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Abstract: In this article, we consider a vibrating nonlinear Timoshenko system with thermoelasticity with
second sound. We discuss the well-posedness and the regularity of solutions using the semi-group theory.
Moreover, we establish an explicit and general decay result for a wide class of relaxation functions, which
depend on a stability number µ.
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1 Introduction and setting of the problem
Beams represent the most common structural component found in civil and mechanical structures. Because
of their ubiquity they are extensively studied, from an analytical viewpoint, in mechanics of materials.
A widely usedmathematical model for describing the transverse vibrations of beams is based on Timoshenko
beam theory (TBT) developed by Timoshenko in the 1920s. The TBT accounts for both the e�ect of rotational
inertia and shear deformation that occur within a beam during the vibration. These factors are neglected
whenapplied toEuler–Bernoulli beam theory (EBT),which is appropriate for beamswith small cross-sectional
dimensions compared to the length. In fact, a fundamental assumption in EBT is that cross sections remain
plane and normal to the deformed longitudinal axis throughout deformation, while in TBT cross sections
remain plane but do not remain normal to the deformed longitudinal axis as the shear deformation is taken
into account. The cross section rotation from the reference to the current con�guration is denoted by φ in
both models. In the EB model, this is the same as the rotation of the longitudinal axis. In the Timoshenko
model, the di�erence is used as measure of mean shear distortion.

In 1921, Timoshenko [28] gave the following system of coupled hyperbolic equations:

{
ρutt = (K(ux − φ))x in (0, L) × ℝ+,
Iρφtt = (EIφx)x + K(ut − φ) in (0, L) × ℝ+,

(1.1)

together with boundary conditions of the form

EIφx!!!!
x=L
x=0 = 0, (ux − φ)!!!!

x=L
x=0 = 0,

as a simple model describing the transverse vibrations of a beam, where t denotes the time variable and x is
the space variable along the beam of length L, in its equilibrium con�guration, u is the transverse displace-
ment of the beam and φ is the rotation angle of the �lament of the beam. The coe�cients ρ, Iρ , E, I and K are
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respectively the density (the mass per unit length), the polar moment of inertia of a cross section, Young’s
modulus of elasticity, the moment of inertia of a cross section, and the shear modulus.

System (1.1), with the above boundary conditions, is conservative and the natural energy of the beam,
given by

E(t) = 1
2

L

∫
0

(ρ|ut|2 + Iρ|φt|2 + EI|φx|2 + K|ux − φ|2) dx,

remains constant in time.
Vibration has long been known for its capacity of disturbance, discomfort, damage and destruction.

Since a long time, many researchers have been investigating ways and means to control this phenomenon.
However, with the development of control theory for partial di�erential equations over the last few decades,
it is not surprising that the issue of stability and controllability of Timoshenko-type systems has received
a great attention of many mathematicians. One e�ective method for vibration control is passive damping.
Damping is most bene�cial when used to reduce the amplitude of dynamic instabilities, or resonances,
in a structure.

Kim and Renardy [7] considered (1.1) together with two boundary controls of the form

Kφ(L, t) − K ∂u
∂x

(L, t) = α ∂u
∂t

(L, t) for all t ≥ 0,

EI ∂φ
∂x

(L, t) = −β ∂φ
∂t

(L, t) for all t ≥ 0,

and used the multiplier techniques to establish an exponential decay result for the natural energy of (1.1).
They also provided numerical estimates to the eigenvalues of the operator associated with system (1.1).
An analogous resultwas also established by Feng, Shi and Zhang [3]. Raposo, Ferreira, Santos andCastro [20]
looked into the following system:

{{{
{{{
{

ρ1utt − K(ux − φ) + ut = 0 in (0, L) × ℝ+,
ρ2φtt − bφxx + K(ux − φ) + φt = 0 in (0, L) × ℝ+,

u(0, t) = u(L, t) = φ(0, t) = φ(L, t) = 0 for all t > 0,
(1.2)

and proved that the energy associated with (1.2) decays exponentially. Soufyane andWehbe [27] considered

{{{
{{{
{

ρutt = (K(ux − φ))x in (0, L) × ℝ+,
Iρφtt = (EIφx)x + K(ux − φ) − bφt in (0, L) × ℝ+,
u(0, t) = u(L, t) = φ(0, t) = φ(L, t) = 0 for all t > 0,

(1.3)

where b is a positive and continuous function satisfying

b(x) ≥ b0 > 0 for all x ∈ [a0, a1] ⊂ [0, L]

and proved that the uniform stability of (1.3) holds if and only if the wave speeds are equal (K/ρ = EI/Iρ);
otherwise only the asymptotic stability has been proved. Rivera and Racke [18] obtained a similar result in
a work, where the damping function b = b(x) is allowed to change sign. They also treated in [17] a nonlinear
Timoshenko-type system of the form

{
ρ1φtt − σ1(φx , ψ)x = 0,

ρ2ψtt − χ(ψx)x + σ2(φx , ψ) + dψt = 0

in a one-dimensional bounded domain and gave an alternative proof for a su�cient and necessary condition
for exponential stability in the linear case and then proved a polynomial stability in general. Moreover, they
investigated the global existence of small smooth solutions and exponential stability in the nonlinear case.

Shi and Feng [24] used the frequency multiplier method to investigate a nonuniform Timoshenko beam
and showed that, under some locally distributed controls, the vibration of the beam decays exponentially.
The nonuniform Timoshenko beam has also been studied by Ammar-Khodja, Kerbal and Soufyane [2] and
a similar result to that in [24] has been established.
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Ammar-Khodja, Benabdallah, Muñoz Rivera and Racke [1] considered a linear Timoshenko-type system
with memory of the form

{{{{{{{{{{{{{
{{{{{{{{{{{{{
{

ρ1φtt − K(φx + ψ)x = 0,

ρ2ψtt − bψxx +
t

∫
0

g(t − s)ψxx(s) ds + K(φx + ψ) = 0,

φ(x, 0) = φ0(x), φt(x, 0) = φ1(x),

ψ(x, 0) = ψ0(x), ψt(x, 0) = ψ1(x),

φ(0, t) = φ(1, t) = ψ(0, t) = ψ(1, t) = 0

(1.4)

in (0, L) × ℝ+, and used the multiplier techniques to prove that the system is uniformly stable if and only if
the wave speeds are equal (K/ρ1 = b/ρ2) and g decays uniformly. More precisely, they proved an exponen-
tial decay if g decays in an exponential rate and polynomially if g decays in a polynomial rate. They also
required some extra technical conditions on both g� and g�� to obtain their results. This result has been later
improved by Messaoudi and Mustafa [10] and Guesmia and Messaoudi [5], where the technical conditions
on g�� have been removed and those on g� have beenweakened. Also, Guesmia andMessaoudi [6] considered
the following system:

{{{{{{{{{{{{{
{{{{{{{{{{{{{
{

ρ1φtt − K(φx + ψ)x = 0,

ρ2ψtt − κψxx +
t

∫
0

g(t − τ)(a(x)ψx(τ))x dτ + K(φx + ψ) + b(x)h(ψt) = 0,

φ(x, 0) = φ0(x), φt(x, 0) = φ1(x),

ψ(x, 0) = ψ0(x), ψt(x, 0) = ψ1(x),

φ(0, t) = φ(1, t) = ψ(0, t) = ψ(1, t) = 0

(1.5)

in (0, 1) × ℝ+ and proved under conditions on the relaxation function g similar to those in [4] and by
assuming that

a(x) + b(x) ≥ ρ > 0 for all x ∈ (0, 1),

an exponential stability for g decaying exponentially and h linear, and polynomial stability when g decays
polynomially and h is nonlinear.

