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1 Introduction
In the studies of electrorheological fluid, nonlinear elasticity and image restoration in practical applications,
the classical Lebesgue and Sobolev spaces are not applicable, see [1, 5, 18]. Problems with variable expo-
nential growth conditions are inhomogeneous and nonlinear. So we need to study the problems based on
the theory of variable exponent Lebesgue and Sobolev spaces. Since Kováčik and Rákosník first studied the
Lp(x) spaces andWk,p(x) spaces in [12], many results have been obtained concerning these kinds of variable
exponent spaces, see examples in [4, 7, 8, 10, 11, 16, 17, 21].

This paper is devoted to the study of conditions guaranteeing the removability of isolated singularities
for solutions of the elliptic equations with nonstandard growth

−
n
∑
j=1

∂
∂xj

[aj(x, u, ∇u)] + g(x, u) = 0. (1.1)

We assume that for j = 1, 2, . . . , n, the functions aj(x, ξ, η) are measurable and satisfy the following condi-
tions: There exists a number μ ∈ (0, 1] such that

n
∑
j=1
aj(x, ξ, η)ηj ≥ μ|η|p(x), (1.2)

|aj(x, ξ, η)| ≤ μ−1|η|p(x)−1, (1.3)

aj(x, ξ, −η) = −aj(x, ξ, η) (1.4)

for almost all x ∈ Ω, ξ ∈ ℝ, η ∈ ℝn, where p(x) is continuous on Ω and satisfies 1 < p− ≤ p(x) ≤ p+ < n with

p− = inf
x∈Ω

p(x) and p+ = sup
x∈Ω

p(x).

In addition, it is assumed that the function g(x, ξ)with the conditions of measurability, local integrability in
x ∈ Ω and local boundedness in ξ ∈ ℝ satisfies the following condition: There exists a function q(x) ∈ C(Ω)
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and q(x) ≫ p(x) − 1 such that for almost all x ∈ Ω, ξ ∈ ℝ,

g(x, ξ) sgn ξ ≥ |ξ|q(x), (1.5)

where Ω ⊂ ℝn is an open bounded domainwith smooth boundary. Here by q(x) ≫ p(x) − 1we denote the fact
that infx∈Ω(q(x) − p(x) + 1) > 0.

The removability of singularities for the equations with standard growth has been considered by many
authors. Serrin [19] considered the conditions of removability of an isolated singular point for equation (1.1)
in the case of g(x, u) ≡ 0 and the condition for this case is

u(x) = o(|x − x0|
p−n
p−1 ), 1 < p < n.

Brezis and Veron [2] studied an equation of the form (1.1) with a Laplace operator in the principal part. They
proved the removability of isolated singularities for solutions under condition (1.5) with q ≥ n

n−2 and n ≥ 3.
For equationswithweighted functions v, w,Mamedov andHarman [15] proved that an isolated singular point
x0 is removable for solutions of equation (1.1) if the condition of weighted functions

v(B(x0, ε))(
w(B(x0, ε))
εpv(B(x0, ε))

)
q

q−p+1
= o(1), ε → 0

with p > 1 and q > p − 1 is fulfilled. The removability of singularities for solutions of elliptic equations with
absorption term was studied in [13, 20]. Skrypnik [20] considered general nonlinear equations and proved
that if the conditions

1 < p < n, q ≥ n(p − 1)
n − p

are fulfilled, then the singular point is removable. Liskevich and Skrypnik [13] studied the equation (1.1)
with a weighted function x−α in the subordinate part g(x, u), and proved that the singular point is removable
if the conditions

q ≥ (p − 1)(n − α)
n − p

, α < p, 1 < p < n

are fulfilled.
Recently, there have been a few papers on the study of the removability of singularities for the equa-

tions with nonstandard growth. Lukkari [14] investigated the removability of a compact set for the equation
−div(|Du|p(x)−2Du) = 0. For the anisotropic elliptic equation, the removability of a compact set was proved
by Cianci [6]. Cataldo and Cianci [3] considered the conditions of removability of an isolated singular point
for equation (1.1) in the case of g(x, u) = |u|q−2u.

In this paper, we prove that an isolated singular point x0 is removable for solutions of equation (1.1) if
the condition

1 < p(x)q(x)
q(x) − p(x) + 1 ≪ n (1.6)

is fulfilled for almost all x ∈ Ω.

