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1 Introduction and preliminary results
The study of discrete boundary value problems has captured special attention in the last decade. In this con-
text, we point out the results obtained in the papers of Agarwal, Perera and O’Regan [1], Cabada, Iannizzotto
and Tersian [4], Candito and Molica Bisci [5], Iannizzotto and Rădulescu [8], Rădulescu [20]. In all these
papers, variational methods are applied to boundary value problems on “bounded” discrete intervals (that
is, sets of the type {0, . . . , n}).

In [7], the continuous dependence on parameters for mountain pass solutions of second order discrete
BVPs is investigated. Any such solution is reached via mountain pass approach apart from the limit solu-
tion which need not have mountain geometry. On the other hand, in [19] are presented some multiplicity
results for a general class of nonlinear discrete problems with double-well potentials. Variational tech-
niques are used to obtain the existence of saddle-point-type critical points. In addition to simple discrete
boundary-value problems, partial di�erence equations as well as problems involving discrete p-Laplacian
are considered. Also the boundedness of solutions is studied and possible applications, e.g. in image pro-
cessing, are discussed. Similar models are studied and applied for the object identi�cation, the so-called
level set segmentation.

In many cases a problem in a continuous framework can be handled by using a suitable method from
discrete mathematics and conversely (see [12]). Themodeling simulation of certain nonlinear problems from
economics, biological, neural networks, optimal control and others enforced in a natural manner the rapid
development of the theory of di�erence equations. Interesting variational techniques have been used to get
results for general partial di�erence operators; see Bereanu and Mawhin [2, 3]. Di�erence equations serve
as mathematical models in diverse areas, such as economy, biology, physics, mechanics, computer science,
�nance. The studies regarding such type of problems can be placed at the interface of certain mathematical
�elds such as nonlinear partial di�erential equations and numerical analysis. For instance, we may consult
the monographs of Kelley and Peterson [9], Lakshmikantham and Trigiante [11]. More details on this topic
can also be found in [15, 16].

Let n ⩾ 2 be an integer number and denoteℤ[1, n] := {1, . . . , n}. The discrete Laplace operator is de�ned
by

∆u(k) = ∇(∇u(k + 1)),
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where ∇ is the backward di�erence operator, namely

∇u(k) = u(k) − u(k − 1) for all k ∈ ℤ[1, n].

In this paper, we are interested in the existence of solutions u = (u(1), . . . , u(n)) ∈ ℝn+ of the problem

{
−∆u(k) = λa(k)u(k)p + f(u(k)) for all k ∈ ℤ[1, n],
u(0) = u(n + 1) = 0,

(Pλ)

where a = (a(1), . . . , a(n)) ∈ ℝn and f : [0, +∞) → ℝ is continuous, while p > 0 and λ ∈ ℝ. We refer to
Rădulescu [20] and Rădulescu and Repovš [21] for related nonlinear discrete problems.

We prove the existence of solutions for problem (Pλ) using variational methods, by considering an
auxiliary problem and, under suitable assumptions on the data, we will prove the existence of solutions
for this equation. The method consists of proving the fact that the corresponding energy functional admits
a minimum, by using the direct methods of the calculus of variations.

We would like to emphasize that problem (Pλ) is the discrete version of the semilinear elliptic equation
studied in [10], that is,

{{{
{{{
{

−∆u = λa(x)up + f(u) in Ω,
u ⩾ 0, u ̸= 0 in Ω,
u = 0 on ∂Ω,

(1.1)

where Ω ⊂ ℝN (N ⩾ 3) is a smooth bounded domain with boundary ∂Ω, a ∈ L∞(Ω), f : [0,∞) → ℝ is a con-
tinuous function, p > 0 and λ ∈ ℝ are some parameters.

Moreover, problem (1.1)was recently extendedbyMolica Bisci, Rădulescu andServadei in [14] to general
classes of quasilinear elliptic equations. More exactly, they studied the problem

{{{
{{{
{

−div A(x, ∇u) = λβ(x)uq + f(u) in Ω,
u ⩾ 0 in Ω,
u = 0 on ∂Ω,

(1.2)

where Ω ⊂ ℝN ,N ⩾ 3, is a boundeddomainwith smooth boundary ∂Ω, q > 0 and λ ∈ ℝ are parameters, while
β ∈ L∞(Ω) and f : [0,∞) → ℝ is a continuous function and A : Ω × ℝN → ℝN is a function satisfying some
general assumptions.

Motivated by the studies in [10] and [14],we focus in the present paper on the case of nonlinear di�erence
equations. We are concerned in the study of the number of solutions of problem (Pλ) and of their behavior
in the case when f oscillates at in�nity. The case of oscillation near the origin was studied in Mălin and
Rădulescu [13]. Usually, equations involving oscillatory nonlinearities give in�nitely many distinct solutions
(see [17, 18]), but the presence of an additional term may alter the situation.

De�ne the vector space

H = {v = (v(0), v(1), . . . , v(n), v(n + 1)) ∈ ℝn+2 : v(0) = v(n + 1) = 0}.

