 0. This implies u(Ay) = co. But

ug) = nllrgo I [Vun|N < C < co.
Ag
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Thus Ay = {Xx1,X2,...,Xmn}. Letu € Wé’N(O) and © ¢ RY be a bounded domain. Then there exist r; and C;
depending only on N such that

. ( ul )N/N—l
J’e NV N (o) <C. (3.3)
o

Assertion 1. For any relatively compact subset X ¢ Q \ A, and ¢ > 0 such that #’:fl < 1, we have

nliggojf(un)un = If(u)u-

X X

For this let xg € K and ro > 0 such that p(By,(xo) NnQ) < 0. Let ¢ eCP(Q)suchthat0<p<1,¢p=11in
By (Q)nQand ¢ =0in Q\ By, (Xo). Thus

n—

lim J VatnlN b dx = J ¢ dy < u(Bry(x0) N Q) < (1 - €)a.

By, (X())m5 By, (x0)NQ

Therefore for n € IN sufficiently large and € > 0 sufficiently small, we have

lim J [VunV < (1 - €)o. (3.4)

Brg (xo)nQ
2

Using this in (3.3) we get
| <, (3.5)

Bry (x0)NQ
2

where g > 1 such that %’:H <1.
Now we estimate

[ Vs - fooul < 1+ 1, (3.6)
B1y (xo)nQ
where
h= [ ) -foll, L= [ i, - ul
By (X0)NQ Br (X0)NQ
By (3.5) and Hélder’s inequality, I, — 0 as n — co. To estimate I, let ¢ € C°(Q) such that [lu — ¢, < €.
Then
hs | wlu-gls [ ) -fwlgls [ ol ¢l G.7)
Brg (x0)NQ Brgy (x0)NQ By (x0)NQ
2 2 2
Now using (3.5) and Holder’s inequality, it is easy to check that the first and the last terms of the right-hand
side of (3.7) go to zero as n — co. Now we claim that the middle term also goes to zero. Note that for u,, — u

in L1(Q) with f(uy) € L1(Q) and IQ flup)un < C1 we have f(u,) — f(u) in L*(Q). Indeed for € > 0, there exists
a constant § > 0 such that for any A c Q, |A| < 6, we have

Jlul <€ and Jlf(u)l <E€.

A A

Now let M; > O such that |{x € Q : |u(x)| > M1}| < 6. Take M = max{M1, %}.Then

<T1+T,+Ts,

jf(un) - fw)

Q

where
T, - j fa), T = j fal, Ts=| j f(un)| j fall.

{lun|=M} {lul=m} {lun|<M} {lul<m}
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Now c
T, = |f(un)un|§—1£€
el - My
{lun|=M}
and
T, = j fwl < e
{lul=M}

since |{x € Q : lu(x)| = M}| < 6. Also

T3=‘ [ - [ vl

{lun|<M} {lul<M}
< j Xt (F)] — IF)D]| + j(xﬂunkm ) IFl]. (3.8)
Q Q

Note that y{ju,|<m (If(un)| - If(w)]) — 0 a.e.in Q. Also

fw)] if lup| > M,

W tual<any (fun)l = IfQODI < {C+ [f)l  if [unl < M,

where C = supy, j<u [f(un)]. Thus by the Lebesgue Dominated Convergence Theorem, the first term on the
right-hand side of (3.8) goes to zero as n — 0. Also since

xeQ:junx)| <M} \{xeQ:lux)| <M} c{xeQ:|ux)| =M}

this implies

j(x{|u,,.<M} e @) < j fw)l < e.

Q {lul=M}
Thus the second term on the right-hand side of (3.8) also goes to zero as n — co. Using this in (3.6) and (3.7)
we get

j Fun)n - ful — 0 asn — oo

B 1 (X0)NQ
and as X is compact, Assertion 1 follows.

Assertion 2. Let €9 > O be such that Be,(x;) N Be,(x;) = 0if i # j and

Qe ={xeQ:lx-xjl2€,j=1,2,...,m}
Then
J (IVun N 2Vu, - [VulN"2vu) - (Vu, — Vu) — 0. (3.9)
Qe,

Indeed, let O < € < €9 and ¢ € CP(RN) such that ¢ = 1in By,,(0) and ¢ = 0 in Q\ B1(0). Take

hoor-$ o)

J=1

Then 0 < Y < 1, P = 1in Qe = O\ U"; Be(xj), Pe = 0in P, Be/2(xj) and {Peun} is bounded in Wy (Q).
Now taking v = p.u, in (3.2) we get

j“vunw”be +|Vun N2 Vuy, - Vipeun — Af(un)unthe - AW_nuZH’/)e] < €n "Ebeun"WévN- (3.10)
Q