2 Preliminaries
We first recall some facts on spaces Lp(x) andWk,p(x). For the details see [10, 12].

Let P(Ω) be the set of all Lebesgue measurable functions p : Ω → [1,∞], we denote

ρp(x)(u) = ∫
Ω\Ω∞

|u|p(x) dx + sup
x∈Ω∞

|u(x)|,

where Ω∞ = {x ∈ Ω : p(x) = ∞}.
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The variable exponent Lebesgue space Lp(x)(Ω) is the class of all functions u such that ρp(x)(tu) < ∞, for
some t > 0. Lp(x)(Ω) is a Banach space equipped with the norm

‖u‖Lp(x) = inf{λ > 0 : ρp(x)(
u
λ )
≤ 1}.

For any p ∈ P(Ω), we define the conjugate function p�(x) as

p�(x) =
{{{
{{{
{

∞, x ∈ Ω1 = {x ∈ Ω : p(x) = 1},
1, x ∈ Ω∞,
p(x)
p(x)−1 , x ∈ Ω \ (Ω1 ∪ Ω∞).

Theorem 2.1. Let p ∈ P(Ω). For any u ∈ Lp(x)(Ω) and v ∈ Lp�(x)(Ω),

∫
Ω

|uv| dx ≤ 2‖u‖Lp(x)‖v‖Lp�(x) .

Theorem 2.2. Let p ∈ P(Ω) with p+ < ∞. For any u ∈ Lp(x)(Ω), we have
(1) if ‖u‖Lp(x) ≥ 1, then ‖u‖p

−

Lp(x) ≤ ∫Ω |u|p(x) dx ≤ ‖u‖p
+

Lp(x) ,

(2) if ‖u‖Lp(x) < 1, then ‖u‖p
+

Lp(x) ≤ ∫Ω |u|p(x) dx ≤ ‖u‖p
−

Lp(x) .

The variable exponent Sobolev spaceW1,p(x)(Ω) is the class of all functions u ∈ Lp(x)(Ω)which have the prop-
erty |∇u| ∈ Lp(x)(Ω). The spaceW1,p(x)(Ω) is a Banach space equipped with the norm

‖u‖W1,p(x) = ‖u‖Lp(x) + ‖∇u‖Lp(x) .

We say that the function u(x) belongs to the spaceW1,p(x)
loc (Ω) if u(x) belongs toW1,p(x)(G) in any subdomain

G, G ⊂ Ω.

Theorem 2.3. For any u ∈ W1,p(x)(Ω), we have
(1) if ‖u‖W1,p(x) ≥ 1, then ‖u‖p

−

W1,p(x) ≤ ∫Ω(|∇u|
p(x) + |u|p(x)) dx ≤ ‖u‖p

+

W1,p(x) ,

(2) if ‖u‖W1,p(x) < 1, then ‖u‖p
+

W1,p(x) ≤ ∫Ω(|∇u|
p(x) + |u|p(x)) dx ≤ ‖u‖p

−

W1,p(x) .

FromZhikov [21, 22], we know that smooth functions are not dense inW1,p(x)(Ω)without additional assump-
tions on the exponent p(x). To study the Lavrentiev phenomenon, he considered the following log-Hölder
continuous condition:

|p(x) − p(y)| ≤ C
−log(|x − y|) (2.1)

for all x, y ∈ Ω such that |x − y| ≤ 1
2 . If the log-Hölder continuous condition holds, then smooth functions

are dense in W1,p(x)(Ω) and we can define the Sobolev spaces with zero boundary values W1,p(x)
0 (Ω), as the

closure of C∞0 (Ω) with the norm of ‖ ⋅ ‖W1,p(x)(Ω).

Theorem 2.4. If u ∈ W1,p
0 (B(a, R)), 1 ≤ p < n, then for any 1 ≤ q ≤ p∗, the inequality

( ∫
B(a,R)

|u|q dx)
1
q

≤ C(n, p)R1+
n
q −

n
p( ∫

B(a,R)

|Du|p dx)
1
p

(2.2)

is valid, where B(a, R) is a ball.

Lemma 2.5. Let Ω be an open bounded subset of ℝn, E be a measurable subset of Ω and p−E = infx∈E p(x),
p−Ω = infx∈Ω p(x), then all nonnegative measurable functions f and g defined on E satisfy the inequality

∫
E

fgp
−
Ω dx ≤ ∫

E

f dx + ∫
E

fgp(x) dx.
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Proof. Since p(x)
p(x)−p−Ω
> 1, using Young’s inequality we have

∫
E

fgp
−
Ω dx = ∫

E

f
p(x)−p−Ω
p(x) [f

p−Ω
p(x) gp

−
Ω] dx ≤ ∫

E

f dx + ∫
E

fgp(x) dx.

Consider a solution u(x) of equation (1.1)with an isolated singularity. Assume that x0 ∈ Ω and x0 is a singular
point of the solution u(x). We say that u(x) is a solution of equation (1.1) in Ω \ {x0} if u ∈ W1,p(x)

loc (Ω \ {x0})
and for any test functionφ ∈ W1,p(x)

loc (Ω \ {x0}) ∩ L∞loc(Ω \ {x0})with compact support in Ω \ {x0}, the following
equality is true:

∫
Ω

{
n
∑
j=1
aj(x, u, ∇u)

∂φ
∂xj
+ g(x, u)φ} dx = 0. (2.3)

We say that the solution u(x) of equation (1.1) has a removable singularity at the point x0 if the func-
tion u(x) is a solution in Ω \ {x0} and u ∈ W1,p(x)

loc (Ω \ {x0}) ∩ L∞loc(Ω) implies that it belongs to the space
W1,p(x)(Ω) ∩ L∞(Ω) and equality (2.3) with any test function φ ∈ W1,p(x)

0 (Ω) ∩ L∞(Ω) is fulfilled for it.
In the proof of the main theorem, we use the following lemma.

Lemma 2.6 ([9]). Let 0 < θ < 1, σ > 0, ξ(h) be a nonnegative function on the interval [12 , 1], and let

ξ(k) ≤ A(h − k)−σ(ξ(h))θ , 1
2 ≤ k < h ≤ 1.

Then, there exists Cσ,θ > 0 such that
ξ(12) ≤ Cσ,θA

1
1−θ .

3 The behavior of solutions near the isolated singular points
In this section we state and prove the following theorems.

Theorem 3.1. Let conditions (1.2)–(1.5) and (2.1) be fulfilled. There exists a constant 0 < δ < 1 such that for
u ∈ W1,p(x)(B(a, r)) ∩ L∞(B(a, r)) which is a solution of equation (1.1) in B(a, r) with r < δ, B(a, r) ⊂ Ω, the
following inequality is valid:

sup
x∈B(a, r2 )

|u(x)| ≤ Cr−τ ,

where τ = τ(p−δ , p
+
δ , q
−
δ , ε) >

p+δ
q−δ−p

+
δ+1
> 0, ε ∈ (0, q

−
δ−p

+
δ+1

q−δ−p
−
δ+1

) is a constant and C = C(n, μ, p−δ , p
+
δ , q
+
δ , q
−
δ ). More-

over,

p+δ = sup
y∈B(a,δ)∩Ω

p(y), p−δ = inf
y∈B(a,δ)∩Ω

p(y), q+δ = sup
y∈B(a,δ)∩Ω

q(y), q−δ = inf
y∈B(a,δ)∩Ω

q(y).

Proof. As q(x), p(x) are continuous on Ω, for any ε1 ∈ (0, 1) and any x ∈ Ω, there exists δ > 0 such that
|q(x) − q(y)| < ε1 and |p(x) − p(y)| < ε1 whenever |x − y| < δ. Take x ∈ Ω. For any y ∈ Bδ(x) ∩ Ω, we have

p(y) − 1 < p(x) − 1 + ε1 and q(y) > q(x) − ε1.

As q(x) ≫ p(x) − 1, take ε1 = 1
4 infx∈Ω(q(x) − p(x) + 1). Then,

q(x) − ε1 − (p(x) − 1 + ε1) ≥
1
2 inf
x∈Ω

(q(x) − p(x) + 1) > 0

and therefore
p(y) − 1 < p(x) − 1 + ε1 < q(x) − ε1 < q(y).
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Furthermore,
p+δ − 1 = sup

y∈B(x,δ)∩Ω
(p(y) − 1) < q−δ = inf

y∈B(x,δ)∩Ω
q(y)

and since a ∈ Ω, we have
p+δ − 1 < q

−
δ . (3.1)

Let u = FW, where F > 1 is a positive number that will be chosen later. Let Ω� = {x ∈ B(a, r) : W(x) > 0},
Ω�� = B(a, r) \ Ω�. Assume that W(x�) > 0 at some point x� ∈ B(a, r2 ) ∩ Ω

� (if W(x) ≤ 0 at some point B(a, r2 ),
then we will consider, in addition, the function −W(x) in B(a, r2 ) ∩ Ω

�). Take

Mt = sup{W(x) : x ∈ B(a, tr) ∩ Ω�}, 1
2 ≤ t ≤ 1.

Let 1
2 ≤ s < t ≤ 1, z = W −Mtξ and

zk = (W −Mtξ − k)+ = max(W −Mtξ − k, 0) in the ball B(a, tr),

where 0 ≤ k ≤ supΩ� z. The function ξ ∈ Lip(B(a, r)) satisfies: ξ ≡ 0 for x ∈ B(a, sr), ξ ≡ 1 for x ∉ B(a, s+t2 r),

0 ≤ ξ(x) ≤ 1 and |∇ξ| ≤ C
r(t − s)

for x ∈ B(a, r),

where C is a constant. Denote Ωk = {x ∈ B(a, tr) : zk > 0}. It is obvious that zk ∈ W1,p(x)
0 (B(a, tr)). It is as-

sumed that M 1
2
≥ 1. The conclusion is obviously right for the case of 0 < M 1

2
< 1. Let φ = zk in (2.3), we

obtain
n
∑
j=1

∫
B(a,tr)

aj(x, u, ∇u)
∂zk
∂xj

dx + ∫
B(a,tr)

g(x, u)zk dx = 0.

Then,
n
∑
j=1

∫
Ωk

aj(x, FW, F∇W)(
∂W
∂xj
−Mt

∂ξ
∂xj

) dx + ∫
Ωk

|FW|q(x)zk dx ≤ 0.

By virtue of conditions (1.2)–(1.5), we have

μ ∫
Ωk

Fp(x)−1|∇W|p(x) dx + ∫
Ωk

|F|q(x)|k|q(x)zk dx ≤
CMt

μr(t − s) ∫
Ωk

|F|p(x)−1|∇W|p(x)−1 dx (3.2)

and using Young’s inequality in the right-hand side of (3.2), it does not exceed

C(μ, ε2, n) ∫
Ωk

Mp(x)
t

rp(x)(t − s)p(x)
|F|p(x)−1 dx + Cε2

μ ∫
Ωk

|∇W|p(x)|F|p(x)−1 dx.

Take ε2 = μ2
2C . Then, from inequality (3.2) we have

μ
2 ∫
Ωk

Fp(x)−1|∇W|p(x) dx + ∫
Ωk

|F|q(x)|k|q(x)zk dx ≤ C(μ, n) ∫
Ωk

Mp(x)
t

rp(x)(t − s)p(x)
|F|p(x)−1 dx.

Note that ∇zk = ∇W −Mt∇ξ in Ωk , therefore

μ
2 ∫
Ωk

Fp(x)−1( 1
2p(x)−1

|∇zk|p(x) −M
p(x)
t |∇ξ|p(x)) dx + ∫

Ωk

|F|q(x)|k|q(x)zk dx ≤ C(μ, n) ∫
Ωk

Mp(x)
t

rp(x)(t − s)p(x)
|F|p(x)−1 dx.

By Lemma 2.5, we have

∫
Ωk

Fp(x)−1|∇zk|p
−
δ dx ≤ ∫

Ωk

Fp(x)−1 dx + ∫
Ωk

Fp(x)−1|∇zk|p(x) dx
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and therefore

μ
2p+δ

∫
Ωk

Fp(x)−1(|∇zk|p
−
δ − 1) dx + ∫

Ωk

|F|q(x)|k|q(x)zk dx ≤ C(μ, n) ∫
Ωk

Mp(x)
t

rp(x)(t − s)p(x)
|F|p(x)−1 dx. (3.3)

Since zk ∈ W1,p(x)
0 (B(a, tr)), so zk ∈ W

1,p−δ
0 (B(a, tr)). By (2.2), we have

( ∫
B(a,tr)

|zk|
np−δ
n−1 dx)

n−1
np−δ ≤ C(n, p−δ )r

p−δ −1

p−δ ( ∫
B(a,tr)

|∇zk|p
−
δ dx)

1
p−δ .

Using Hölder’s inequality, we get

∫
B(a,tr)

zk dx ≤ 2[ ∫
B(a,tr)

|zk|
np−δ
n−1 dx]

n−1
np−δ |Ωk|

np−δ −n+1

np−δ ,

where |Ωk| is the Lebesgue measure of Ωk.
From (3.3), we have

μ
2p+δ

Fp
−
δ−1[C|Ωk|

−
np−δ −n+1

np−δ r
−
p−δ −1

p−δ ∫
B(a,tr)

zk dx]
p−δ
+ Fq

−
δ min{kq

−
δ , kq

+
δ } ∫
B(a,tr)

zk dx

≤ C(μ, n)Fp
+
δ−1 ∫

Ωk

Mp(x)
t

rp(x)(t − s)p(x)
dx + μ

2p+δ
Fp

+
δ−1|Ωk|.

Take ε ∈ (0, q
−
δ−p

+
δ+1

q−δ−p
−
δ+1

). Then,

εμ
2p+δ

Fp
−
δ−1[C ∫

B(a,tr)

zk dx]
p−δ
r1−p

−
δ + (1 − ε)Fq

−
δ min{kq

−
δ , kq

+
δ }|Ωk|

np−δ −n+1
n ∫

B(a,tr)

zk dx

≤ C(μ, n)Fp
+
δ−1|Ωk|

np−δ −n+1
n ∫

Ωk

Mp(x)
t

rp(x)(t − s)p(x)
dx + μ

2p+δ
Fp

+
δ−1|Ωk|1+

np−δ −n+1
n . (3.4)

Applying Young’s inequality aεb1−ε ≤ εa + (1 − ε)b in the left-hand side of (3.4), we obtain

min{kq
−
δ (1−ε), kq

+
δ (1−ε)}Fq

−
δ (1−ε)+(p

−
δ−1)εr(1−p

−
δ )ε[ ∫

B(a,tr)

zk dx]
p−δ ε+1−ε

≤ CFp
+
δ−1[|Ωk|

np−δ −n+1
n ε ∫

Ωk

Mp(x)
t

rp(x)(t − s)p(x)
dx + |Ωk|

np−δ −n+1
n ε+1]

and

min{kq
−
δ (1−ε), kq

+
δ (1−ε)}Fq

−
δ−p

+
δ+1−(q

−
δ−p

−
δ+1)ε

≤ C[ ∫
B(a,tr)

zk dx]
−(p−δ ε+1−ε)

r(p
−
δ−1)ε[

Mp+δ
t

rp
+
δ (t − s)p

+
δ
+ 1]|Ωk|

np−δ −n+1
n ε+1, (3.5)

where C = C(n, μ, p−δ , p
+
δ ).

Denote α = np
−
δ−n+1
n ε + 1. Integrate (3.5) with respect to k and take the equality d

dk (∫Ωk zkdx) = −|Ωk| into
account, then we have

F
q−δ −p

+
δ +1−(q

−
δ −p

−
δ +1)ε

α

supΩ� z

∫
0

min{k
q−δ (1−ε)

α , k
q+δ (1−ε)

α } dk ≤ C[
Mp+δ
t

rp
+
δ (t − s)p

+
δ
+ 1]

1
α

r
(p−δ −1)ε

α

supΩ� z

∫
0

[ ∫
Ωk

zk dx]
−
p−δ ε+1−ε

α

|Ωk| dk.
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Since 1 − p
−
δ ε+1−ε
α = 1 −

np−δ ε+n−nε
np−δ ε+n−nε+ε

> 0, supΩ� z > 1, so

(sup
Ω�
z)

q−δ (1−ε)
α +1F

q−δ −p
+
δ +1−(q

−
δ −p

−
δ +1)ε

α ≤ C[ ∫
Ω0

z0 dx]
1−

p−δ ε+1−ε
α

[
Mp+δ
t

rp
+
δ (t − s)p

+
δ
+ 1]

1
α

r
(p−δ −1)ε

α .

Apply the estimate ