
Adv. Nonlinear Anal. 2016; 5 (2):147–165

Research Article

Stevo Stević*

Solvable subclasses of a class of nonlinear
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Abstract: We present some solvable subclasses of the class of nonlinear second-order di�erence equations
of the form

Axn+1 + Bxn+1xn + Cxnxn−1 + Gxn+1xn−1 + Dxn + Exn−1 + F = 0, n ∈ ℕ0,
where the parameters A, B, C, D, E, F, G and the initial values x−1, x0 are real numbers. This di�erence equa-
tion is a natural extension of the nonhomogeneous linear second-order di�erence equation with constant
coe�cients as well as of the bilinear di�erence equation with constant coe�cients.

Keywords: Second-order di�erence equation, nonlinear solvable di�erence equation, closed form solution

MSC 2010: 39A10, 39A20

DOI: 10.1515/anona-2015-0077
Received June 25, 2015; accepted July 11, 2015

1 Introduction

Nonlinear di�erence equations and systems of di�erence equations not closely related to di�erential ones
have attracted some recent attention (see, for example, [1–12, 14, 16–23, 28–30, 33–62] and the refer-
ences therein). Among other problems, such as boundedness, periodicity and stability, the classical prob-
lem of solving such equations and systems also re-attracted some attention recently (see, for example,
[1–5, 11, 30, 34, 35, 39, 40, 42–51, 53, 55–62] and the related references therein), especially after the
author gave in [34] a theoretical explanation for the formula presented in [14]. For some classical methods
for solving di�erence equations and systems see, for example, [25, 27]. For some other classes of di�er-
ence equations and systems, and their applications, see, for example [15, 16, 25, 26, 31, 32, 35]. Some
papers dealing with nonlinear di�erence equations and systems which are not solvable, use the behavior
of solutions of some solvable ones in order to describe the behavior of their solutions (see, for example,
[8, 9, 33, 36, 38, 52, 54]), which shows their importance.

Continuing our line of investigations on solvable di�erence equations and systems (see, for example,
[11, 34, 35, 39, 40, 42–51, 53, 55–61]), we consider here a nonlinear second-order di�erence equation with
constant coe�cients which, among others, is a natural extension of the nonhomogeneous linear second-
order di�erence equation with constant coe�cients as well as of the bilinear di�erence equation with con-
stant coe�cients. Namely, we consider the di�erence equation

Axn+1 + Bxn+1xn + Cxnxn−1 + Gxn+1xn−1 + Dxn + Exn−1 + F = 0, n ∈ ℕ0, (1.1)

where the coe�cients A, B, C, D, E, F, G and the initial values x−1, x0 (or one of them, if (1.1) is reduced by
the vanishing of some of the coe�cients to a first-order di�erence equation) are real numbers.

Our motivation stems from the fact that special cases of (1.1) appear often in the literature but there is
no unified treatment of the problem of solvability for the case of the general equation (1.1). Apart from this,
it seems that many experts are not aware of the fact that, albeit it is quite “rare”, there are numerous special
cases of (1.1) which can be solved in closed form.
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Ourmain aim is to present several subclasses of the di�erence equation (1.1)which are solvable in closed
form and to give formulas for their general solutions. In doing this, for the benefit of the reader and for com-
pleteness, we will also recall several knownmethods for solving di�erence equations. Wewill mostly present
direct, clear and constructive ways for getting the formulas for the general solutions, although they will be
sometimes technically complicated. Here and there, we will use the method of induction just to justify some
practically “obvious” relations.

Another aim of ours is to also point out and to remind the importance of the linear first-order di�erence
equation, that is, of the equation

xn = pnxn−1 + qn , n ∈ ℕ0, (1.2)

where (pn)n∈ℕ0 , (qn)n∈ℕ0 are arbitrary real sequences and x−1 ∈ ℝ.
Equation (1.2) can be solved explicitly in several ways. For example, writing down the first n + 1 equali-

ties obtained from (1.2) (in the order of decreasing indices), then multiplying the kth equality

xn−k+1 = pn−k+1xn−k + qn−k+1

by
n
∏

j=n−k+2
pj

and finally summing up the resulting n + 1 equalities, gives that the general solution of (1.2) is

xn = x−1
n
∏
j=0
pj +

n
∑
i=0
qi

n
∏
j=i+1

pj , n ≥ −1, (1.3)

where, as usual, we use the conventions
s
∏
j=s+1

pj = 1,
l
∑
j=l+1

qj = 0, s, l ∈ ℤ.

For some recent applications of this equation, see, for example, [5, 9, 11, 30, 34, 35, 39, 40, 42–44, 46–
48, 50, 56, 58–60].

Remark 1.1. Although the coe�cients (pn)n∈ℕ0 and (qn)n∈ℕ0 in (1.2) as well as the initial value x−1 can also
be complex numbers, and many considerations in this and in related papers also hold for the complex case,
we will restrict our considerations to the real case for practical reasons.

The solution (xn)n≥−s of the di�erence equation

xn = f(xn−1, . . . , xn−s), n ∈ ℕ0,

where f : ℝs → ℝ, s ∈ ℕ, is called periodic with period p if there is an n1 ≥ −s such that

xn+p = xn , n ≥ n1.

It is frequently said that such a solution is eventually periodic and that it is periodic with period p only if
n1 = −s. For some results in this area, see, for example, [6, 10, 16–19, 22–24, 29, 37, 41] and the related
references therein.