Then H is an n-dimensional Hilbert space (see [1]) with the inner product

⟨u, v⟩ =
n+1
∑
k=1

∇u(k)∇v(k) for all u, v ∈ H.

The associated norm is de�ned by

‖u‖ = (
n+1
∑
k=1

|∇u(k)|2)
1
2

.

For all u ∈ H we set
‖v‖∞ = max

k∈ℤ[1,n]
|v(k)|. (1.3)

Since H is �nite-dimensional, the norms ‖ ⋅ ‖ and ‖ ⋅ ‖∞ are equivalent on H.
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De�nition 1. We say that u ∈ H is a weak solution for problem (Pλ) if

n+1
∑
k=1

∇u(k)∇v(k) − λ
n
∑
k=1

a(k)u(k)pv(k) −
n
∑
k=1

f(u(k))v(k) = 0 for all v ∈ H. (1.4)

Remark 1. Note that (1.4) can be obtained by multiplying (Pλ) with v(k) for all k ∈ ℤ[1, n] and summing up
from k = 0 to k = n + 1. By taking into account that v(0) = v(n + 1) = 0 and using some simple computations
we deduce the variational characterization of weak solutions from (1.4).

The paper is organized as follows. In Section 2,wewill state themain results of the paper. In Section 3,wewill
consider an auxiliary problem and for it we will prove the existence of solutions by using direct minimization
methods. Finally, in Section 4, we will study problem (Pλ) in presence of an oscillation term at in�nity.

For an excellent overview of the most signi�cant mathematical methods employed in this paper we refer
to Ciarlet [6].

2 Main results
Throughout this paper, we assume that f : [0, +∞) → ℝ is a continuous function and we denote by F the
function de�ned as

F(s) :=
s

∫
0

f(t) dt for any s ∈ (0, +∞).

We assume that f oscillates at in�nity, namely the following assumptions are ful�lled:

(f∞1 ) −∞ < lim inf
s→+∞

F(s)
s2

, lim sup
s→+∞

F(s)
s2

>
1
n
,

(f∞2 ) l∞ := lim inf
s→+∞

f(s)
s

< 0.

Example 1. Let α > 1, β ∈ ℝ and ã > 0. De�ne f∞ : [0, +∞) → ℝ by

f∞(s) = s(1 + α sin(βsã)).

Then f∞ satis�es assumptions (f∞1 ) and (f∞2 ).

We point out that condition (f∞1 ) allows us to deduce some information about the number of solutions for
problem (Pλ), while (f∞2 ) is used in order to prove the existence of the solutions.

Theorem 2. Let a = (a(1), . . . , a(n)) ∈ ℝn, λ ∈ ℝ and 0 < p ⩽ 1. Assume that f ∈ C([0, +∞);ℝ) satis�es con-
ditions (f∞1 ) and (f∞2 ) with f(0) = 0. If either
(i) p = 1, l∞ ∈ (−∞, 0) and λa(k) < λ∞ for all k ∈ ℤ[1, n] and some λ∞ ∈ (0, −l∞), or
(ii) p = 1, l∞ = −∞ and λ ∈ ℝ is arbitrary, or
(iii) 0 < p < 1 and λ ∈ ℝ is arbitrary,
then there exists a sequence {ui}i in H of non-negative, distinct weak solutions of problem (Pλ) such that

lim
i→+∞

‖ui‖ = lim
i→+∞

‖ui‖∞ = +∞. (2.1)

Theorem 3. Let a = (a(1), . . . , a(n)) ∈ ℝn, λ ∈ ℝ and p > 1. Assume that f ∈ C([0, +∞);ℝ) satis�es condi-
tions (f∞1 ) and (f∞2 ) with f(0) = 0. Then, for every n ∈ ℕ, there exists Λn > 0 such that problem (Pλ) has at
least n distinct weak solutions u1,λ , . . . , un,λ ∈ H such that

‖ui,λ‖ > i − 1 and ‖ui,λ‖∞ > i − 1 for any i = 1, . . . , n, (2.2)

provided λ ∈ [−Λn , Λn].
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3 An auxiliary problem
Consider the problem

{
−∆u(k) + c(k)u(k) = g(k, u(k)), k ∈ ℤ[1, n],

u(0) = u(n + 1) = 0.
(Pcg)

Here, we assume that c = (c(1), . . . , c(n)) ∈ ℝn is such that

min
k∈ℤ[1,n]

c(k) > 0, (3.1)

while g : ℤ[1, n] × [0, +∞) → ℝ is a Carathéodory function satisfying the following conditions:
(C1) g(k, 0) = 0 for every k ∈ ℤ[1, n],
(C2) there exists an Mg > 0 such that |g(k, s)| ⩽ Mg for every k ∈ ℤ[1, n] and all s ⩾ 0,
(C3) there exist δ and η with 0 < δ < η such that g(k, s) ⩽ 0 for every k ∈ ℤ[1, n] and all s ∈ [δ, η].
We extend the function g by taking g(k, s) = 0 for every k ∈ ℤ[1, n] and s ⩽ 0.