Again taking v = -y u in (3.2) we get

J[—qu,,IN‘ZVun Vue — [VunN2Vuy - Vet + Af(un)uthe + AWpuiutpe] < enllpeullyx. (3.11)
0
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Also from the convexity of t — |¢|N for t € RN, we have
0< J (Vi N2Vt — VN2V - (Vaty — Vi)
Qep

< j(qunlN‘ZVun —VulN"2vu) - (Vuy - Vu)ipe.
Q

Rewriting this as

0< J |Vun|N'pe - |Vun|N_2VUn -Vue — |VU|N_2VU Vuppe + |Vu|N’7be,
Q

from (3.10), (3.11) and (3.12) we get

0< J [VunN=2Vuy, - Vipe(un — u) + J Ye|VulN2Vu - (Vu - Vuy)
Q Q

2 Pt = wpe + A [ W~ e + enlietal + enlipett
Q Q

Now as by Young’s inequality, for given 6 > O, there exists a constant Cs > O such that

j IVunl V2Vt - Vipe(un — u) < 6] Vual¥ + Cs j Vel uty — )Y
Q Q Q

1/r 1/s
samc&(lede) <j|un—u|Ns) ,
Q Q

where C, rand s > O with £ + 1 = 1. Thus we get

lim supj IVunN"2Vuy, - Vipe(up — u) < 0.
n—oo

Q

Also noting that u,, — u weakly in Wé’N (Q) we have
lim J DelVulN2Vu - (Vi - Vaty) = O
n—oo
Q

and

n—-oo

Q

lim Jw_nuZ(un —u)e = 0.

Also by Assertion 1, taking K = Q. /2 one can check that

lim, [ fn) s - wpe = o.

Q

Now from (3.14)-(3.17), (3.9) follows.

— 115

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

Since €y is arbitrary, we get Vu,(x) — Vu(x) a.e. in Q and hence |Vu,|N"2Vu, — [Vu[N"2Vu weakly

in (LN/N-1(Q))N. Thus passing to the limit in (3.2), forany v € Wé’N(Q), we get
j [VulN2vu - vv - A jf(u)v -2 J wv = 0.
Q Q )

This implies that u is a critical point of I,.

Now we prove the following compactness result.
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Lemma 3.3. Let {u,} be a Palais—Smale sequence at ¢ € R with
. N-1
lim inf {lun ]l 1y < (an)™ ",

1/(N-1)

where ay = Nw)y and wy is the volume of SN~1. Then, up to a subsequence, {u,} converges strongly

inwyN(Q).

Proof. As {u,} is a Palais—Smale sequence at ¢ € R, then as in Lemma 3.2 u,, — up weakly in Wé’N (Q) for
some ug € WS’N(Q). Let r, = uy — ug. Then we have r,, — 0 and

Y IIrnII N+||uoII N+0(1),

WlN_

thanks to Lemma 2.2. Also,

Jf(un)uo - Jf(uo)uo

Q Q

and for each n € IN, there exists some pp(x) € [y s X{uy (x)<ay) SUCh that

“Hun(x)<a}

[ 19al" 2999 = 2 [ fa)p A [ il < el

Q 0 Q
forall ¢ € Wé’N(Q) and € | 0. Now taking ¢ = u, and using Lemma 2.2, we get

Irnlyan + ol = Jf(un)un - AIPWZ” < elunllypn +o(1). (3.18)
Q Q

Now as ||pnllze~ < 1, we can assume p, — p in L*°(Q) as n — co with respect to the weak* topology and

p(x) € [X{u o)’ Xiuo(v<ay)- Thus using the Lebesgue Dominated Convergence Theorem, equation (3.18)
implies
Il + Btolty s = A [ oo =4 [ pud™ < elunllyy + A [ fura + 00, (3.19)
Q Q Q

Also as uy is a critical point of I}, we have 0 € 01 (uo). Thus for all ¢ € Wé’N(Q),

J VoV 2VuoVep — A Jf(uo)qb ) qug¢ > 0. (3.20)

Q Q Q

Therefore (3.19) and (3.20) give

Irallhs < eliallyzn 44 [ fanr +0(0). (3.21)
Q

Also using Holder’s and Sobolev inequalities and choosing n large such that for s > 1, s|uy, ||N IN-1 (an)N-D)]

we have y y
j ()l < ( j |f<un>|5> ( jw’)
Q Q Q
< ( jexp(suun||1VVV’(§,VN1
Q

< C"rn"Ls’

!

Un

N/N-1 1/S , 1/S
) (i)
Q

for some C > 0. Thus (3.21) implies |ry| Wiy = 0. Hence up to a subsequence {u,} converges strongly
in Wi Q). O

Tty

Set A = sup{A > O : problem (1.1) admits a solution}.