2 Solvable subclasses of equation (1.1) for the case G = 0
In this section, we will present several subclasses of the di�erence equation

Axn+1 + Bxn+1xn + Cxnxn−1 + Dxn + Exn−1 + F = 0, n ∈ ℕ0, (2.1)

that is, of (1.1) for the case G = 0, which can be solved in closed form. Many of them are already known but
we will present them for the benefit of the reader and for completeness.
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2.1 The case A = B = C = D = 0 for E ≠ 0

In this case, (2.1) is equivalent to the equation

xn−1 = −
F
E
, n ∈ ℕ0,

that is, the set of solutions consists of a constant sequence.

2.2 The case A = B = C = E = 0 for D ≠ 0

In this case, (2.1) is equivalent to the equation

xn = −
F
D
, n ∈ ℕ0,

that is, the set of solutions also consists of a constant sequence and the main di�erence with the previous
case is that the domain of indices is notℕ0 ∪ {−1} butℕ0.

2.3 The case B = C = D = E = 0 for A ≠ 0

In this case, (2.1) is equivalent to the equation

xn+1 = −
F
A
, n ∈ ℕ0,

that is, the set of solutions also consists of a constant sequence and the main di�erence with the previous
two cases is that the domain of indices isℕ.

2.4 The case A = B = D = E = 0 for C ≠ 0

In this case, (2.1) is equivalent to the equation

xnxn−1 = −
F
C
, n ∈ ℕ0. (2.2)

If F = 0, then we have that xnxn−1 = 0, n ∈ ℕ0. This means that among two consecutive members of the
sequence (xn)n≥−1, at least one is zero. There aremany such sequences.We do not have a closed form formula
for the solutions of (2.2) in this case but they can be described in the following way. Each solution (xn)n≥−1
consists either of all zeros or of a string of zeros followed by a nonzero number (except if x−1 ̸= 0, when it is
followed by a string of zeros which is followed by a nonzero number), which is followed by a string of zeros
followed by a nonzero number and so on.

If F ̸= 0, then applying (2.2) twice, it follows that

xn =
− FC
xn−1
= xn−2, n ∈ ℕ,

which means that (xn)n≥−1 is two-periodic, that is,

x2n−1 = x−1, x2n = −
F

Cx−1
, n ∈ ℕ0.

2.5 The case C = D = E = F = 0 for B ≠ 0

In this case, (2.1) is equivalent to the equation

xn+1(A + Bxn) = 0, n ∈ ℕ0, (2.3)
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so we do not have a closed form formula for its solutions and we will give a description of them just for
completeness.

If A = 0, then we have that xnxn−1 = 0, n ∈ ℕ, that is, the sequences which are essentially described in
the previous case. If A ̸= 0, then each solution (xn)n∈ℕ0 of (2.3) in this case consists either of zeros and−A/B’s
or of a string of zeros and −A/B’s followed by a number from the set ℝ \ {0, −A/B} (except if x0 ∉ {−A/B, 0},
when it is followed by a string of zeros and−A/B’s, which is followed by a number from the setℝ \ {0, −A/B}),
which is followed by a string of zeros and −A/B’s followed by a number from the setℝ \ {0, −A/B}, and so on.

2.6 The case A = C = D = E = 0 for B ≠ 0

In this case, (2.1) is equivalent to the equation

xn+1xn = −
F
B
, n ∈ ℕ0. (2.4)

If F = 0, then we have that xn+1xn = 0, n ∈ ℕ0, and we have a situation similar to the one in the previous
two cases.

If F ̸= 0, then applying (2.4) twice, it follows that

xn+1 =
− FB
xn
= xn−1, n ∈ ℕ,

which means that (xn)n∈ℕ0 is two-periodic, that is,

x2n+1 = −
F
Bx0

, x2n = x0, n ∈ ℕ0.

2.7 The case A = B = C = 0 for D ≠ 0

In this case, (2.1) is equivalent to the equation

xn = −
E
D
xn−1 −

F
D
, n ∈ ℕ0, (2.5)

which is a nonhomogeneous linear first-order di�erence equation with constant coe�cients. It is a special
case of (1.2) with

pn = −
E
D
, qn = −

F
D
,

which is solvable and whose general solution is given by (1.3). Recall here that the equation can also be
solved by using the change of variables xn = yn + c for a suitable chosen c. Namely, by using this change of
variables, (2.5) becomes

yn = −
E
D
yn−1 − c(1 +

E
D) −

F
D
, n ∈ ℕ0,

which for
c = − F

D + E
,

when D ̸= −E, is reduced to the equation

yn = −
E
D
yn−1, n ∈ ℕ0,

whose general solution is

yn = (−
E
D)

n+1
y−1, n ≥ −1.

From this and by using the relation
yn = xn +

F
D + E

,
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we get

xn = (−
E
D)

n+1
(x−1 +

F
D + E)

−
F

D + E
, n ≥ −1,

when D ̸= −E.
When D = −E, (2.5) becomes

xn = xn−1 −
F
D
,

from which it immediately follows that

xn = −
F
D
(n + 1) + x−1, n ≥ −1.