De�nition 4. By a weak solution for problem (Pcg) we understand a vector u ∈ H such that for all v ∈ H,

n+1
∑
k=1

∇u(k)∇v(k) +
n
∑
k=1

c(k)u(k)v(k) −
n
∑
k=1

g(k, u(k))v(k) = 0.

Let Ec,g : H → ℝ be the energy functional associated to problem (Pcg), namely

Ec,g(u) =
1
2 ‖u‖

2 +
1
2

n
∑
k=1

c(k)u(k)2 −
n
∑
k=1

G(k, u(k)), u ∈ H, (3.2)

where G(k, s) := ∫
s
0 g(k, t) dt for any s ∈ ℝ and k ∈ ℤ[1, n]. Then Ec,g is well-de�ned, of class C1(H;ℝ) and

⟨E�c,g(u), v⟩ = ⟨u, v⟩ +
n
∑
k=1

c(k)u(k)v(k) −
n
∑
k=1

g(k, u(k))v(k) for all u, v ∈ H.

Thus, the weak solutions of (Pcg) coincide with the critical points of Ec,g.
Finally, we introduce the setWη de�ned as

Wη := {u ∈ H : ‖u‖∞ ⩽ η},

where η is a positive parameter given in (C3).
Since g(k, 0) = 0 for every k ∈ ℤ[1, n] by condition (C1), it follows that u ≡ 0 is clearly a weak solution of

problem (Pcg).

Theorem 5. Assume that c = (c(1), . . . , c(n)) ∈ ℝn satis�es condition (3.1) and that g : ℤ[1, n]×[0, +∞) → ℝ
is a Carathéodory function satisfying (C1), (C2) and (C3). Then:
(a) the functional Ec,g is bounded from below on Wη attaining its in�mum at some ũ ∈ Wη,
(b) ũ(k) ∈ [0, δ] for every k ∈ ℤ[1, n], where δ is the positive parameter given in (C3),
(c) ũ is a non-negative weak solution of problem (Pcg).

Proof. (a) Since the norms ‖ ⋅ ‖∞ and ‖ ⋅ ‖ are equivalent in the �nite-dimensional space H, the setWη is com-
pact in H. Combining this fact with the continuity of Ec.g, we infer that Ec,g|Wη attains its in�mum at ũ ∈ Wη.

(b) Let δ be as in assumption (C3) and let M be the following set:

M := {k ∈ ℤ[1, n] : ũ(k) ∉ [0, δ]}.

Hence, arguing by contradiction, we suppose that M ̸= 0.
De�ne the truncation function ã : ℝ → ℝ by

ã(s) := min{s+, δ},
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where s+ = max{s, 0}. Now, set w := ã ∘ ũ, that is,

w(k) =
{{{
{{{
{

δ if ũ(k) > δ,
ũ(k) if 0 ⩽ ũ(k) ⩽ δ,
0 if ũ(k) < 0,

for every k ∈ ℤ[1, T]. Since ã(0) = 0, we have w(0) = w(n + 1) = 0, so w ∈ H. Besides, 0 ⩽ w(k) ⩽ δ for every
k ∈ ℤ[1, n]. By assumption (C3) we know that δ < η, and so w ∈ Wη .

We introduce the sets

M− := {k ∈ M : ũ(k) < 0} and M+ := {k ∈ M : ũ(k) > δ}.

Thus, M = M− ∪M+ and we have that

w(k) =
{{{
{{{
{

ũ(k) for all k ∈ ℤ[1, n] \ M,
0 for all k ∈ M−,
δ for all k ∈ M+.

Moreover, we have

Ec,g(w) − Ec,g(ũ) =
1
2 (‖w‖

2 − ‖ũ‖2) + 1
2

n
∑
k=1

c(k)[(w(k))2 − (ũ(k))2] −
n
∑
k=1

[G(k, w(k)) − G(k, ũ(k))]

=: 12 J1 +
1
2 J2 − J3. (3.3)

Since ã is a Lipschitz function with Lipschitz constant 1, and w = ã ∘ ũ, we have

J1 = ‖w‖2 − ‖ũ‖2

=
n+1
∑
k=1

[|∇w(k)|2 − |∇ũ(k)|2]

=
n+1
∑
k=1

[|w(k) − w(k − 1)|2 − |ũ(k) − ũ(k − 1)|2] ⩽ 0. (3.4)

Since mink∈ℤ[1,n] c(k) > 0 by (3.1), one has

J2 =
n
∑
k=1

c(k)[(w(k))2 − (ũ(k))2]

= ∑
k∈M

c(k)[(w(k))2 − (ũ(k))2]

= − ∑
k∈M−

c(k)(ũ(k))2 + ∑
k∈M+

c(k)[δ2 − (ũ(k))2] ⩽ 0. (3.5)

Next, we estimate J3. Due to the fact that g(k, s) = 0 for all s ⩽ 0 and for every k ∈ ℤ[1, n], we have

∑
k∈M−

[G(k, w(k)) − G(k, ũ(k))] = 0. (3.6)

Moreover, by using the mean value theorem, for every k ∈ M+, there exists θ(k) ∈ [δ, ũ(k)] ⊂ [δ, η] such that

G(k, w(k)) − G(k, ũ(k)) = G(k, δ) − G(k, ũ(k)) = g(k, θ(k))(δ − ũ(k)).