Lemma 3.4. We have 0 < A < co.
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Proof. Let ¢ € C2°(Q). Then by Lemma 3.1, for A € (0, Ap) and p > 0 small we have

—00 < co =infIy < 0.
By

Now by applying Ekeland’s variational principle, there exists some u, € B_p such that
(D) Ia(ue) < co +e,
(i) Ia(ue) < n(w) + elu — ucll v, for u # ue, u € By.
AsIj(ug) < cg+€< infaBP IyforO<e< infaBp I, —infEI/\, we have ue € By. Let t > 0 with v¢ = uc + tv € B
forv e Wé’N (Q). Thus from (ii) we get

I(ue + tv) - In(ue)

t

> —€||V"W3,N.
Now for t — 07, this gives
=€Vl < (I)°ue, v) = max (w,v) forallve Wé’N(Q).
0 weoly(ue)
Interchanging v and —v we get
min (w,v) < el forallv e Wé’N(Q)
wealy(ue) 0
and hence
sup min (w, V) <e€.
IVl y1n=1 weoli(ue)
This on applying Ky Fan’s min-max theorem ([10, Proposition 1.8]) implies minyesr, i) (W, v) < € which
ensures the existence of a Palais—Smale sequence {u,} with I}(u,) — co and
IWallyy-an = werargl(lun) [wlly-rvv — 0 asn — co.
Then the existence of the solution u, follows from Lemma 3.2. Also using Lemma 3.3 we have u, — u,
strongly in Wé’N(Q). This implies I (uy) = co < 0 and hence u, # 0. Now the strong maximum principle
implies that uy > 0. This proves A > 0.

Also by the isolatedness of the first eigenvalue of —Ay on Wé’N (Q), it can be proved that A < co. Indeed,
for A, — oo such that (1.1) admits a solution u,, for A = A,;, we can find A* > 0 such that Af(t) > (A1 + e)thN-1
for all A > A* and ¢ > 0. Then u,, is a super-solution and for u < A; + € such that u¢1 < uy,, u¢: is a sub-
solution of

“Ayu=A; +e™! inQ,
{ u=0 inQ,

where A, is the first eigenvalue of —Ay in Wé’N (Q) and ¢ is the first eigenfunction. Then by the monotone
iteration method, for each € > 0, the above problem admits a solution. This contradicts that A; is isolated.
Thus A < co. O

We prove the following comparison principle for the N-Laplacian problem with discontinuous nonlinearity.

Lemma 3.5. Letv,w € Wé’N(Q) withv > 0, w > O such that

—Anv = vl inQ,
N X{v<a} (3.22)
v=0 onQ,
and
—Ayw < w? inQ,
NW S Xiwsa) (3.23)
w=0 on Q.

Thenv > wa.e.in Q.

Proof. Let A = {x € Q : w(x) > v(x)}. Then multiplying (3.22) by V%—iXA and (3.23) by wy 4, where y 4 is the
characteristic function of A, we get

N N
N-2 w q w
J |VV| Vv V(vN_—l) > JX{VSQ}V vN_—l (3.24)
A A
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and
I [vw[N < IX{wga}WqW (3.25)
A A
Now as by Picone’s identity for N-Laplacian in [4],
N

N N-2 w
JIVWI ZJWV' VV'V<VN_1)»
A A
from (3.24) and (3.25) we get
X{vsa}Vq X{wsa}Wq N
0> [(Msts - Xt v, (3.26)

Note that A = A1 U A, U A3, where

Ai={xeQ:wx)>vxX)}In{xeQ:a>wkx)},
Ay={xeQ:wkx)>vX)}In{xeQ:wkx)>az=>vx)},
As={xeQ:wkx)>vxX)}n{xeQ:v(x)>al.

Clearly,

X{vsa}Vq _ X{wsa}Wq wN =0
yN-1 wN-1 -
As

Also as g < N — 1, using the definition of y{<4} one can check that

X{vsa}Vq _ X{wga}Wq wh >0
YN-1 wh-1 =

A;
fori =1, 2. Using this in (3.26) we infer that |A| = 0. Hence v > w a.e. in Q. O
Lemma 3.6. Forall A € (0, A), problem (1.1) admits a solution.

Proof. Let u be the minimal solution of

{ ~Ayu = A(h(u)e™
u=0 onQ,

N/N-1
+u?) inQ,
) (3.27)

with |u~ — 0 as A — 0. The existence of u follows from [17]. Also by minimizing the corresponding
functional over WS’N (Q) one can easily show the existence of the unique solution u for A > 0 of the following
problem:
~Ayu=A27 u? inQ,
N X{u<a} (3.28)
u=0 on Q.

Then u and u are sub-solution and super-solution for (1.1), respectively. Also by Lemma 3.5, one has u < u.
Let My ={u ¢ Wé’N (Q) : u < u < u}. As I, is coercive and weakly lower semi-continuous over Mj, there exists
some u, € My such that Iy(ua) = infyepm, Ia(u). Now we claim that u; solves problem (1.1). For this, let
¢ e WS’N(Q) and ve = uy + € — o€ + ¢, where € = (up +ep—u)* and pe = (up+ep—u)~. Let0O<t <1
such that uy + t(ve — uy) € My. Then as

1 - -1
Ostlirg Aup + t(ve tu/\)) A(up)

< (I)°(up, ve — up),

here exi me we € L®(Q), w €
there exists some w, (Q), we(x) [)_({HA(X)SH}

s Xuy(<a}] SUCh that

j VN -2Vu - V(ve - wy) - A jf(um(ve “w) —Ajw—eu;f(ve “up) = 0.
Q Q Q

This implies

[ 2vin- v -2 [ v -2 [ weuls = 2 < - o, (3.29)
Q Q Q
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where
_ j Vi N2y - Vo€ — A jf(uA)qﬁe - J Weule®
Q Q
and
= [ w2V Ve -4 [ funge - A | Weulg.
Q Q Q
Now using (A1) we get
E¢ 1 N-2 € € 19— d re
=2 o v Vi Ve - Mgt - Al )
QE
= J(IVuAIN 2Vuy - [VulN V) - Vo© + = [(|Vu|N 2Vuve© - Af(un)¢€ — Aweuig®)
Qe Qe
> 2 @il 2w - w2 v vg + £ [(G@ - fung + 4 @ - wadee
Qe Q€ Qe
> é J(IVuAIN_ZVu,\ VANV - V(T - wy) + j(qu,\lN‘ZVuA — VEN2vE) - Ve
Q€ Q€
>[92V - 1vE"2va) - v = oc(1),

Q€

where Q€ = {x € Q: (up + ed)(x) > u(x)} and the second last inequality follows from (2.3). Similarly, we can
show that < 0¢(1). Thus from (3.29) we get

J VN2, - Vo — A Jf(u/\)(;b ) J Weulp =0 forallp e WoY(Q).
Q Q Q

Hence u, solves (1.1). O
Lemma 3.7. For A = A, problem (1.1) admits a solution.

Proof. Toshow the existence of a solution to (1.1) for A = A, we take {A,,} < (0, A) such thatA, — Aasn — co.
As there exists a solution u,, of (1.1) for A = A,, we have

J IVup, IN2Vuy, - Vo = An<j flup,)d + j X{uAn(x)Sa}ugnd)) forall ¢ € W (Q). (3.30)
Q Q Q
Taking ¢ = u,, in (3.30),
J Vi, |V = /\n(Jf(uA,,)uA,, + JX{uAn(x)sa}u,L{:1>- (3.31)
Q Q Q

Moreover, by the definition of u,, we have

Ip,(up,) = uré%ln Ir, (W) < I, (W) < = ||U|IW1N
This implies
1 1
I < Il A [ Fau)+ 20 [ G, (332)
0 0
Q Q
From (3.31) and (3.32) we get
1 1
3 o, = [ Fan) < om0 - 5 [, and ™ (3.33)
Q Q Q Q

Also, from (A3), for any K > 0, there exists a constant C > 0 such that

—f(t)t F(t)_(———)f(t)t C forallt> 0. (3.34)
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Thus, from (3.33) and (3.34), for K > N we have
1 1 1 1
(5~ ) o, < ol + [ 60 - ¢ [ af™ + c. (3.35)
Q Q Q

Using (3.31), (3.35) and the Sobolev inequality, we estimate [luy, "Wé,N as

e, Iy s < Kallullly o + Ko j uf™ + C < Kalully, v + KaSlu, 1500 + C, (3.36)
0 0 0 0

Q

where S is the best constant in Sobolev embedding. As 0 < g < N -1, {uy,} is bounded in Wé’N (Q). Thus
uy, — up weakly for some uy € W(l,’N(Q). Now it is easy to show that u, solves (1.1) for A = A. O

The proof of Theorem 1.1 follows from Lemma 3.4, Lemma 3.6 and Lemma 3.7.

4 Conclusion

In this paper, we have discussed the existence of the solution of the critical elliptic problem with the regu-
lar and discontinuous nonlinearities of Heaviside type. The non-smoothness of the associated functional is
overcome by casting the sub-super solution method into a variational framework by a notion of generalized
gradient for Lipschitz continuous functional.

The multiplicity results in case of N-Laplacian is an open problem in this direction. Here we would like to
mention that for proving the multiplicity for N-Laplacian problem with continuous nonlinearity, the standard
approach is to show that the first solution is a local minimum of the associated functional in C* topology and
then use the “W™N versus C'” arguments for establishing the mountain pass geometry around this solution.
But in case of the discontinuous nonlinearity, having a solution which is a local minimum of the associated
functional in C* topology is itself an open question.
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