2.8 The case B = C = E = 0 for A ≠ 0

In this case, (2.1) is equivalent to the equation

xn+1 = −
D
A
xn −

F
A
, n ∈ ℕ0, (2.6)

which is also a nonhomogeneous linear first-order di�erence equation with constant coe�cients. It can be
solved either by using (1.3), but with the initial value x0, or by using the change of variables in the previous
case, which gives that

xn = (−
D
A)

n
(x0 +

F
D + A) −

F
D + A

, n ∈ ℕ0,

when D ̸= −A.
When D = −A, (2.6) becomes

xn+1 = xn −
F
A
, n ∈ ℕ0,

from which it immediately follows that

xn = −
F
A
n + x0, n ∈ ℕ0.

2.9 The case B = C = D = 0 for A ≠ 0

In this case, (2.1) is equivalent to the equation

xn+1 = −
E
A
xn−1 −

F
A
, n ∈ ℕ0.

This equation is a nonhomogeneous linear second-order di�erence equation with constant coe�cients, but
of a special type. Namely, it is easy to see that the subsequences (x2m+i)m∈ℕ0 , i ∈ {−1, 0}, are two independent
solutions of the nonhomogeneous linear first-order di�erence equation with constant coe�cients

zm+1 = −
E
A
zm −

F
A
, m ∈ ℕ0. (2.7)

Since (2.7) can be solved either by using (1.3) or by using the change of variables zm = ym + c, m ∈ ℕ0, we
obtain that

x2m+i = (−
E
A)

m
(xi +

F
E + A) −

F
E + A

, m ∈ ℕ0, i ∈ {−1, 0},

when E ̸= −A.
When E = −A, (2.7) becomes

zm+1 = zm −
F
A
, m ∈ ℕ0,

from which it immediately follows that

x2m+i = −
F
A
m + xi , m ∈ ℕ0, i ∈ {−1, 0}.



152 | S. Stević, Solvable subclasses of a class of nonlinear second-order di�erence equations

2.10 The case C = E = F = 0 for B ≠ 0 ≠ A

In this case, every well-defined solution to (2.1) satisfies the equation

xn+1 = −
Dxn

A + Bxn
, n ∈ ℕ0. (2.8)

Since the case D = 0 is trivial, from now on we will also assume that D ̸= 0. Now, first note that if x0 = 0,
then from (2.8) we get xn = 0 for every n ∈ ℕ. Also, if n0 is the smallest natural number such that xn0 = 0,
then from (2.8) it follows that xn0−1 = 0, which implies that n0 = 1. Thus, for a well-defined solution (xn)n∈ℕ0
of equation (2.8), we have that x0 = 0 is equivalent to xn = 0 for n ∈ ℕ0.

Hence, for any well-defined solution (xn)n∈ℕ0 of (2.8), we may use the change of variables

yn =
1
xn

, n ∈ ℕ0,

and transform (2.8) into the equation

yn+1 = −
A
D
yn −

B
D
, n ∈ ℕ0. (2.9)

Now, note that (2.9) is a linear first-order di�erence equationwith constant coe�cients. Hence, by using (1.3)
we obtain

yn = (−
A
D)

n
(y0 +

B
A + D) −

B
A + D

, n ∈ ℕ0,

when D ̸= −A, and
yn = −

B
D
n + y0, n ∈ ℕ0,

when D = −A.
From the last two formulas we obtain

xn =
(A + D)x0

(− AD )
n(A + D + Bx0) − x0B

, n ∈ ℕ0, (2.10)

when D ̸= −A, and
xn =

Dx0
D − Bx0n

, n ∈ ℕ0, (2.11)

when D = −A.

Remark 2.1. From (2.10) and (2.11) we see that a solution of (2.8) in the case D ̸= −A is well defined if and
only if

x0 ̸=
(− AD )

n(A + D)
B(1 − (− AD )

n)
, n ∈ ℕ,

while in the case D = −A if and only if
x0 ̸=

D
Bn

, n ∈ ℕ.

2.11 The case A = B = F = 0 for C ≠ 0 ≠ D

In this case, any well-defined solution of (2.1) satisfies the equation

xn = −
Exn−1

D + Cxn−1
, n ∈ ℕ0. (2.12)

Since the case E = 0 is trivial, from now on we will also assume that E ̸= 0. Similarly as in the previous
case, it can be proved that for a well-defined solution (xn)n≥−1 of (2.12), we have that the condition x−1 = 0
is equivalent to xn = 0 for n ≥ −1.
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Hence, for any well-defined solution (xn)n≥−1 of (2.12), we may use the change of variables

yn =
1
xn

, n ≥ −1,

to transform (2.12) into the equation

yn = −
D
E
yn−1 −

C
E
, n ∈ ℕ0. (2.13)

Now, note that (2.13) is a linear first-order di�erence equation with constant coe�cients. Hence, by using
(1.3) we obtain

yn = (−
D
E )

n+1
(y−1 +

C
D + E)

−
C

D + E
, n ≥ −1,

when D ̸= −E, and
yn = −

C
E
(n + 1) + y−1, n ≥ −1,

when D = −E.
From the last two formulas we obtain

xn =
(D + E)x−1

(− DE )
n+1(D + E + Cx−1) − x−1C

, n ≥ −1, (2.14)

when D ̸= −E, and
xn =

Ex−1
E − Cx−1(n + 1)

, n ≥ −1, (2.15)

when D = −E.

Remark 2.2. From (2.14) and (2.15) we see that a solution of (2.12) in the case D ̸= −E is well defined if and
only if

x−1 ̸=
(− DE )

n+1(D + E)

C(1 − (− DE )
n+1)

, n ∈ ℕ0,

while in the case D = −E if and only if

x−1 ̸=
E

C(n + 1) , n ∈ ℕ0.