Thus, taking into account hypothesis (C3) and de�nition of M+, we have

∑
k∈M+

[G(k, w(k)) − G(k, ũ(k))] ⩾ 0. (3.7)
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Hence, by (3.6) and (3.7), we obtain

J3 = ∑
k∈M

[G(k, w(k)) − G(k, ũ(k))] = ∑
k∈M+

[G(k, w(k)) − G(k, ũ(k))] ⩾ 0. (3.8)

Combining relations (3.4), (3.5), (3.8) with (3.3), we get

Ec,g(w) − Ec,g(ũ) ⩽ 0. (3.9)

On the other hand, since w ∈ Wη, it is easy to see that

Ec,g(w) ⩾ Ec,g(ũ) = inf
u∈Wη

Ec,g(u).

By this and (3.9) we get that every term in Ec,g(w) − Ec,g(ũ) should be zero. In particular, from J2 and due
to (3.1), we have

∑
k∈M−

c(k)(ũ(k))2 = ∑
k∈M+

c(k)[δ2 − (ũ(k))2] = 0,

which implies that

ũ(k) =
{
{
{

0 for every k ∈ M−,
δ for every k ∈ M+.

In view of the de�nition of the sets M− and M+, we deduce that

M− = M+ = 0,

which contradicts M− ∪M+ = M ̸= 0.
(c) Fix v ∈ H arbitrarily and let

ε0 :=
η − δ

‖v‖∞ + 1 > 0,

where δ and η are given as in (C3). Moreover, let I : [−ε0, ε0] → ℝ be the function de�ned as

I(ε) := Ec,g(ũ + εv).

First of all, thanks to (b), for any ε ∈ [−ε0, ε0] we have

|ũ(k) + εv(k)| ⩽ ũ(k) + η − δ
‖v‖∞ + 1 ‖v‖∞ ⩽ η

for every k ∈ ℤ[1, n]. Thus, ũ + εv ∈ Wη.
Consequently, due to (a), we have I(ε) ⩾ I(0) for every ε ∈ [−ε0, ε0], that is, 0 is an interior minimum

point for I. Then, I�(0) = 0 and ⟨E�c,g(ũ), v⟩ = 0. Taking into account that v ∈ H is arbitrary and using the
de�nition of Ec,g, we obtain that ũ is a weak solution of problem (Pcg). Moreover, due to (b), ũ is non-negative
inℤ[1, n].

Theorem 5 does not guarantee that the solution ũ of problem (Pcg) is not the trivial one. In spite of this, by
Theorem 5 we will derive the existence of nontrivial solutions for the original problem (Pλ), provided the
nonlinear term f is chosen appropriately.

Finally, we de�ne the continuous truncation function τη : [0, +∞) → ℝ as

τη(s) := min{η, s} for every s ⩾ 0, (3.10)

where η is the positive constant given in assumption (C3).

4 Oscillation at in�nity
In order to prove Theorems 2 and 3, we consider problem (Pcg), where c = (c(1), . . . , c(n)) ∈ ℝn ful�lls (3.1)
and g : ℤ[1, n] × [0, +∞) → ℝ is a Carathéodory function which satis�es the following assumptions:
(A1) g(k, 0) = 0 for all k ∈ ℤ[1, n], and for any s ⩾ 0, there exists an M > 0 such that maxt∈[0,s] |g(k, t)| ⩽ M

for all k ∈ ℤ[1, n],
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(A2) there exist two sequences {δi}i and {ηi}i with 0 < δi < ηi < δi+1 such that

lim
i→+∞

δi = +∞ and g(k, s) ⩽ 0

for every k ∈ ℤ[1, n] and for all s ∈ [δi , ηi], i ∈ ℕ,
(A3) uniformly for all k ∈ ℤ[1, n],

−∞ < lim inf
s→+∞

G(k, s)
s2

and lim sup
s→+∞

G(k, s)
s2

>
1
n
,

where G(k, s) = ∫
s
0 g(k, t) dt.

Proof of Theorem 2. We start by proving assertion (i). In this case when p = 1 and l∞ ∈ (−∞, 0), we �x λ ∈ ℝ
such that λa(k) < λ∞ for all k ∈ ℤ[1, n] and some 0 < λ∞ < −l∞.

Let us choose λ∞ ∈ (λ∞, −l∞) and let

c(k) := λ∞ − λa(k) and g(k, s) := f(s) + λ∞s for all (k, s) ∈ ℤ[1, n] × [0, +∞). (4.1)

Firstly, we show that the functions c and g given in (4.1) satisfy the assumptions (3.1), (A1), (A2) and (A3).
It is clear that mink∈ℤ[1,n] c(k) > λ∞ − λ∞ > 0 and c ∈ ℝn thanks to the fact that a ∈ ℝn, so (3.1) is satis�ed.

Since f(0) = 0 by assumption and using the regularity of f , it is easy to see that g is a continuous function
inℤ[1, n] × [0, +∞) and g(k, 0) = 0 for all k ∈ ℤ[1, n]. Also, the continuity of s Ü→ g( ⋅ , s) and theWeierstrass
theorem yield (A1).

Note that
G(k, s)
s2

=
λ∞
2 +

F(s)
s2

for any k ∈ ℤ[1, n] and s > 0.

Thus, hypothesis (f∞1 ) implies (A3).
In the sequel, since l∞ < −λ∞ and using (f∞2 ), there exists a sequence {si}i ⊂ (0, +∞) converging to +∞

as i → +∞ such that
f(si) < −λ∞si for all i ∈ ℕ large enough.

Thus, we have
g(k, si) = f(si) + λ∞si < 0.

Consequently, by using the continuity of f , we may �x two sequences {δi}i , {ηi}i ⊂ (0, +∞) such that 0 < δi <
si < ηi < δi+1, limi→+∞ δi = +∞ and g(k, s) = λ∞s + f(s) ⩽ 0 for any k ∈ ℤ[1, n] and all s ∈ [δi , ηi] and i ⩾ i∗,
i∗ ∈ ℕ. Therefore, hypothesis (A2) is also ful�lled for g on every interval [δi , ηi], i ∈ ℕ. For any i ∈ ℕ, we
consider the truncation function gi : ℤ[1, n] × [0, +∞) → ℝ,

gi(k, s) := g(k, τηi(s)) and Gi(k, s) :=
s

∫
0

gi(k, t) dt (4.2)

for every k ∈ ℤ[1, n] and s ⩾ 0, where τηi is the function de�ned in (3.10) with η = ηi.
Let Ei : H → ℝ be the energy functional associated with problem (Pcgi ), that is, Ei := Ec,gi , where Ec,gi

is the functional given in (3.2) with g = gi. Taking into account hypotheses (A1) and (A2), it is easily seen
that the function gi ful�lls all the assumptions of Theorem 5 for any i ∈ ℕ. Thus, for every i ∈ ℕ, there exists
ui ∈ Wηi such that

min
u∈Wηi

Ei(u) = Ei(ui), (4.3)

ui(k) ∈ [0, δi] for every k ∈ ℤ[1, n], (4.4)

ui is a non-negative weak solution of (Pcgi ). (4.5)

Taking into account the de�nition of gi, (A2) and (4.4), it is easily seen that

gi(k, ui(k)) = g(k, τηi (ui(k))) = g(k, ui(k)) for every k ∈ ℤ[1, n].
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Thus, by the above relation and (4.5), ui is also a non-negative weak solution for problem (Pcg). In the sequel,
we need to show that there are in�nitely many distinct elements in the sequence {ui}i. To this end, �rst of all
we claim that, up to a subsequence,

lim
i→+∞

Ei(ui) = −∞. (4.6)

Indeed, due to (f∞1 ) and (4.1), we have that

lim sup
s→+∞

G(k, s)
s2

=
λ∞
2 + lim sup

s→+∞

F(s)
s2

>
λ∞
2 +

1
n
.

In particular, for a small ε∞ > 0, there exists a sequence { ̃si}i tending to +∞ such that

G(k, ̃si) > (
1
n
+
λ∞
2 + ε∞) ̃s2i . (4.7)

Since δi ↗ +∞ by (A2), we can choose a subsequence of {δi}i still denoted by {δi}i such that

0 < ̃si ⩽ δi for all i ∈ ℕ. (4.8)

Let i ∈ ℕ be �xed and let us de�ne the function wi ∈ H by

wi(k) = ̃si for every k ∈ ℤ[1, n].

Then ‖wi‖∞ = ̃si ⩽ δi < ηi by (A2) and (4.8). Hence, wi ∈ Wηi . This yields that for every k ∈ ℤ[1, n], we have

Gi(k, wi(k)) = Gi(k, ̃si) =
̃si

∫
0

gi(k, t) dt =
̃si

∫
0

g(k, τηi (t)) dt =
̃si

∫
0

g(k, t) dt = G(k, ̃si). (4.9)

Then, by using (3.1), (4.1), (4.7) and (4.9), for i su�ciently large we have

Ei(wi) =
1
2

n+1
∑
k=1

|∇wi(k − 1)|2 + 1
2

n
∑
k=1

c(k)(wi(k))2 −
n
∑
k=1

Gi(k, wi(k))

< ( ̃si)2 +
1
2 λ∞n(

̃si)2 − nG(k, ̃si)

< ( ̃si)2 +
1
2 λ∞n(

̃si)2 − n(
1
n
+
λ∞
2 + ε∞)( ̃si)2

= −nε∞( ̃si)2.

By construction, we know that wi ∈ W ̃si ⊂ Wηi . Consequently, by the above relations and (4.3), we have

Ei(ui) = min
u∈Wηi

Ei(u) ⩽ Ei(wi) < −nε∞( ̃si)2 for all i ∈ ℕ. (4.10)

Since limi→+∞ ̃si = +∞, by relation (4.10) it easily follows claim (4.6). As a consequence of (4.6) we get
that the sequence {ui}i has in�nitely many distinct elements (and, in particular, ui ̸= 0 in ℤ[1, n], being
Ei(0) = 0). Indeed, let us assume that in the sequence {ui}i there is only a �nite number of elements, say
{u1, . . . , un} for some n ∈ ℕ. Consequently, due to (4.2), the sequence {Ei(ui)}i reduces to at most the �nite
set {E1(u1), . . . , En(un)}which contradicts relation (4.6). Hence problem (Pcg) admits in�nitely many distinct
weak solutions.

It remains to prove (2.1). Since the norms ‖ ⋅ ‖∞ and ‖ ⋅ ‖ are equivalent, it is enough to prove that

lim
i→+∞

‖ui‖∞ = +∞.

Arguing by contradiction, we assume that for a subsequence of {ui}i, still denoted by {ui}i, there exists
a constant C > 0 such that

‖ui‖∞ ⩽ C for all i ∈ ℕ.
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Therefore, we have

Ei(ui) =
1
2

n+1
∑
k=1

|∇ui(k − 1)|2 + 1
2

n
∑
k=1

c(k)(ui(k))2 −
n
∑
k=1

Gi(k, ui(k))

⩾ −
n
∑
k=1

Gi(k, ui(k)) = −
n
∑
k=1

G(k, ui(k))

= −
n
∑
k=1

ui(k)

∫
0

g(k, s) ds

⩾ −
n
∑
k=1

max
s∈[0,C]

|g(k, s)|ui(k)

⩾ −δin max
s∈[0,C]

|g( ⋅ , s)|.

Since limi→+∞ δi = +∞, by (A2) the above inequality contradicts relation (4.6). Thus, we get the existence of
in�nitely many distinct nontrivial non-negative solutions {ui}i for problem (Pcg) satisfying condition (2.1).

Due to the choice of c and g in (4.1) and taking into account that p = 1, it is easy to see that (Pcg) is
equivalent to problem (Pλ). So, ui is aweak solution of problem (Pλ)which concludes the proof of assertion (i).

Now, let us consider assertion (ii). In this case when p = 1 and l∞ = −∞, we take λ ∈ ℝ be arbitrary �xed,
λ∞ ∈ (0, −l∞) and

c(k) := λ∞ and g(k, s) = f(s) + (λa(k) + λ∞)s for all (k, s) ∈ ℤ[1, n] × [0, +∞). (4.11)

In this setting, the arguments are the same of the ones used in the previous case.
Finally, let us prove assertion (iii). In this case when 0 < p < 1, let λ ∈ ℝ be arbitrary �xed and we

choose λ∞ ∈ (0, −l∞) and

c(k) := λ∞ and g(k, s) := λa(k)sp + λ∞s + f(s) for all (k, s) ∈ ℤ[1, T] × [0, +∞). (4.12)

Also in this setting our aim is to prove that c and g given in (4.12) satisfy the conditions (3.1), (A1)–(A3).
Hypothesis (3.1) is clearly satis�ed. By assumption, we know that f(0) = 0 and thus g(k, 0) = 0 for all
k ∈ ℤ[1, n]. Due to the fact that a ∈ ℝn, the continuity of s Ü→ g( ⋅ , s) and the Weierstrass theorem yield
that (A1) hold too. Furthermore, since p < 1 and

G(k, s)
s2

= λ a(k)
p + 1 s

p−1 +
λ∞
2 +

F(s)
s2

for all k ∈ ℤ[1, n] and s ∈ (0, +∞),

hypothesis (f∞1 ) implies (A3). Next, for all k ∈ ℤ[1, n] and every s ∈ [0, +∞), we have

g(k, s) ⩽ |λ| ⋅ ‖a‖∞sp + λ∞s + f(s). (4.13)

Due to (f∞2 ) and (4.13) we have

lim inf
s→+∞

g(k, s)
s

⩽ lim inf
s→+∞

(|λ| ⋅ ‖a‖∞sp−1 + λ∞ +
f(s)
s ) = λ∞ + l∞ < 0 (4.14)

for all k ∈ ℤ[1, n], thanks to the choice of p, i.e. p < 1.
Therefore, we can �x a sequence {si}i ⊂ (0, +∞) converging to +∞ as i → +∞ such that g(k, si) < 0 for

all i ∈ ℕ large enough and for every k ∈ ℤ[1, n]. Thus, by using the continuity of s Ü→ g( ⋅ , s), there exist
two sequences {δi}i, {ηi}i ⊂ (0, +∞) such that 0 < δi < si < ηi < δi+1, limi→+∞ δi = +∞ and g(k, s) ⩽ 0 for
every k ∈ ℤ[1, n] and all s ∈ [δi , ηi] and i ∈ ℕ large enough. Thus, hypothesis (A2) hold true.

Finally, arguing as in the proof of assertion (i) we observe that problem (Pcg) is equivalent to problem (Pλ)
through the choice (4.12). This ends the proof of Theorem 2.

Proof of Theorem 3. Let λ∞ ∈ (0, −l∞), where l∞ < 0 is given in assumption (f∞2 ), and let us choose

c(k) := λ∞ and g(k, s, λ) := λa(k)sp + λ∞s + f(s) (4.15)

for all (k, s) ∈ ℤ[1, n] × [0, +∞), λ ∈ ℝ. Note that for all k ∈ ℤ[1, n] and every s ∈ [0, +∞), we have

g(k, s, λ) ⩽ |λ| ⋅ ‖a‖∞sp + λ∞s + f(s).
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In the sequel, since l∞ < −λ∞ and using (f∞2 ), there exists a sequence {si}i ⊂ (0, +∞) converging to +∞
as i → +∞ such that

f(si) < −λ∞si for i ∈ ℕ large enough.

Thus, we have
g(k, si , 0) = λ∞si + f(si) < 0

for i ∈ ℕ large enoughand for all k ∈ ℤ[1, n]. Due to the continuity of s Ü→ g( ⋅ , s, ⋅ )wecan�x three sequences
{δi}i , {ηi}i ⊂ (0, +∞), {λi}i ⊂ (0, 1) such that

0 < δi < si < ηi < δi+1, lim
i→+∞

δi = +∞, (4.16)

and for i ∈ ℕ large enough,

g(k, s, λ) ⩽ 0 for all k ∈ ℤ[1, n], λ ∈ [−λi , λi] and s ∈ [δi , ηi]. (4.17)

Without any loss of generality, we may assume that

δi ⩾ i, i ∈ ℕ. (4.18)

For any i ∈ ℕ and λ ∈ [−λi , λi], let gi : ℤ[1, n] × [0, +∞) × [−λi , λi] → ℝ be the function de�ned by

gi(k, s, λ) := g(k, τηi (s), λ) (4.19)

and

Gi(k, s, λ) :=
s

∫
0

gi(k, t, λ) dt

for all k ∈ ℤ[1, n] and s ⩾ 0. Let Ei,λ : H → ℝ be the energy functional associated with problem (Pcgi( ⋅ , ⋅,λ)),
that is,

Ei,λ := Ec,gi( ⋅ , ⋅ ,λ),

where Ec,gi( ⋅ , ⋅,λ) is the functional given in (3.2) with g = gi( ⋅ , ⋅ , λ).
Note that for every i ∈ ℕ and λ ∈ [−λi , λi], the functions c given in (4.15) and gi ful�ll all the hypotheses

of Theorem 5. Consequently, applying Theorem 5 we get that, for i ∈ ℕ su�ciently large and λ ∈ [−λi , λi],
there exists ui,λ ∈ Wηi such that

min
u∈Wηi

Ei,λ(u) = Ei,λ(ui,λ), (4.20)

ui,λ(k) ∈ [0, δi] for all k ∈ ℤ[1, n], (4.21)

ui,λ is a non-negative weak solution of (Pcgi( ⋅ , ⋅ ,λ)). (4.22)

Now, by (4.16) and (4.21) for i su�ciently large and for all k ∈ ℤ[1, n], we have

0 ⩽ ui,λ(k) ⩽ δi < ηi , (4.23)

and thus
gi(k, ui,λ(k), λ) = g(k, ui,λ(k), λ). (4.24)

On account of the de�nition of the functions gi and c, and relations (4.22) and (4.24), ui,λ is also a non-
negative weak solution of problem (Pλ), provided i is large and |λ| ⩽ λi.

It remains to prove that for any n ∈ ℕ problem (Pλ) admits at least n distinct solutions, for suitable values
of λ. At this purpose, thanks to the choices of c and gi and (4.23), the functional Ei,λ is given by

Ei,λ(u) =
1
2 ‖u‖

2 − λ
n
∑
k=1

a(k) |u(k)|
p+1

p + 1 −
n
∑
k=1

F(u(k))

= Ei,0(u) − λ
n
∑
k=1

a(k) |u(k)|
p+1

p + 1 for any u ∈ H. (4.25)
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Note that, for λ = 0, the function gi( ⋅ , ⋅ , λ) = gi( ⋅ , ⋅ , 0) veri�es the hypotheses (3.1), (A1), (A2) and (A3).
In fact, gi( ⋅ , ⋅ , 0) is the function appearing in (4.2) and Ei := Ei,0 is the energy functional associated with
problem (Pcgi( ⋅ , ⋅ ,0)). Denoting ui := ui,0, up to a subsequence we also have

Ei(ui) = min
u∈Wηi

Ei(u) ⩽ Ei(wi) for all i ∈ ℕ, (4.26)

lim
i→+∞

Ei(ui) = −∞, (4.27)

where wi ∈ Wηi appear in the proof of Theorem 2, see relations (4.6) and (4.10), respectively. We �x a se-
quence {θi}i with negative terms such that limi→+∞ θi = −∞. Due to (4.26) and (4.27), up to a subsequence,
we may assume that

θi < Ei(ui) ⩽ Ei(wi) < θi−1 for i ⩾ i∗ with i∗ ∈ ℕ. (4.28)
For any i ⩾ i∗ let

λ�i :=
(p + 1)(Ei(ui) − θi)
(‖a‖∞ + 1)nδp+1i

and λ��

i :=
(p + 1)(θi−1 − Ei(wi))

(‖a‖∞ + 1)nδp+1i

. (4.29)

Note that λ�i and λ
��

i are strictly positive, due to (4.28) and they are independent of λ. Now, �x n ∈ ℕ and let

Λn := min{λi∗+1, . . . , λi∗+n , λ�i∗+1, . . . , λ
�
i∗+n , λ

��

i∗+1, . . . , λ
��

i∗+n}.

On account of (4.28), Λn > 0 and it is independent of λ. Moreover, if |λ| ⩽ Λn, then we have |λ| ⩽ λi for any
i = i∗ + 1, . . . , i∗ + n. Thus, for any λ ∈ ℝ with |λ| ⩽ Λn, we have that ui,λ is a non-negative weak solution of
problem (Pλ), for any i = i∗ + 1, . . . , i∗ + n.

Next, we will show that these solutions are distinct. At this purpose, note that ui,λ ∈ Wηi by (4.23) and
so for any λ ∈ ℝ with |λ| ⩽ Λn we have

Ei(ui) = min
u∈Wηi

Ei(u) ⩽ Ei(ui,λ). (4.30)

Thus, by (4.25) and (4.30), for any λ with |λ| ⩽ Λn we have

Ei,λ(ui,λ) = Ei(ui,λ) −
λ

p + 1

n
∑
k=1

a(k)|ui,λ(k)|p+1

⩾ Ei(ui) −
|λ|
p + 1 ‖a‖∞δ

p+1
i n

⩾ Ei(ui) −
Λn
p + 1 ‖a‖∞δ

p+1
i n

⩾ Ei(ui) −
λ�i
p + 1 ‖a‖∞δ

p+1
i n

> θi (4.31)

for any i = i∗ + 1, . . . , i∗ + n, thanks to (4.23), the choice of Λn and the de�nition of λ�i .
On the other hand, by (4.25), (4.26) and using the fact that ‖wi‖∞ = ̃si ⩽ δi (see the proof of Theorem 2)

and the de�nition of λ��i , for any λ with |λ| ⩽ Λn and for any i = i∗ + 1, . . . , i∗ + n we deduce that

Ei,λ(ui,λ) = min
u∈Wηi

Ei,λ(u)

⩽ Ei,λ(wi)

= Ei(wi) −
λ

p + 1

n
∑
k=1

a(k)|wi(k)|p+1

⩽ Ei(wi) +
|λ|
p + 1 ‖a‖∞δ

p+1
i n

⩽ Ei(wi) +
Λn
p + 1 ‖a‖∞δ

p+1
i n

⩽ Ei(wi) +
λ��i
p + 1 ‖a‖∞δ

p+1
i n

< θi−1. (4.32)
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Consequently, for every i = i∗ + 1, . . . , i∗ + n and λ ∈ [−Λn , Λn], by (4.31) and (4.32) and the properties
of {θi}i, we have

θi < Ei,λ(ui,λ) < θi−1 < 0, (4.33)

and therefore
En,λ(un,λ) < ⋅ ⋅ ⋅ < E1,λ(u1,λ) < 0. (4.34)

Note that ui,λ ∈ Wηn for every i = i∗ + 1, . . . , i∗ + n, so Ei,λ(ui,λ) = En,λ(ui,λ), see relation (4.19). From above,
for every λ ∈ [−Λn , Λn], we have

En,λ(un,λ) < ⋅ ⋅ ⋅ < En,λ(u1,λ) < 0 = En,λ(0).

In particular, the solutions u1,λ , . . . , un,λ are all distinct and nontrivial, whenever λ ∈ [−Λn , Λn]. Finally, it
remains to prove conclusion (2.2). For this, we assume that n ⩾ 2 and �x λ ∈ [−Λn , Λn]. We prove that

‖ui,λ‖∞ > δi−1 for all i ∈ {2, . . . , n}. (4.35)

Let us assume that there exists an element i0 ∈ {2, . . . , n} such that ‖ui0 ,λ‖∞ ⩽ δi0−1. Since δi0−1 < ηi0−1, it
follows that ui0 ,λ ∈ Wηi0−1 . Thus, on account of (4.20) and (4.19), we have

Ei0−1,λ(ui0−1,λ) = min
u∈Wηi0−1

Ei0−1,λ ⩽ Ei0−1,λ(ui0 ,λ) = Ei0 ,λ(ui0 ,λ),

which contradicts (4.34). Therefore, (4.35) holds true.
Thus, from (4.18)wehave ‖ui,λ‖∞ > i − 1 for all i ∈ {1, . . . , n}. This concludes theproof of Theorem3.
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