Concerning stabilization via classical heat e�ect, Rivera and Racke [16] investigated the system

{{{
{{{
{

ρ1φtt − σ(φx , ψ)x = 0 in (0, L) × ℝ+,
ρ2ψtt − bψxx + K(φx + ψ) + ãθx = 0 in (0, L) × ℝ+,

ρ3θt − Kθxx + ãψxt = 0 in (0, L) × ℝ+,

where φ, ψ and θ are functions of (x, t) which model the transverse displacement of the beam, the rota-
tion angle of the �lament and the di�erence temperature, respectively. Under appropriate conditions on
σ, ρi , b, K, ã, they proved several exponential decay results for the linearized system and non-exponential
stability result for the case of di�erent wave speeds.

Concerning Timoshenko systems of thermoelasticity with second sound, Messaoudi, Pokojovy and
Said-Houari [12] studied

{{{{{{
{{{{{{
{

ρ1φtt − σ(φx , ψ)x + µφt = 0 in (0, L) × ℝ+,
ρ2ψtt − bψxx + k(φx + ψ) + βθx = 0 in (0, L) × ℝ+,

ρ3θt + ãqx + δψtx = 0 in (0, L) × ℝ+,
τ0qt + q + κθx = 0 in (0, L) × ℝ+,

where φ = φ(x, t) is the displacement vector, ψ = ψ(x, t) is the rotation angle of the �lament, θ = θ(x, t) is
the temperature di�erence, q = q(x, t) is the heat �ux vector and ρ1, ρ2, ρ3, b, k, ã, δ, κ, µ, τ0 are positive
constants.
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Several exponential decay results for both linear and nonlinear cases have been established in the pres-
ence of the extra frictional damping µφt. Fernández Sare and Racke [4] considered

{{{{{{
{{{{{{
{

ρ1φtt − k(φx + ψ)x = 0 in (0, L) × ℝ+,
ρ2ψtt − bψxx + k(φx + ψ) + δθx = 0 in (0, L) × ℝ+,

ρ3θt + ãqx + δψtx = 0 in (0, L) × ℝ+,
τqt + q + κθx = 0 in (0, L) × ℝ+,

(1.6)

and showed that, in the absence of the extra frictional damping (µ = 0), the coupling via Cattaneo’s law
causes loss of the exponential decay usually obtained in the case of coupling via Fourier’s law [16]. This
surprising property holds even for systems with history of the form

{{{{{{{{{
{{{{{{{{{
{

ρ1φtt − k(φx + ψ)x = 0 in (0, L) × ℝ+,

ρ2ψtt − bψxx + k(φx + ψ) +
+∞

∫
0

g(s)ψxx( ⋅ , t − s) ds + δθx = 0 in (0, L) × ℝ+,

ρ3θt + ãqx + δψtx = 0 in (0, L) × ℝ+,

τqt + q + κθx = 0 in (0, L) × ℝ+.

(1.7)

Precisely, it has been shown that both systems (1.6) and (1.7) are no longer exponentially stable even for
equal-wave speeds (k/ρ1 = b/ρ2). However, no other rate of decay has been discussed. Recently, Santos,
Almeida Júnior and Muñoz Rivera [22] considered (1.6) and introduced a new stability number

µ = (τ − ρ1
kρ3

)(
ρ2
b

−
ρ1
k ) −

τδ2ρ1
bkρ3

and used the semi-group method to obtain exponential decay result for µ = 0 and a polynomial decay for
µ ̸= 0.

The boundary feedback of memory type has also been used by Santos [21]. He considered a Timoshenko
system and showed that the presence of two feedbacks ofmemory type at a portion of the boundary stabilizes
the systemuniformly. He also obtained the rate of decay of the energy, which is exactly the rate of decay of the
relaxation functions. This last result has been improved and generalized by Messaoudi and Soufyane [14].
For more results concerning well-posedness and controllability of Timoshenko systems, we refer the reader
to [9, 11, 13, 15, 23, 25, 26].

In this paper, we consider the following Timoshenko system:

ρ1φtt − k(φx + ψ)x = 0 in (0, 1) × ℝ+, (1.8a)
ρ2ψtt − bψxx + k(φx + ψ) + δθx + α(t)h(ψt) = 0 in (0, 1) × ℝ+, (1.8b)

ρ3θt + qx + δψxt = 0 in (0, 1) × ℝ+, (1.8c)
τqt + βq + θx = 0 in (0, 1) × ℝ+, (1.8d)

φx(0, t) = φx(1, t) = ψ(0, t) = ψ(1, t) = q(0, t) = q(1, t) = 0 for all t ≥ 0, (1.8e)
φ(x, 0) = φ0(x), φt(x, 0) = φ1(x) for all x ∈ (0, 1), (1.8f)
ψ(x, 0) = ψ0(x), ψt(x, 0) = ψ1(x) for all x ∈ (0, 1), (1.8g)
θ(x, 0) = θ0(x), q(x, 0) = q0(x) for all x ∈ (0, 1), (1.8h)

where ρ1, ρ2, ρ3, b, k, δ, β and τ are positive constants, φ = φ(x, t) is the displacement vector, ψ = ψ(x, t)
is the rotation angle of the �lament, θ = θ(x, t) is the temperature di�erence and q = q(x, t) is the heat �ux
vector. Also, α and h are two functions to be speci�ed later.

Using (1.8a), (1.8c) and the boundary conditions (1.8e), we have

d2

dt2

1

∫
0

φ(x, t) dx = 0 and d
dt

1

∫
0

θ(x, t) dx = 0.
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Consequently, we obtain

1

∫
0

φ(x, t) dx = (
1

∫
0

φ1(x) dx)t +
1

∫
0

φ0(x) dx and
1

∫
0

θ(x, t) dx =
1

∫
0

θ0(x) dx.

If we set

φ(x, t) = φ(x, t) − ((
1

∫
0

φ1(x) dx)t +
1

∫
0

φ0(x) dx) and θ(x, t) = θ(x, t) −
1

∫
0

θ0(x) dx,

then (φ, ψ, θ, q) also satisfy system (1.8) and we have

1

∫
0

φ(x, t) dx = 0 and
1

∫
0

θ(x, t) dx = 0.

From now on, we use the new variables (φ, ψ, θ, q), but we denote them by (φ, ψ, θ, q), for simplicity.
The article is organized as follows. First, in Section 2,we use the semi-group theory to prove the existence

and uniqueness of solutions of system (1.8). Next, in Section 3, we study the asymptotic behavior of the
energy of solutions of system (1.8) using the multiplier method. For that purpose, we assume some hypo-
theses on α and h. The optimal exponential and polynomial decay rate estimates can be obtained in some
special cases with explicit nonlinear terms.

2 Well-posedness and regularity
In this section, we discuss the well-posedness of the problem (1.8), using the semi-group theory.We consider
the following hypotheses on α and h:
(A1) α : ℝ+ → ℝ+ is di�erentiable and non-increasing,
(A2) h : ℝ → ℝ is a locally Lipschitz function satisfying h(0) = 0.
We introduce the Hilbert spaces

L2⋆(0, 1) = {v ∈ L2(0, 1) :
1

∫
0

v(s) ds = 0},

H1
⋆(0, 1) = H1(0, 1) ∩ L2⋆(0, 1),

H2
⋆(0, 1) = {v ∈ H2(0, 1) : vx(0) = vx(1) = 0}.

The energy associated with system (1.8) is de�ned by

E(φ, ψ, θ, q)(t) = 1
2

1

∫
0

(ρ1φ2
t + ρ2ψ2

t + bψ2
x + k(φx + ψ)2 + ρ3θ2 + τq2) dx.

Let

H = H1
⋆(0, 1) × L2⋆(0, 1) × H1

0(0, 1) × L
2(0, 1) × L2⋆(0, 1) × L2(0, 1)

be the Hilbert space endowed with the inner product de�ned, for U = (u1, u2, u3, u4, u5, u6)t ∈ H and
V = (v1, v2, v3, v4, v5, v6)t ∈ H, by

⟨U, V⟩H = ρ1⟨u2, v2⟩L2(0,1) + ρ2⟨u4, v4⟩L2(0,1) + k⟨u1x + u3, v1x + v3⟩L2(0,1)
+ b⟨u3x , v3x⟩L2(0,1) + ρ3⟨u5, v5⟩L2(0,1) + τ⟨u6, v6⟩L2(0,1).