2.12 The case B = C = 0 for A, D, E ∈ ℝ \ {0}

In this case, (2.1) is equivalent to the equation

xn+1 +
D
A
xn +

E
A
xn−1 = −

F
A
, n ∈ ℕ0, (2.16)

which is a nonhomogeneous linear second-order di�erence equation with constant coe�cients. There is
a well-known standard method for solving (2.16) (see, for example, [27]). Here, we present a direct method
for solving (2.16), that is, a method which does not use the theory of linear di�erence equations, and we
make some comments which could be little known to the experts.

Recall that if λ1 and λ2 are the zeros of the characteristic polynomial

P2(λ) = λ2 +
D
A
λ + E

A
,

that is,

λ1,2 =
− DA ± √

D2−4AE
A2

2 ,

then the solution of the homogeneous linear second-order di�erence equation

yn+1 +
D
A
yn +

E
A
yn−1 = 0, n ∈ ℕ0, (2.17)
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with initial values y−1, y0 is

yn =
λ2y−1 − y0
λ2 − λ1

λn+11 +
y0 − λ1y−1
λ2 − λ1

λn+12 , n ≥ −1, (2.18)

when λ1 ̸= λ2, while if λ1 = λ2, the solution is

yn = (y0(n + 1) − nλ1y−1)λn1 , n ≥ −1. (2.19)

To see how (2.18) and (2.19) can be obtained in a direct way, we refer to, for example, [51] (this is an old
idea, see, for example, [27]).

Now, note that from (2.16) it follows that

xn+2 +
D
A
xn+1 +

E
A
xn = −

F
A
= xn+1 +

D
A
xn +

E
A
xn−1, n ∈ ℕ0,

which implies
xn+2 − xn+1 +

D
A
(xn+1 − xn) +

E
A
(xn − xn−1) = 0, n ∈ ℕ0,

so that the sequence
bn = xn+1 − xn , n ≥ −1,

is the solution of (2.17) with initial values b−1, b0.
Hence, if 1 ̸= λ1 ̸= λ2 ̸= 1, by using (2.18) we have that

xn − xn−1 = bn−1 =
b−1λ2 − b0
λ2 − λ1

λn1 +
b0 − λ1b−1
λ2 − λ1

λn2 , n ∈ ℕ0. (2.20)

By summing up (2.20) from 0 to n and by some simple calculations, we get

xn = x−1 +
(x−1λ2 − x0)(λ1 − 1) + FA

λ2 − λ1
λn+11 − 1
λ1 − 1

+
(x0 − x−1λ1)(λ2 − 1) − FA

λ2 − λ1
λn+12 − 1
λ2 − 1

. (2.21)

For the case when one of the numbers λ1 or λ2 is equal to 1, say λ2, then from (2.20) we obtain

xn = x−1 +
(x0 − x−1)(λ1 − 1) − FA

λ1 − 1
λn+11 − 1
λ1 − 1

+
F

A(λ1 − 1)
(n + 1). (2.22)

If λ1 = λ2 ̸= 1, by using (2.19) we have that

xn − xn−1 = bn−1 = ((b0 − λ1b−1)n + λ1b−1)λn−11 , n ∈ ℕ0. (2.23)

By summing up equations (2.23) from 0 to n and by some simple calculations, we get

xn = x−1 + ((x0 − λ1x−1)(λ1 − 1) −
F
A)

1 − (n + 1)λn1 + nλ
n+1
1

(1 − λ1)2
+ (x0 − x−1)

λn+11 − 1
λ1 − 1

. (2.24)

If λ1 = λ2 = 1, then from (2.23) we have that

xn = x0 + (x0 − x−1 −
F
2A)n − Fn

2

2A . (2.25)

Remark 2.3. The solution in (2.21) for the case 1 ̸= λ1 ̸= λ2 ̸= 1 can be written in the form

xn =
λ2x−1 − x0
λ2 − λ1

λn+11 +
x0 − λ1x−1
λ2 − λ1

λn+12 +
F
A

λ2 − λ1
(
λn+11 − 1
λ1 − 1

−
λn+12 − 1
λ2 − 1

), n ≥ −1,

which is a natural decomposition of the solution as a sum of the solution

xhn =
λ2x−1 − x0
λ2 − λ1

λn+11 +
x0 − λ1x−1
λ2 − λ1

λn+12 , n ≥ −1,
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of the homogeneous equation with initial values x−1, x0 and the solution

xpn =
F
A

λ2 − λ1
(
λn+11 − 1
λ1 − 1

−
λn+12 − 1
λ2 − 1

), n ≥ −1,

of the nonhomogeneous equation (2.16) with initial conditions x−1 = x0 = 0, that is,

xn = xhn + x
p
n , n ≥ −1. (2.26)

The solution in (2.22) for the case λ1 ̸= 1, λ2 = 1 can be written in the form (2.26), where

xhn =
x−1 − x0
1 − λ1

λn+11 +
x0 − λ1x−1
1 − λ1

, n ≥ −1,

is the solution of the homogeneous equation with initial values x−1, x0 and

xpn =
F
A

1 − λ1
(
λn+11 − 1
λ1 − 1

− (n + 1)), n ≥ −1,

is the solution of the nonhomogeneous equation (2.16) with initial conditions x−1 = x0 = 0.
When λ1 = λ2 ̸= 1, (2.24) can be also written as a sum of the solution

xhn = ((x0 − λ1x−1)n + x0)λn1 , n ≥ −1,

of the homogeneous equation with initial values x−1, x0 and the solution

xpn = −
F
A
⋅
1 − (n + 1)λn1 + nλ

n+1
1

(1 − λ1)2
, n ≥ −1,

of the nonhomogeneous equation (2.16) with initial conditions x−1 = x0 = 0.
Finally, when λ1 = λ2 = 1, (2.25) can be also written as a sum of the solution

xhn = x0 + (x0 − x−1)n, n ≥ −1,

of the homogeneous equation with initial values x−1, x0 and the solution

xpn = −
Fn(n + 1)

2A , n ≥ −1,

of the nonhomogeneous equation (2.16) with initial conditions x−1 = x0 = 0.

2.13 The case A = B = 0 for C ≠ 0

In this case, every well-defined solution to (2.1) satisfies the equation

xn = −
Exn−1 + F
Cxn−1 + D

, n ∈ ℕ0, (2.27)

which is the bilinear di�erence equation with constant coe�cients, which is also solvable in closed form.
A detailed study of this di�erence equation can be found, for example, in [13] (see also [51]). We will briefly
explain how (2.27) can be solved. First, note that it can be written in the form

xn = −
E
C
+
1
C
ED − CF
Cxn−1 + D

, n ∈ ℕ0,

from which it follows that

Cxn + D = D − E +
ED − CF
Cxn−1 + D

, n ∈ ℕ0. (2.28)

Since for a well-defined solution of (2.27) it must be

Cxn−1 + D ̸= 0, n ∈ ℕ0,
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we can use the change of variables

bn−1 =
1

Cxn−1 + D
, n ∈ ℕ0, (2.29)

in (2.28) and obtain

bn =
1

D − E + (ED − CF)bn−1
, n ∈ ℕ0. (2.30)

If we further use the change of variables

bn =
cn
cn+1

, n ≥ −1, (2.31)

in (2.30), we get

cn+1 − (D − E)cn + (CF − ED)cn−1 = 0, n ∈ ℕ0,

which is a homogeneous second-order di�erence equation with constant coe�cients, whose solutions with
initial values c−1, c0 can be calculated by using (2.18) and (2.19).

By using such formulas for (cn)n≥−1 in the relation

xn =
1
C(

cn+1
cn
− D), n ∈ ℕ0,

which follows from (2.29) and (2.31), we obtain the general solution of (2.27).

2.14 The case C = E = 0 for B ≠ 0

In this case, every well-defined solution to (2.1) satisfies the equation

xn+1 = −
Dxn + F
Bxn + A

, n ∈ ℕ0,

which is a bilinear di�erence equation with constant coe�cients and can be solved as in the previous case.
Hence, we omit the details.

2.15 The case B = D = E = F = 0 for A ≠ 0 ≠ C

In this case, (2.1) can be written in the form

xn+1 = −
Cxnxn−1

A
, n ∈ ℕ0. (2.32)

By using the change of variables

yn = −
Cxn
A

, n ≥ −1, (2.33)

we transform (2.32) into

yn+1 = ynyn−1, n ∈ ℕ0. (2.34)

Let

a1 = 1, b1 = 1 (2.35)

and rewrite (2.34) into the form
yn+1 = ya1n y

b1
n−1, n ∈ ℕ0. (2.36)
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Using (2.34) in (2.36) we get

yn+1 = (yn−1yn−2)a1yb1n−1 = y
a1+b1
n−1 ya1n−2 = y

a2
n−1y

b2
n−2, n ∈ ℕ,

where
a2 := a1 + b1, b2 := a1.

Assume that for some k ≥ 2 we have

yn+1 = yakn−k+1y
bk
n−k , n ≥ k − 1, (2.37)

where

ak = ak−1 + bk−1, bk = ak−1 (2.38)

and (2.35) holds.
By using (2.34) into (2.37), we have that

yn+1 = (yn−kyn−k−1)ak ybkn−k = y
ak+bk
n−k yakn−k−1 = y

ak+1
n−k y

bk+1
n−k−1, 2 ≤ k ≤ n,

where the sequences (ak)k∈ℕ and (bk)k∈ℕ satisfy the system of di�erence equations

ak+1 = ak + bk , bk+1 = ak , k ∈ ℕ, (2.39)

with the initial conditions (2.35). Hence, we have proved by induction that (2.37) holds for every k ∈ ℕ and
n ≥ k − 1, where the sequences (ak)k∈ℕ and (bk)k∈ℕ satisfy (2.38).

From (2.39) it follows that
ak+1 = ak + ak−1, k ≥ 2,

with a1 = 1, a2 = 2, while bk = ak−1, k ≥ 2, with b1 = 1. Hence, bk = fk and ak = fk+1, where (fk)k∈ℕ is the
Fibonacci sequence, and consequently

yn = yan0 y
bn
−1 = y

fn+1
0 yfn−1, n ≥ −1,

where, as usual, we regard that f0 = f2 − f1 = 0 and f−1 = f1 − f0 = 1.
From this and (2.33) it follows that

xn = −
A
C
yn = (−

C
A)

fn+1+fn−1
xfn+10 xfn−1 = (−

C
A)

fn+2−1
xfn+10 xfn−1, n ≥ −1,

which is the general solution to (2.32).

Remark 2.4. It is a common situation that mathematicians, including some experts, try to solve equations
of the type related to (2.32) by taking the logarithm and reducing them to linear di�erence equations with
constant coe�cients. However, for some values of the parameters and the initial values, the values of the
solutions can be negative and so themethod for solving the equations essentially does not work. For the case
of (2.34), such a situation appears if y−1y0 < 0.

2.16 The case B = 0 for A, C, D, E, F ∈ ℝ \ {0}

In this case, (2.1) can be written in the form

xn+1 = −
Cxnxn−1 + Dxn + Exn−1 + F

A
, n ∈ ℕ0. (2.40)

Equation (2.40) seems not to be solvable in closed form for all values of the parameters A, C, D, E, F. Hence,
we will give some su�cient conditions for which a subclass of the equation is solvable.
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From (2.40) it follows that

xn+1 + g = −
Cxnxn−1 + Dxn + Exn−1 + F − gA

A

= −
C
A(xnxn−1 +

D
C
xn +

E
C
xn−1 +

F − gA
C )

= −
C
A(xn(xn−1 +

D
C )
+
E
C(
xn−1 +

F − gA
E )) (2.41)

for n ∈ ℕ0.
If we choose constants A, C, D, E, F such that

g = D
C
=
E
C
=
F − gA
E

,

then (2.41) is reduced to
xn+1 +

D
C
= −

C
A(xn +

D
C )(

xn−1 +
D
C )

,

which by the change of variables
yn = xn +

D
C
, n ≥ −1, (2.42)

becomes
yn+1 = −

C
A
ynyn−1, n ≥ −1,

which is identical to (2.32). Hence, its general solution is

yn = (−
C
A)

fn+2−1
yfn+10 yfn−1, n ≥ −1,

from which, by using (2.42), it follows that

xn = (−
C
A)

fn+2−1
(x0 +

D
C )

fn+1
(x−1 +

D
C )

fn
−
D
C
, n ≥ −1,

is the general solution of (2.40).

2.17 The case A ≠ 0 ≠ B

In this case, every well-defined solution of (2.1) satisfies the equation

xn+1 = −
Cxnxn−1 + Dxn + Exn−1 + F

A + Bxn
, n ∈ ℕ0, (2.43)

which can be rewritten in the form

xn+1 =
cxnxn−1 + dxn + exn−1 + f

xn + a
, n ∈ ℕ0, (2.44)

where
a = A

B
, c = −C

B
, d = −D

B
, e = − E

B
, f = − F

B
. (2.45)

Equation (2.45) also seems not to be solvable in closed form for all values of the parameters a, c, d, e, f .
Hence, we present some su�cient conditions which guarantee its solvability, and consequently the solvabil-
ity of the corresponding equation in the class (2.43).

Equation (2.44) is equivalent to the equation

xn+1 + a =
cxnxn−1 + (d + a)xn + exn−1 + f + a2

xn + a
, n ∈ ℕ0. (2.46)
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First, assume that c > 0. Then, (2.46) can be written as

xn+1 + a =
√cxn−1(√cxn + e

√c ) +
d+a
√c (√cxn +

√c(f+a2)
d+a )

xn + a
, n ∈ ℕ0.

Now, assume that

e = c(f + a
2)

d + a
= d + a. (2.47)

Under the conditions (2.47), we have that the sequence

un =
xn+1 + a

√cxn + e
√c

, n ≥ −1,

satisfies the relation
un+1 =

1
un

from which it follows that (un)n≥−1 is two-periodic. Hence, we have that
x2n+i + a

√cx2n−1+i + e
√c
=

xi + a
√cxi−1 + e

√c

for n ∈ ℕ0 and i ∈ {0, 1}, that is,

x2n =
x0 + a

x−1 + f+a
2

d+a

x2n−1 +
x0 + a

x−1 + f+a
2

d+a

f + a2

d + a
− a, (2.48)

x2n+1 =
x1 + a
x0 + f+a

2

d+a

x2n +
x1 + a
x0 + f+a

2

d+a

f + a2

d + a
− a (2.49)

for n ∈ ℕ0.
From (2.48) and (2.49) we obtain

x2n =
x0 + a

x−1 + f+a
2

d+a

x1 + a
x0 + f+a

2

d+a

x2n−2 +
x0 + a

x−1 + f+a
2

d+a

(
x1 + a
x0 + f+a

2

d+a

f + a2

d + a
− a) + x0 + a

x−1 + f+a
2

d+a

f + a2

d + a
− a, (2.50)

x2n−1 =
x1 + a
x0 + f+a

2

d+a

x0 + a
x−1 + f+a

2

d+a

x2n−3 +
x1 + a
x0 + f+a

2

d+a

(
x0 + a

x−1 + f+a
2

d+a

f + a2

d + a
− a) + x1 + a

x0 + f+a
2

d+a

f + a2

d + a
− a (2.51)

for n ∈ ℕ.
This means that the sequences (x2n)n∈ℕ0 and (x2n−1)n∈ℕ0 are solutions of the linear first-order di�er-

ence equations

zn =
x0 + a

x−1 + f+a
2

d+a

x1 + a
x0 + f+a

2

d+a

zn−1 +
x0 + a

x−1 + f+a
2

d+a

(
x1 + a
x0 + f+a

2

d+a

f + a2

d + a
− a) + x0 + a

x−1 + f+a
2

d+a

f + a2

d + a
− a, (2.52)

un =
x1 + a
x0 + f+a

2

d+a

x0 + a
x−1 + f+a

2

d+a

un−1 +
x1 + a
x0 + f+a

2

d+a

(
x0 + a

x−1 + f+a
2

d+a

f + a2

d + a
− a) + x1 + a

x0 + f+a
2

d+a

f + a2

d + a
− a (2.53)

for n ∈ ℕ, respectively.
From (2.52) and (2.53), by using (1.3), (2.44) with n = 0, and (2.45), we easily obtain formulas for the

general solution of (2.43) in this case.
Now, assume that c < 0. Then, (2.46) can be written as

xn+1 + a = −
√−cxn−1(√−cxn − e

√−c ) −
d+a
√−c (√−cxn +

√−c(f+a2)
d+a )

xn + a
, n ∈ ℕ0.

Assume that the conditions in (2.47) hold. Then, we have that the sequence

vn =
xn + a

√−cxn−1 − e
√−c

, n ≥ −1,
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satisfies the relation
vn+1 = −

1
vn

, n ≥ −1,

from which it follows that it is two-periodic. Hence, we have that
x2n+i + a

√−cx2n−1+i − e
√−c
=

xi + a
√−cxi−1 − e

√−c
, n ∈ ℕ0, i ∈ {0, 1},

from which it follows that (2.50) and (2.51) hold, and consequently that the sequences (x2n)n∈ℕ0 and
(x2n−1)n∈ℕ0 are solutions of (2.52) and (2.53), respectively. Hence, again from (2.52) and (2.53), by using
(1.3), (2.44) with n = 0, and (2.45), we easily obtain formulas for the general solution of (2.43) in this case.

Now, we present another subclass of (2.43) which can be solved in closed form. Equation (2.44) is also
equivalent to

xn+1 + g =
cxnxn−1 + (d + g)xn + exn−1 + f + ag

xn + a
, n ∈ ℕ0,

which can be written in the form

xn+1 + g = c
xn(xn−1 + d+gc ) + ec (xn−1 +

f+ag
e )

xn + a
, n ∈ ℕ0. (2.54)

Now, assume that the conditions

a = e
c
, d + g

c
=
f + ag
e
= g (2.55)

hold. Then, if (xn)n≥−1 is a well-defined solution to (2.54), it can be written in the form

xn+1 +
d

c − 1 = c(xn−1 +
d

c − 1), n ∈ ℕ0,

from which it easily follows that

x2m+i = cm(xi +
d

c − 1) −
d

c − 1 , m ∈ ℕ0, i ∈ {−1, 0},

are formulas for the general solution of (2.44) in this case. From this, along with (2.45), it follows that

x2m+i = (−
C
B)

m
(xi +

D
C + B)

−
D

C + B
, m ∈ ℕ0, i ∈ {−1, 0},

is the general solution to equation (2.43).

Remark 2.5. Note that from (2.55) it follows that cmust not be equal to 1, that is, C ̸= −B, which implies that
the quantity d/(c − 1), that is, D/(C + B), is defined.

3 Solvable subclasses of equation (1.1) for the case G ≠ 0
Here, we present several solvable subclasses of the di�erence equation (1.1) for the case G ̸= 0.

3.1 The case A = B = C = D = E = 0 for G ≠ 0 ≠ F

In this case, (1.1) is equivalent to the equation

xn+1xn−1 = −
F
G
, n ∈ ℕ0. (3.1)

Using (3.1) twice, it follows that

xn =
− FG
xn−2
= xn−4, n ≥ 3,

which means that (xn)n≥−1 is four-periodic, that is,

x2n−1 = x−1, x2n = x0, x2n+1 = −
F

Gx−1
, x2n+2 = −

F
Gx0

, n ∈ ℕ0.
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3.2 The case A = B = C = E = F = 0 for D ≠ 0 ≠ G

In this case, every well-defined solution of (1.1) satisfies the equation

xn+1 = −
Dxn
Gxn−1

, n ∈ ℕ0. (3.2)

By using the change of variables
xn = −

D
G
yn , (3.3)

we transform (3.2) into the equation
yn+1 =

yn
yn−1

, n ∈ ℕ0. (3.4)

It is easy to see that a solution of (3.4) is well defined if and only if y−1 ̸= 0 ̸= y0, which is equivalent to yn ̸= 0
for every n ≥ −1.

To find a formula for the general solution of (3.4), we will use the method described in Section 2.15,
that is, in the case B = D = E = F = 0 for A ̸= 0 ̸= C. Let

a1 = 1, b1 = −1 (3.5)

and rewrite (3.4) into the form
yn+1 = ya1n y

b1
n−1, n ∈ ℕ0. (3.6)

Using (3.4) in (3.6), we get

yn+1 = (yn−1y−1n−2)
a1yb1n−1 = y

a1+b1
n−1 y−a1n−2 = y

a2
n−1y

b2
n−2, n ∈ ℕ,

where
a2 := a1 + b1, b2 := −a1.

Assume that for some k ≥ 2 we have

yn+1 = yakn−k+1y
bk
n−k , n ≥ k − 1, (3.7)

where
ak = ak−1 + bk−1, bk = −ak−1 (3.8)

and (3.5) holds.
By using (3.4) into (3.7) we have that

yn+1 = (yn−ky−1n−k−1)
ak ybkn−k = y

ak+bk
n−k y−akn−k−1 = y

ak+1
n−k y

bk+1
n−k−1, 2 ≤ k ≤ n,

where the sequences (ak)k∈ℕ and (bk)k∈ℕ satisfy the system of di�erence equations

ak+1 = ak + bk , bk+1 = −ak , k ∈ ℕ, (3.9)

with the initial conditions in (3.5). Hence, we have proved by induction that (3.7) holds for every k ∈ ℕ and
n ≥ k − 1, where the sequences (ak)k∈ℕ and (bk)k∈ℕ satisfy (3.8) with the initial conditions in (3.5).

From (3.9) it follows that
ak+1 = ak − ak−1, k ≥ 2,

with a1 = 1 and a2 = 0, while bk = −ak−1, k ≥ 2, with b1 = −1. Hence, by using formula (2.18) (with shifted
indices) we obtain that

ak = −
λk−21 − λ

k−2
2

i√3
, k ∈ ℕ,

where
λ1,2 =

1 ± i√3
2 ,
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from which it follows that

ak =
2
√3

sin (k + 1)π3 , bk = −
2
√3

sin kπ3 , k ∈ ℕ,

and, consequently,

yn = yan0 y
−an−1
−1 = y

2
√3 sin (n+1)π

3
0 y

− 2
√3 sin nπ

3
−1 , n ≥ −1, (3.10)

where we naturally regard that a0 = a1 − a2 = 1, a−1 = a0 − a1 = 0 and a−2 = a−1 − a0 = −1.
From this and (3.3) it follows that

xn = −
D
G
yn = (−

G
D)

an−an−1−1
xan0 x
−an−1
−1 = (−

G
D)

an+1−1
xan0 x
−an−1
−1 , n ≥ −1,

which is the general solution to (3.2).

Remark 3.1. It is awell-known fact that (3.4) is six-periodic. It is one of the standard examples for periodicity.
However, (3.10) is less known, although we expect that it can be found somewhere in the literature.

3.3 The case B = C = D = 0 for G ≠ 0

In this case, every well-defined solution to (1.1) satisfies the equation

xn+1 = −
Exn−1 + F
Gxn−1 + A

, n ∈ ℕ0. (3.11)

From (3.11) we see that the sequences (x2m+i)m∈ℕ0 , i ∈ {−1, 0}, are respectively the solutions of the bilinear
di�erence equation

zm+1 = −
Ezm + F
Gzm + A

, m ∈ ℕ0, (3.12)

with the initial conditions z0 = x−1 and z0 = x0. Since (3.12) is solvable (see Section 2.13), we can find
formulas for (x2m+i)m∈ℕ0 , i ∈ {−1, 0}, in closed form. We omit the details.

3.4 The case A = D = E = F = 0 for B, C, G ∈ ℝ \ {0}

In this case, every well-defined solution to (1.1) satisfies the equation

xn+1 = −
Cxnxn−1

Bxn + Gxn−1
, n ∈ ℕ0. (3.13)

It is easy to see that for a well-defined solution (xn)n≥−1 of (3.13), the condition x−1 ̸= 0 ̸= x0 is equivalent to
xn ̸= 0 for every n ≥ −1. Hence, we may use the change of variables

xn =
1
yn

, (3.14)

which transforms (3.13) into
yn+1 +

G
C
yn +

B
C
yn−1 = 0, n ∈ ℕ0,

which is a second-order di�erence equation with constant coe�cients. Hence, we can apply (2.18) with

λ1,2 =
− GC ± √

G2−4BC
C2

2 ,

which along with (3.14) gives

xn = x−1x0(
λ2x0 − x−1
λ2 − λ1

λn+11 +
x−1 − λ1x0
λ2 − λ1

λn+12 )
−1
, n ≥ −1, (3.15)

when λ1 ̸= λ2, while if λ1 = λ2, by using (2.19), we get that the solution is

xn = x−1x0((x−1(n + 1) − nλ1x0)λn1)
−1, n ≥ −1. (3.16)
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Remark 3.2. From (3.15) we see that, in the case G2 ̸= 4BC, a solution of (3.13) is well defined if and only if
x0 ̸= 0 ̸= x−1 and

λ2x0 − x−1
λ2 − λ1

λn+11 +
x−1 − λ1x0
λ2 − λ1

λn+12 ̸= 0

for every n ∈ ℕ, while from (3.16) we see that, in the case G2 = 4BC, a solution of equation (3.13) is well
defined if and only if x0 ̸= 0 ̸= x−1 and

x−1(n + 1) ̸= nλ1x0

for every n ∈ ℕ.

3.5 The case B = 0 for G ≠ 0 ≠ C

In this case, every well-defined solution to (1.1) satisfies the equation

xn+1 = −
Cxnxn−1 + Dxn + Exn−1 + F

Gxn−1 + A
, n ∈ ℕ0. (3.17)

Equation (3.17) is equivalent to

xn+1 + h =
−Cxnxn−1 − Dxn + (hG − E)xn−1 + Ah − F

Gxn−1 + A
, n ∈ ℕ0,

which can be written in the form

xn+1 + h =
− CG xn(Gxn−1 +

GD
C ) + (hG−E)G (Gxn−1 + G(Ah−F)hG−E )
Gxn−1 + A

, n ∈ ℕ0. (3.18)

If we assume that
A = GD

C
=
G(Ah − F)
hG − E

,

then, if (xn)n≥−1 is a well-defined solution to (3.18), it can be written in the form

xn+1 = −
C
G
xn −

E
G

from which it follows that
xn = (−

C
G)

n
(x0 +

E
C + G) −

E
C + G

.
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