268 | M.A. Ayadi et al., General decay in a Timoshenko-type system

For Φ = (φ, u, ψ, v, θ, q)t and Φ0 = (φ0, φ1, ψ0, ψ1, θ0, q0)t, where u = φt and v = ψt, system (1.8) is equiv-
alent to the abstract �rst order Cauchy problem

{
{
{

d
dt
Φ(t) + (A + B)Φ(t) = 0 for all t ∈ ℝ+,

Φ(0) = Φ0,
(2.1)

where A : D(A) ⊂ H → H is the linear operator de�ned by

AΦ =
(((((

(

−u
− k
ρ1 φxx −

k
ρ1ψx

−v
− b
ρ2ψxx +

k
ρ2 (φx + ψ) +

δ
ρ2 θx

1
ρ3 qx +

δ
ρ3 vx

β
τ q +

1
τ θx

)))))

)

(2.2)

and B : D(B) ⊂ H → H is the nonlinear operator de�ned by

BΦ =
(((

(

0
0
0

α(t)h(v)
0
0

)))

)

.

The domain of the operator A is given by D(A) = {Φ ∈ H : AΦ ∈ H}, is endowed with the graph norm

‖Φ‖D(A) = ‖Φ‖H + ‖AΦ‖H

and it can be characterized by

D(A) = (H2
∗(0, 1) ∩ H1

∗(0, 1)) × H1
∗(0, 1) × (H2(0, 1) ∩ H1

0(0, 1)) × H
1
0(0, 1) × H

1
∗(0, 1) × H1

0(0, 1).

The domain of the operator B is given by D(B) = {Φ ∈ H : BΦ ∈ H} = H.
We �rst state and prove the following lemmas which will be useful to deduce the well-posedness result.

Lemma 2.1. For Φ ∈ D(A), we have (AΦ, Φ)H ≥ 0.

Proof. For any Φ = (φ, u, ψ, v, θ, q)t ∈ D(A), we have

(AΦ, Φ)H = k
1

∫
0

−(ux + v)(φx + ψ) dx +
1

∫
0

(−kφxx − kψx)u dx + b
1

∫
0

−vxψx dx

+
1

∫
0

(−bψxx + k(φx + ψ) + δθx)v dx +
1

∫
0

(qx + δvx)θ dx +
1

∫
0

(βq + θx)q dx.

Using integration by parts and the boundary conditions in (1.8), we obtain

(AΦ, Φ)H = β
1

∫
0

q2 dx ≥ 0.

Lemma 2.2. The operator I + A is surjective.

Proof. For anyW = (w1, w2, w3, w4, w5, w6) ∈ H, we prove that there exists some V = (v1, v2, v3, v4, v5, v6)
in D(A) satisfying

(I + A)V = W.
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That is,
−v2 + v1 = w1, (2.3a)

−kv1xx − kv3x + ρ1v1 = ρ1(w1 + w2), (2.3b)
−v4 + v3 = w3, (2.3c)

−bv3xx + k(v1x + v3) + δv5x + ρ2v4 = ρ2w4, (2.3d)
v6x + δv4x + ρ3v5 = ρ3w5, (2.3e)

(β + τ)v6 + v5x = τw6. (2.3f)

Then, (2.3a), (2.3c) and (2.3e) yield
v2 = v1 − w1 ∈ H1

∗(0, 1), (2.4)
v4 = v3 − w3 ∈ H1

0(0, 1), (2.5)
v6x = ρ3w5 + δw3x − δv3x − ρ3v5.

By integration over (0, x) and using v6(0) = w3(0) = v3(0) = 0, we obtain

v6 = ρ3
x

∫
0

w5 ds + δw3 − δv3 − ρ3
x

∫
0

v5 ds. (2.6)

We substitute (2.6) into (2.3f) and we get

v5x + (β + τ)[ρ3
x

∫
0

w5 ds + δw3 − δv3 − ρ3
x

∫
0

v5 ds] = τw6.

Hence, we deduce that

−v5x + (β + τ)δv3 + ρ3(β + τ)
x

∫
0

v5 ds = (β + τ)δw3 + (β + τ)ρ3
x

∫
0

w5 ds − τw6. (2.7)

Again, we substitute (2.7) into (2.3d), to get

−bv3xx + kv1x + kv3 + δ[(β + τ)δv3 + ρ3(β + τ)
x

∫
0

v5 ds − (β + τ)δw3 − (β + τ)ρ3
x

∫
0

w5 ds − τw6] + ρ2v3

= ρ2(w3 + w4)

and we infer that

−bv3xx + kv1x + kv3 + δ2(β + τ)δv3 + ρ3δ(β + τ)
x

∫
0

v5 ds + ρ2v3

= (β + τ)δ2w3 + (β + τ)δρ3
x

∫
0

w5 ds − δτw6 + ρ2(w3 + w4). (2.8)

By using (2.7), (2.8) and (2.3b), it can be shown that v1, v3 and v5 satisfy

−kv1xx − kv3x + ρ1v1 = h1 ∈ L2∗(0, 1), (2.9a)

−bv3xx + kv1x + kv3 + (δ2(β + τ) + ρ2)v3 + ρ3δ(β + τ)
x

∫
0

v5 ds = h2 ∈ L2(0, 1), (2.9b)

−ρ3v5x + ρ3(β + τ)δv3 + ρ23(β + τ)
x

∫
0

v5 ds = h3 ∈ L2(0, 1), (2.9c)

where

h1 = ρ1(w1 + w2),

h2 = (β + τ)δ2w3 + (β + τ)δρ3
x

∫
0

w5 ds − δτw6 + ρ2(w3 + w4)
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and

h3 = ρ3(β + τ)δw3 + (β + τ)ρ23

x

∫
0

w5 ds − ρ3τw6.

Let u = (u1, u3, u5) and v = (v1, v3, v5), a simple multiplication of (2.9a), (2.9b) and (2.9c), by u1, u3 and
∫x0 u5 ds, respectively, and integration over (0, 1) yields

−k
1

∫
0

v1xxu1 dx − k
1

∫
0

v3xu1 dx + ρ1
1

∫
0

v1u1 dx =
1

∫
0

h1u1 dx, (2.10)

−b
1

∫
0

v3xxu3 dx + k
1

∫
0

v1xu3 dx + k
1

∫
0

v3u3 dx

+ (δ2(β + τ) + ρ2)
1

∫
0

v3u3 dx + ρ3δ(β + τ)
1

∫
0

(
x

∫
0

v5 ds)u3 dx =
1

∫
0

h2u3 dx,

−ρ3
1

∫
0

v5x(
x

∫
0

u5 ds) dx + ρ3(β + τ)δ
1

∫
0

v3(
x

∫
0

u5 ds) dx

+ ρ23(β + τ)
1

∫
0

(
x

∫
0

v5 ds)(
x

∫
0

u5 ds) dx =
1

∫
0

h3(
x

∫
0

u5 ds) dx.

Using integration by parts and the boundary conditions yields

k
1

∫
0

v1xu1x dx + k
1

∫
0

v3u1x dx + ρ1
1

∫
0

v1u1 dx =
1

∫
0

h1u1 dx,

b
1

∫
0

v3xu3x dx + k
1

∫
0

v1xu3 dx + k
1

∫
0

v3u3 dx

+ (δ2(β + τ) + ρ2)
1

∫
0

v3u3 dx + ρ3δ(β + τ)
1

∫
0

(
x

∫
0

v5 ds)u3 dx =
1

∫
0

h2u3 dx,

ρ3
1

∫
0

v5xu5 dx + ρ3(β + τ)δ
1

∫
0

v3(
x

∫
0

u5 ds) dx

+ ρ23(β + τ)
1

∫
0

(
x

∫
0

v5 ds)(
x

∫
0

u5 ds) dx =
1

∫
0

h3(
x

∫
0

u5 ds) dx.

The sum of the previous equations gives the following variational formulation

b(v, u) = l(u) (2.11)

for all u = (u1, u3, u5) ∈ H1
∗(0, 1) × H1

0(0, 1) × L2∗(0, 1), where b is de�ned by

b(v, u) = k
1

∫
0

(v1x + v3)(u1x + u3) dx + ρ1
1

∫
0

v1u1 dx + b
1

∫
0

v3xu3x dx

+ (δ2(β + τ) + ρ2)
1

∫
0

v3u3 dx + ρ3δ(β + τ)
1

∫
0

(
x

∫
0

v5 ds)u3 dx + ρ3
1

∫
0

v5xu5 dx

+ ρ3(β + τ)δ
1

∫
0

v3(
x

∫
0

u5 ds) dx + ρ23(β + τ)
1

∫
0

(
x

∫
0

v5 ds)(
x

∫
0

u5 ds) dx



M.A. Ayadi et al., General decay in a Timoshenko-type system | 271

and l is de�ned by

l(u) =
1

∫
0

h1u1 dx +
1

∫
0

h2u3 dx +
1

∫
0

h3(
x

∫
0

u5 ds) dx.

We introduce the Hilbert space Λ = H1
∗(0, 1) × H1

0(0, 1) × L2(0, 1) equipped with the norm

‖v‖2Λ = ‖v1x + v3‖22 + ‖v1‖22 + ‖v3x‖22 + ‖v5‖22.

It is clear that b is a bilinear and continuous form on Λ × Λ and l is a linear and continuous form on Λ.
Furthermore, there exists a positive constant c0 such that

b(v, v) = k‖v1x + v3‖22 + ρ1‖v1‖
2
2 + b‖v3x‖

2
2 + (δ2(β + τ) + ρ2)‖v3‖22 + ρ3‖v5‖

2
2

+ 2ρ3(β + τ)δ
1

∫
0

v3(
x

∫
0

v5 ds) dx + ρ23(β + τ)
1

∫
0

(
x

∫
0

v5 ds)
2

dx

≥ c0‖v‖2Λ ,

which implies that b is coercive. Therefore, using the Lax–Milgram theorem we conclude that system (2.9)
has a unique solution

(v1, v3, v5) ∈ (H1
∗(0, 1) × H1

0(0, 1) × L
2
∗(0, 1)),

and we deduce from (2.4)–(2.6) the existence of v2 ∈ H1
∗(0, 1), v4 ∈ H1

0(0, 1) and v6 ∈ L2∗(0, 1)) ⊂ L2(0, 1)).
Now, it remains to show that

v1 ∈ H2
∗(0, 1) ∩ H1

∗(0, 1), v3 ∈ H2(0, 1) ∩ H1
0(0, 1), v5 ∈ H1

∗(0, 1) and v6 ∈ H1
0(0, 1).

From (2.9), we have
−kv1xx = kv3x − ρ1v1 + h1 ∈ L2(0, 1).

Consequently, it follows that
v1 ∈ H2(0, 1) ∩ H1

∗(0, 1).

Moreover, (2.10) is also true for any φ1 ∈ C1([0, 1]). Hence, we have

k
1

∫
0

v1xφ1x dx + k
1

∫
0

v3φ1x dx + ρ1
1

∫
0

v1φ1 dx =
1

∫
0

h1φ1 dx

for any φ1 ∈ C1([0, 1]). Thus, using integration by parts we obtain

v1x(1)φ1(1) − v1x(0)φ1(0) = 0 for all φ1 ∈ C1([0, 1]).

Therefore, v1x(1) = v1x(0) = 0, and we deduce that

v1 ∈ H2
∗(0, 1) ∩ H1

∗(0, 1).

Now, if we substitute (2.3f) into (2.3d), we get

bv3xx = kv1x + kv3 + δτw6 − δ(β + τ)v6 + ρ2v3 − h2 ∈ L2(0, 1).

Consequently, it follows that
v3 ∈ H2(0, 1) ∩ H1

0(0, 1).

On the other hand, from (2.3f) we get

v5x = τw6 − (β + τ)v6 ∈ L2(0, 1)

and we deduce that
v5 ∈ H1(0, 1) ∩ L2∗(0, 1).

Similarly, from (2.3) we have

v6x = ρ3w5 + δw3x − δv3x − ρ3v5 ∈ L2(0, 1) which implies v6 ∈ H1
0(0, 1),

as v6(0) = v6(1) = 0. Finally, the operator I + A is surjective.
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Using Lemmas 2.1, 2.2 and the Lipshitz continuity of B we conclude that the operator A + B is the in�nites-
imal generator of a nonlinear contraction C0-semi-group on the Hilbert space H. Finally, by applying the
semi-group theory to (2.1) (see [8, 19]), we easily get the following well-posedness result.

Theorem 2.3. Assume that (A1) and (A2) are satis�ed. Then for all initial data

(φ0, φ1, ψ0, ψ1, θ0, q0) ∈ (H2
⋆(0, 1)∩H1

⋆(0, 1))×H1
⋆(0, 1)×(H2(0, 1)∩H1

0(0, 1))×H
1
0(0, 1)×H

1
⋆(0, 1)×H1

0(0, 1),

system (1.8) has a unique solution (φ, ψ, θ, q) that veri�es

(φ, ψ) ∈ C0(ℝ+, (H2
⋆(0, 1) ∩ H1

⋆(0, 1)) × (H2(0, 1) ∩ H1
0(0, 1)))

∩ C1(ℝ+, H1
⋆(0, 1) × H1

0(0, 1)) ∩ C
2(ℝ+, L2⋆(0, 1) × L2(0, 1))

and
(θ, q) ∈ C0(ℝ+, H1

⋆(0, 1) × H1
0(0, 1)) ∩ C

1(ℝ+, L2⋆(0, 1) × L2(0, 1)).

3 Stability results
In this section, we state and prove a stability result for the nonlinear Timoshenko system (1.8). For this
purpose, we consider the following hypotheses:
(A1) α : ℝ+ → ℝ+ is a di�erentiable and non-increasing function.
(A∗

2) h : ℝ → ℝ is a continuous non-decreasing function such that h(0) = 0 and there exists a continuous
strictly increasing odd function h0 ∈ C([0, +∞)), continuously di�erentiable in a neighborhood of 0
and satisfying h0(0) = 0,

h0(|s|) ≤ |h(s)| ≤ h−10 (|s|) for all |s| ≤ ε,
c1|s| ≤ |h(s)| ≤ c2|s| for all |s| ≥ ε,

where ci > 0 for i = 1, 2.
Moreover, we de�ne a function H by

H(x) = √xh0(√x). (3.1)

Thanks to Assumption (A∗
2), H is of class C1 and is strictly convex on (0, r2], where r > 0 is a su�ciently

small number.

Remark 3.1. We denote by c a positive generic constant throughout this paper.
The hypothesis (A1) implies that α(t) ≤ c.

We recall here the stability number de�ned by

µ = (τ − ρ1
kρ3

)(
ρ2
b

−
ρ1
k ) −

τδ2ρ1
bkρ3

.

3.1 The case µ = 0

In this subsection,we state andprove thedecay resultswhicharenotnecessarily of exponential or polynomial
type. For this purpose, we establish several lemmas. We recall that the energy associated with system (1.8) is
de�ned by

E(t) := 1
2

1

∫
0

(ρ1φ2
t + ρ2ψ2

t + bψ2
x + k(φx + ψ)2 + ρ3θ2 + τq2) dx. (3.2)

Throughout the rest of this paper we assume that conditions (A1) and (A∗
2) hold.
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Lemma 3.2. Let (φ, ψ, θ, q) be a solution of system (1.8). Then, the functional E satis�es

E�(t) = −β
1

∫
0

q2 dx − α(t)
1

∫
0

ψth(ψt) dx ≤ 0. (3.3)

Proof. Bymultiplying the �rst fourth equations in (1.8), respectively, by φt,ψt, θ and q, using the integration
by parts with respect to x over (0, 1), the boundary conditions (1.8e) and the hypotheses (A1) and (A∗

2),
we obtain (3.3).

Lemma 3.3. Let (φ, ψ, θ, q) be a solution of system (1.8). Then, the functional

K1(t) := −
1

∫
0

(ρ1φφt + ρ2ψψt) dx (3.4)

veri�es the following estimate:

K�
1(t) ≤ −ρ1

1

∫
0

φ2
t dx − ρ2

1

∫
0

ψ2
t dx + c

1

∫
0

ψ2
x dx + k

1

∫
0

(φx + ψ)2 dx +
δ
2

1

∫
0

θ2 dx + 1
2

1

∫
0

h2(ψt) dx. (3.5)

Proof. By di�erentiating (3.4) and using the �rst and second equations of (1.8), we get

K�
1(t) = −ρ1

1

∫
0

φ2
t dx − ρ2

1

∫
0

ψ2
t dx −

1

∫
0

k(φx + ψ)xφ dx −
1

∫
0

(bψxx − k(φx + ψ) − δθx − α(t)h(ψt))ψ dx.

Integrating by parts and using the boundary conditions (1.8e), we have

K�
1(t) = −ρ1

1

∫
0

φ2
t dx − ρ2

1

∫
0

ψ2
t dx + b

1

∫
0

ψ2
x dx +

1

∫
0

k(φx + ψ)2 dx − δ
1

∫
0

θψx dx +
1

∫
0

α(t)h(ψt)ψ dx.

Applying Young’s inequality, we obtain (3.5).

Lemma 3.4. Let (φ, ψ, θ, q) be a solution of system (1.8). Then, the functional

K2(t) := ρ2
1

∫
0

ψψtdx − ρ2
1

∫
0

φtwdx − δτ
1

∫
0

ψq dx (3.6)

satis�es, for any ε > 0,

K�
2(t) ≤ −(b − 2cε)

1

∫
0

ψ2
x dx + c(

1

∫
0

ψ2
t dx +

1

∫
0

q2 dx +
1

∫
0

h2(ψt) dx) + ρ1ε
1

∫
0

φ2
t dx, (3.7)

where w is the solution of the problem

{
−wxx = ψx ,
w(0) = w(1) = 0.

(3.8)

Proof. By di�erentiation of (3.6) and the use of the �rst, second and fourth equation of (1.8), we get

K�
2(t) = ρ2

1

∫
0

ψ2
t dx + b

1

∫
0

ψxxψ dx − k
1

∫
0

(φx + ψ)ψ dx − δ
1

∫
0

θxψ dx − α(t)
1

∫
0

ψh(ψt) dx

+ k
1

∫
0

(φx + ψ)xw dx + ρ1
1

∫
0

φtwt dx − τδ
1

∫
0

ψtq dx + δβ
1

∫
0

ψq dx + δ
1

∫
0

θxψ dx.
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Integrating by parts the last equality, using (3.8) and the boundary conditions (1.8e), we have

K�
2(t) = ρ2

1

∫
0

ψ2
t dx − b

1

∫
0

ψ2
x dx − k

1

∫
0

ψ2 dx + k
1

∫
0

w2
x dx − α(t)

1

∫
0

ψh(ψt) dx

+ ρ1
1

∫
0

φtwt dx − τδ
1

∫
0

ψtq dx + δβ
1

∫
0

ψq dx.

By a simple calculation, we easily deduce that the function w satis�es the following estimates:
1

∫
0

w2
x dx ≤

1

∫
0

ψ2 dx, (3.9)

1

∫
0

w2
t dx ≤ c

1

∫
0

ψ2
t dx. (3.10)

Thanks to Young’s and Poincaré’s inequalities and (3.9)–(3.10), we conclude that

K�
2(t) ≤ ρ2

1

∫
0

ψ2
t dx − b

1

∫
0

ψ2
x dx +

ρ1
4ε

1

∫
0

w2
t dx + ρ1ε

1

∫
0

φ2
t dx + τδε

1

∫
0

ψ2
t dx

+
τδ
4ε

1

∫
0

q2 dx + cpε
1

∫
0

ψ2
x dx +

(δβ)2

4ε

1

∫
0

q2 dx + εcp
1

∫
0

ψ2
x dx +

c2

4ε

1

∫
0

h2(ψt) dx.

Therefore, we obtain (3.7).

Lemma 3.5. Let (φ, ψ, θ, q) be a solution of system (1.8). Then, the functional

K3(t) := −τρ3
1

∫
0

q(
x

∫
0

θ(t, y) dy) dx (3.11)

satis�es

K�
3(t) ≤ −

ρ3
2

1

∫
0

θ2 dx + c(
1

∫
0

q2 dx +
1

∫
0

ψ2
t dx). (3.12)

Proof. By di�erentiation of (3.11) and the use of the third and fourth equations of (1.8), we get

K�
3(t) = ρ3β

1

∫
0

q(
x

∫
0

θ(t, y) dy) dx + ρ3
1

∫
0

θx(
x

∫
0

θ(t, y) dy) dx

+ τ
1

∫
0

q(
x

∫
0

qx(t, y) dy) dx + τδ
1

∫
0

q(
x

∫
0

ψtx(t, y) dy) dx.

By integrating the above equality over the integral (0, 1) and using the boundary conditions (1.8e) (note also
that ∫10 θ dx = 0), we have

K�
3(t) = ρ3β

1

∫
0

q(
x

∫
0

θ(t, y) dy) dx − ρ3
1

∫
0

θ2 dx + τ
1

∫
0

q2 dx + τδ
1

∫
0

qψt dx.

Applying again Young’s inequality and the fact that
1

∫
0

(
x

∫
0

θ(t, y) dy)
2

dx ≤ c
1

∫
0

θ2 dx,

we arrive at (3.12).
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Lemma 3.6. Let (φ, ψ, θ, q) be a solution of system (1.8). Then, the functional

K4(t) :=
τρ2
k

1

∫
0

ψt(φx + ψ) dx +
bτρ1
k2

1

∫
0

φtψx dx

−
bτρ3
δk (

ρ2
b

−
ρ1
k )

1

∫
0

θφt dx +
bτ
δk (

ρ2
b

−
ρ1
k )

1

∫
0

q(φx + ψ) dx (3.13)

satis�es

K�
4(t) ≤ −(τ − 2ε1)

1

∫
0

(φx + ψ)2 dx + C(
1

∫
0

ψ2
t dx +

1

∫
0

q2 dx +
1

∫
0

h2(ψt) dx)

+
bρ3
δρ1

[(τ − ρ1
kρ3

)(
ρ2
b

−
ρ1
k ) −

τδ2ρ1
bkρ3

]
1

∫
0

θx(φx + ψ) dx (3.14)

with

C = 2max[ τρ2k +
1
2 , (

b
τk(

ρ2
b

−
ρ1
k ))

2
(
β2

4ε1
+
τ2

2 ), c
2τ2

4k2ε1
] and ε1 > 0.

Proof. By di�erentiation of (3.13), using (1.8) and integration over (0, 1), we get

K�
4(t) =

τ
2

1

∫
0

(bψxx − k(φx + ψ) − δθx − α(t)h(ψt))(φx + ψ) dx +
τρ2
k

1

∫
0

ψt(φx + ψ)t dx

+
bτ
k2

1

∫
0

(φx + ψ)xφx + φtψtx dx −
bτ
δk (

ρ2
b

−
ρ1
k )

1

∫
0

(−(qx + δψxt)φt + θ(φx + ψ)x) dx

+
b
δk(

ρ2
b

−
ρ1
k )

1

∫
0

(−(βq + θx)(φx + ψ) + q(φx + ψ)t) dx.

By integration over (0, 1) and using the boundary conditions (1.8e), we have

K�
4(t) = −τ

1

∫
0

(φx + ψ)2 dx +
τρ2
k

1

∫
0

ψ2
t dx +

bτ
δk (

ρ2
b

−
ρ1
k )

1

∫
0

qψt dx

−
bβ
δk (

ρ2
b

−
ρ1
k )

1

∫
0

q(φx + ψ) dx −
τ
k

1

∫
0

α(t)h(ψt)(φx + ψ) dx

+
bρ3
δρ1

[(τ − ρ1
kρ3

)(
ρ2
b

−
ρ1
k ) −

τδ2ρ1
bkρ3

]
1

∫
0

θx(φx + ψ) dx.

Applying Young’s inequality, we obtain (3.14).

Next, we de�ne a Lyapunov functional K and show that it is equivalent to the energy functional E.

Lemma 3.7. Let (φ, ψ, θ, q) be a solution of system (1.8). Then, the functional

K(t) := NE(t) + K1 + N2K2 + N3K3 + N4K4, (3.15)

where N is su�ciently large and N1, N2 are positive real numbers to be chosen properly, satis�es

c1E(t) ≤ K(t) ≤ c2E(t), (3.16)
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for c1 and c2 two positive constants and

K�(t) ≤ −(ρ1 − N2ρ1ε)
1

∫
0

φ2
t dx − ρ2

1

∫
0

ψ2
t dx − (N2(b − 2cε) − c)

1

∫
0

ψ2
x dx

−
1

∫
0

(N4(τ − 2ε1) − k)(φx + ψ)2 dx − (
N3ρ3
2 −

δ
2)

1

∫
0

θ2 dx − (Nβ − cN2 − cN3 − cN4)
1

∫
0

q2 dx

+ c
1

∫
0

(ψ2
t + h2(ψt)) dx + N4

bρ3
δρ1

[(τ − ρ1
kρ3

)(
ρ2
b

−
ρ1
k ) −

τδ2ρ1
bkρ3

]
1

∫
0

θx(φx + ψ) dx. (3.17)

Proof. From Lemmas 3.3–3.6, we �nd

|K(t) − NE(t)| ≤ ρ1
1

∫
0

|φφt| dx + (ρ2 + N2)
1

∫
0

|ψψt| dx + N2ρ1
1

∫
0

|φtw| dx

+ N2τδ
1

∫
0

|ψq| dx + τρ3
1

∫
0

!!!!!!!!!
q(

x

∫
0

θ(t, y) dy)
!!!!!!!!!
dx.

Applying the Young, Poincaré and Cauchy–Schwarz inequalities and the fact that

φ2
x ≤ 2(φx + ψ)2 + 2ψ2 ≤ 2(φx + ψ)2 + 2cψ2

x ,

we obtain (3.16), and therefore we get

K(t) ∼ E(t).

To prove (3.17), it su�ces to di�erentiate (3.15) and use Lemmas 3.2–3.6.

Theorem 3.8. Let us suppose that

µ = (τ − ρ1
kρ3

)(
ρ2
b

−
ρ1
k ) −

τδ2ρ1
bkρ3

= 0.

Then, there exist positive constants k1, k2, k3 and ε0 such that the energy E(t) associated with (1.8) satis�es

E(t) ≤ k3H−11 (k1
t

∫
0

α(s) ds + k2) for all t ≥ 0, (3.18)

where

H1(t) =
1

∫
t

1
H2(s)

ds, H2(t) = tH�(ε0t).

Here H1 is a strictly decreasing and convex function on (0, 1] with limt→0 H1(t) = +∞.

Proof. Estimate (3.17), with µ = 0, takes the form

K�(t) ≤ −(ρ1 − N2ρ1ε)
1

∫
0

φ2
t dx − ρ2

1

∫
0

ψ2
t dx − (N2(b − 2cε) − c)

1

∫
0

ψ2
x dx −

1

∫
0

(N4(τ − 2ε1) − k)(φx + ψ)2 dx

− (
N3ρ3
2 −

δ
2)

1

∫
0

θ2 dx − (Nβ − cN2 − cN3 − cN4)
1

∫
0

q2 dx + c
1

∫
0

(ψ2
t + h2(ψt)) dx.

Now, we choose the constants in the above estimate as follows: �rst, ε and ε1 are such that

ε = 1
2N2

and ε1 <
τ
2 .
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After that, we choose N, N2, N3 and N4 su�ciently large such that

N2 >
2c
b
, N3 >

δ
ρ3
, N4 >

k
τ − 2ε1

and N >
c
β(

2c
b

+
δ
ρ3

+
k

τ − 2ε1
).

Then, we deduce that

K�(t) ≤ −dE(t) + c
1

∫
0

(ψ2
t + h2(ψt)) dx, (3.19)

where

d = min(ρ1 − N2ρ1ε, ρ2, N2(b − 2cε) − c, N4(τ − 2ε1) − k,
N3ρ3
2 −

δ
2 , Nβ − cN2 − cN3 − cN4).

First case: Let h0 be a linear function over [0, ε]. The hypothesis (A∗
2) implies that

c�1|s| ≤ |h(s)| ≤ c�2|s| for all s ∈ ℝ.

Consequently, by multiplying inequality (3.19) by α(t), we obtain

α(t)K�(t) ≤ −dα(t)E(t) + cα(t)
1

∫
0

(ψ2
t + h2(ψt)) dx

≤ −dα(t)E(t) + cα(t)
1

∫
0

(
1
c�1

|ψth(ψt)| + c�2|ψth(ψt)|) dx

≤ −dα(t)E(t) + c0α(t)
1

∫
0

ψth(ψt)dx = −dα(t)E(t) − c0E�(t), (3.20)

where c0 = c( 1c�1 + c�2). Using now hypothesis (A1), this yields

(αK + c0E)�(t) ≤ α(t)K�(t) + c0E�(t) ≤ −dα(t)E(t). (3.21)

We integrate inequality (3.21) and use the fact that αK + c0E ∼ E, we obtain for some k, c > 0,

E(t) ≤ k exp(−dc
t

∫
0

α(s) ds). (3.22)

Finally, by a simple computation we get (3.18).

Second case: Let h0 be a nonlinear function over [0, ε]. We assume that max (r, h0(r)) < ε, where r is de�ned
in hypothesis (A∗

2). Let ε1 = min(r, h0(r)), we deduce from hypothesis (A∗
2) that

h0(ε1)
ε

|s| ≤ h0(|s|)
|s|

|s| ≤ |h(s)| ≤
h−10 (|s|)

|s|
|s| ≤ h0(ε)

ε1
|s|

for all s satisfying ε1 ≤ |s| ≤ ε. Then, the estimates in hypothesis (A∗
2) become

{
{
{

h0(|s|) ≤ |h(s)| ≤ h−10 (|s|) for all |s| ≤ ε1,

c�1|s| ≤ |h(s)| ≤ c�2|s| for all |s| ≥ ε1,
(3.23)

and we have
s2 + h2(s) ≤ 2H−1(sh(s)). (3.24)

To estimate the last term of (3.19), we consider the following partition of (0.1):

Ω1 = {x ∈ (0, 1) : |ψt| ≤ ε1}, Ω2 = {x ∈ (0, 1) : |ψt| > ε1}.
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Then, we obtain
ψth(ψt) ≤ H(r2) and ψth(ψt) ≤ r2 on Ω1. (3.25)

Now, we apply Jensen’s inequality to the term

I(t) := 1
|Ω1|

∫
Ω1

ψth(ψt) dx,

and we infer that
H−1(I(t)) ≥ c ∫

Ω1

H−1(ψth(ψt)) dx. (3.26)

Using (3.23), (3.24) and (3.26), the right-hand side of (3.19) multiplied by α(t) becomes

α(t)
1

∫
0

(ψ2
t + h2(ψt)) dx = α(t) ∫

Ω1

(ψ2
t + h2(ψt)) dx + α(t) ∫

Ω2

(ψ2
t + h2(ψt)) dx

≤ 2α(t) ∫
Ω1

H−1(ψth(ψt)) dx + α(t) ∫
Ω2

(|ψt|
1
c�1

|h(ψt)| + c�2|ψt||h(ψt)|) dx

≤ cα(t)H−1(I(t)) + α(t)c
1

∫
0

ψth(ψt) dx

≤ cα(t)H−1(I(t)) − cE�(t).

Consequently, estimate (3.19) gives

R�
0(t) ≤ −dα(t)E(t) + cα(t)H−1(I(t)), (3.27)

where R0 = αK + cE. On the one hand, for ε0 < r2, using (3.27), H� ≥ 0 and H�� ≥ 0 over (0, r2] and E� ≤ 0
the functional R1 de�ned by

R1(t) := H�(ε0
E(t)
E(0))R0(t) + c0E(t),

is equivalent to E(t). On the other hand, using the fact that

ε0
E�(t)
E(0) H

��(ε0
E(t)
E(0))R0(t) ≤ 0

and (3.27), we conclude that

R�
1(t) = ε0

E� (t)
E(0) H

��(ε0
E(t)
E(0))R0(t) + H

�(ε0
E(t)
E(0))R

�
0(t) + c0E

�(t)

≤ −dα(t)E(t)H�(ε0
E(t)
E(0)) + cα(t)H�(ε0

E(t)
E(0))H

−1(I(t)) + c0E�(t). (3.28)

Our goal now is to estimate the second term in the right-hand side of (3.28). For that purpose, we intro-
duce the convex conjugate H∗ of H de�ned by

H∗(s) = s(H�)−1(s) − H((H�)−1(s)) for s ∈ (0, H�(r2)) (3.29)

and H∗ satis�es the following Young inequality:

AB ≤ H∗(A) + H(B) for A ∈ (0, H�
(r2)), B ∈ (0, r2). (3.30)

Now, taking A = H�(ε0 E(t)E(0) ) and B = H−1(I(t)), we obtain

R�
1(t) ≤ −dα(t)E(t)H�(ε0

E(t)
E(0)) + cα(t)H∗(H�(ε0

E(t)
E(0))) + cα(t)H(H−1(I(t)) + c0E�(t)

≤ −dα(t)E(t)H�(ε0
E(t)
E(0)) + cε0

E(t)
E(0)α(t)H

�(ε0
E(t)
E(0)) − cα(t)H(ε0

E(t)
E(0)) + cα(t)I(t) + c0E�(t)

≤ −dα(t)E(t)H�(ε0
E(t)
E(0)) + cε0

E(t)
E(0)α(t)H

�(ε0
E(t)
E(0)) − cE�(t) + c0E�(t).
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With a suitable choice of ε0 and c0, from the last inequality we deduce that

R�
1(t) ≤ −(dE(0) − cε0)α(t)

E(t)
E(0)H

�(ε0
E(t)
E(0)) ≤ −kα(t)H2(

E(t)
E(0)), (3.31)

where k = dE(0) − cε0 > 0 and H2(s) = sH�(ε0s). Since E(t) ∼ R1(t), there exist a1 and a2 such that

a1R1(t) ≤ E(t) ≤ a2R1(t).

We set now
R(t) = a1R1(t)

E(0) .

It is clear that R(t) ∼ E(t). We use the fact that H�
2(t), H2(t) > 0 over (0, 1] (this is due to the fact that H is

strictly convex on (0, r2]) and we deduce from (3.31) that

R�(t) ≤ −k1α(t)H2(R(t)) for all t ∈ ℝ+

with k1 > 0. By integrating the last inequality, we obtain

H1(R(t)) ≥ H1(R(0)) + k1
t

∫
0

α(s) ds.

Finally, using the fact that H−11 is decreasing (because H1 is also), we have

R(t) ≤ H−11 (k1
t

∫
0

α(s) ds + k2) with k2 > 0.

Taking into account that E(t) ∼ R(t), we deduce (3.18).

3.1.1 Examples

In the following, we will apply inequality (3.18) on some examples in order to show explicit stability results
in term of asymptotic pro�les in time. For that, we choose the function H strictly convex near zero.

Example 3.9. Let h be a function that satis�es

c3 min(|s|, |s|p) ≤ |h(s)| ≤ c4 max(|s|, |s|
1
p )

for some c3, c4 > 0 and p ≥ 1. For h0(s) = csp, hypothesis (A∗
2) is veri�ed. Then, H(s) = cs

p+1
2 . Therefore, we

distinguish the following two cases:
∙ If p = 1, we have that h0 is linear, H2(s) = cs, H1(s) = − ln(s)

c and H−11 (t) = exp(−ct). Applying (3.18) of
Theorem 3.8, we conclude that

E(t) ≤ k3 exp(−c(k1
t

∫
0

α(s) ds + k2)).

∙ If p > 1, then this implies that h0 is nonlinear and we have H2(s) = cs
p+1
2 and

H1(t) =
1

∫
t

1
δ
s−

p−1
2 ds = 2

δ(1 − p)
−

2
δ(1 − p)

t
p−1
2 with δ = c p + 1

2 ε
p−1
2

0 .

Therefore,

H−11 (t) = (δ p − 1
2 t + 1)

− 2
p−1
.

Using again (3.18), we obtain

E(t) ≤ H−11 (k1
t

∫
0

α(s) ds + k2) = (δ p − 1
2 (k1

t

∫
0

α(s) ds + k2) + 1)
− 2
p−1
.
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Example 3.10. Let h0(s) = exp(−1
s ). This yields H(s) = √s exp(− 1

√s ) and

H2(s) = (
√s
2√ε0

+
1
2ε0

) exp(− 1
√ε0s

).

Moreover, we have

H1(t) =
1

∫
t

(
1

√s
2√ε0

+ 1
2ε0

) exp( 1
√ε0s

) ds

≤
1

∫
t

2√ε0
√s

exp( 1
√ε0s

) ds

≤ c
1

∫
t

1
2s√ε0s

exp( 1
√ε0s

) ds

= c exp( 1
√ε0t

) − c exp( 1
√ε0

).

Then,

t ≤ ε−10 (ln(
H1(t) + c exp( 1

√ε0s )

c ))
−2

.

Replacing t by H−11 (k1 ∫
t
0 α(s) ds + k2) in the last inequality, we �nd

H−11 (k1
t

∫
0

α(s) ds + k2) ≤ ε−10 (ln(
k1 ∫

t
0 α(s) ds + k2 + c exp(

1
√ε0 )

c ))
−2

.

Therefore,

E(t) ≤ k3ε−10 (ln(
k1 ∫

t
0 α(s) ds + k2 + c exp(

1
√ε0 )

c ))
−2

.

Example 3.11. Let h0(s) = 1
s exp(−

1
s2 ). Following the same steps as in Example 3.10, we �nd that the energy

of (1.8) satis�es

E(t) ≤ ε(ln(
k1 ∫

t
0 α(s) ds + k2 + c exp(

1
ε0 )

c ))
−1

.

Example 3.12. Let h0(s) = 1
s exp(−

1
4 (ln s)

2). Then, we have H(s) = exp(−1
4 (ln s)

2),

H2(s) = −
1
2
ln ε0s
ε0

exp(−14 (ln ε0s)
2) and H1(t) =

1

∫
t

−2 ε0
ln ε0s

exp(14 (ln ε0s)
2) ds.

As lims→0
4ε20s

(ln(ε0s))2 = 0, it follows that the function s Ü→ 4ε20s
(ln(ε0s))2 is bounded on (0, 1], and we infer that

H1(t) ≤ c
1

∫
t

−
1
2
ln ε0s
ε0s

exp(14 (ln s)
2) ds = exp(14 (ln ε0t)

2) − exp(14 (ln ε0)
2)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
c1

.

Hence, we have
t ≤ 1

ε0
exp(−2(ln(H1(t)) + c1)

1
2 ).

Replacing t by H−11 (k1 ∫
t
0 α(s) ds + k2) in the last inequality, we �nd

E(t) ≤ k3H−11 (k1
t

∫
0

α(s) ds + k2) =
k3
ε0

exp(−2(ln k1
t

∫
0

α(s) ds + k2 + c1)
1
2

).
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3.2 The case µ ≠ 0 and α(t) = 1

This subsection is devoted to the statement and the proof of the stability result for system (1.8) when µ ̸= 0
and α(t) = 1.We supposehere that thederivative of the function h is bounded.Wehave the following theorem.

Theorem 3.13. Let us suppose that conditions (A1) and (A∗
2) hold. Then for

µ = (τ − ρ1
kρ3

)(
ρ2
b

−
ρ1
k ) −

τδ2ρ1
bkρ3

̸= 0,

the energy solution of (1.8) satis�es
E(t) ≤ H−12 (

c
t )
, (3.32)

where
H2(t) = tH�(ε0t) with lim

t→0
H2(t) = 0.

Proof. Let (φ, ψ, θ, q) be a solution of system (1.8). First, we de�ne

E(t) := 1
2

1

∫
0

(ρ1φ2
t + ρ2ψ2

t + bψ2
x + k(φx + ψ)2 + ρ3θ2 + τq2) dx

and

Ẽ(t) := 1
2

1

∫
0

(ρ1φ2
tt + ρ2ψ2

tt + bψ2
tx + k(φtx + ψt)2 + ρ3θ2t + τq2t ) dx.

Then, the functional E satis�es

E�(t) = −β
1

∫
0

q2 dx −
1

∫
0

ψth(ψt) dx ≤ 0.

Analogously, the functional Ẽ satis�es

Ẽ�(t) = −β
1

∫
0

q2t dx −
1

∫
0

ψ2
tth�(ψt) dx ≤ 0.

Using the results in Section 3.1 (recall the expressions of the functionals K1, . . . , K4), we have the following
lemma.

Lemma 3.14. Let (φ, ψ, θ, q) be a solution of system (1.8). Then, the functional

L(t) := N(E(t) + Ẽ(t)) + K1 + N2K2 + N3K3 + N4K4 (3.33)

satis�es

L�(t) ≤ −d�(t) + c
1

∫
0

(ψ2
t + h2(ψt)) dx (3.34)

for N large enough and d� > 0.

Proof. By di�erentiation of (3.33), and using (3.17) and Young’s inequality, we obtain

L�(t) ≤ −dE(t) + c
1

∫
0

(ψ2
t + h2(ψt)) dx + c

1

∫
0

(θ2x + (φx + ψ)2) dx − Nβ
1

∫
0

q2t dx − N
1

∫
0

ψ2
tth�(ψt) dx.

Now, from (1.8d), we deduce that
1

∫
0

θ2x dx ≤ c(
1

∫
0

q2 dx +
1

∫
0

q2t dx).
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Consequently, we get

L�(t) ≤ −d�E(t) + c
1

∫
0

(ψ2
t + h2(ψt)) dx − (βN − c)

1

∫
0

q2t dx − N
1

∫
0

ψ2
tth�(ψt) dx.

where d� = d − c > 0 and d is the same constant that appears in (3.19). Finally, we choose N large enough
and using the monotony of the function h we arrive at (3.34).

Now, using the following partition of (0, 1) de�ned in Section 3.1, the right-hand side of (3.34) becomes

1

∫
0

(ψ2
t + h2(ψt)) dx = ∫

Ω1

(ψ2
t + h2(ψt)) dx + ∫

Ω2

(ψ2
t + h2(ψt)) dx.

Now, estimates (3.23)–(3.26) imply that

1

∫
0

(ψ2
t + h2(ψt)) dx ≤ 2 ∫

Ω1

H−1(ψth(ψt)) dx + ∫
Ω2

(|ψt|
1
c�1

|h(ψt)| + c�2|ψt||h(ψt)|) dx

≤ cH−1(I(t)) + c
1

∫
0

ψth(ψt) dx.

Consequently,

L�(t) ≤ −d�E(t) + cH−1(I(t)) + c
1

∫
0

ψth(ψt) dx + cβ
1

∫
0

q2 dx ≤ −d�E(t) + cH−1(I(t)) − cE�(t).

Hence, we deduce that
(L + cE)�(t) ≤ −d�E(t) + cH−1(I(t)).

We then de�ne
R1(t) := H�(ε0

E(t)
E(0))(L + cE)(t) + c0E(t),

which veri�es
R�
1(t) ≤ −d1E(t)H�(ε0

E(t)
E(0)) + cH�(ε0

E(t)
E(0))H

−1(I(t)) + ϵE�(t),

as we have
ε0
E�(t)
E(0) H

��(ε0
E(t)
E(0))R0(t) ≤ 0.

We recall the de�nition of the convex conjugate H∗ of H, given by (3.29), which satis�es the following
Young inequality:

AB ≤ H∗(A) + H(B) for A ∈ (0, H�(r2)), B ∈ (0, r2).

With the same choice of A and B as in (3.30), we obtain

R�
1(t) ≤ −d1E(t)H�(ε0

E(t)
E(0)) + cε0

E(t)
E(0)α(t)H

�(ε0
E(t)
E(0)) − cE�(t) + ϵE�(t).

With a suitable choice of ε0 and ϵ, from the above inequality we deduce that

R�
1(t) ≤ −(dE(0) − cε0)

E(t)
E(0)H

�(ε0
E(t)
E(0)) ≤ −k1H2(

E(t)
E(0)), (3.35)

where k = dE(0) − cε0 > 0 and H2(s) = sH�(ε0(s)).
Finally, we have

R�
1(t) ≤ −k1H2(

E(t)
E(0)) for all t ∈ ℝ+
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with k1 > 0, which yields

tH2(
E(t)
E(0)) ≤

t

∫
0

H2(
E(s)
E(0)) ds ≤ −(R1(t) − R1(0)) ≤ R1(0).

Then, we easily deduce that
H2(

E(t)
E(0)) ≤

R1(0)
k1t

.

Thus,
E(t) ≤ E(0)H−12 (

R1(0)
k1t

).

This concludes the proof of Theorem 3.13.

3.2.1 Examples

Example 3.15. Let h0(s) = csp. Then H(s) = cs
p+1
2 . Therefore, we distinguish the following two cases:

∙ If p = 1, we have that h0 is linear and H−12 (t) = cs. Applying (3.32) of Theorem 3.13, we conclude that

E(t) ≤ c
t
.

∙ If p > 1, then this implies that h0 is nonlinear and we have H2(s) = cs
p+1
2 . Therefore,

H−12 (t) = ct
2
p+1 .

Using (3.32), we obtain
E(t) ≤ ct−

2
p+1 .

Example 3.16. Let h be given by h(x) = 1
x3 exp(− 1

x2 ) and we choose h0(x) = 1+x2
x3 exp(− 1

x2 ). We obtain

H(x) = 1 + x
x

exp(−1x ) and H2(x) =
exp(− 1

ε0x )

ε30x2
.

Then, using the property
lim
x→0+ exp( 1

ε0x
)H2(x) = +∞,

we deduce that
exp(− 1

ε0x
) ≤ H2(x).

We infer that there exists x0 > 0 such that

exp(− 1
ε0x

) ≤ H2(x) on (0, x0].

Consequently, the energy of the solution of (1.8) satis�es the estimate

E(t) ≤ c(ln(t))−1.
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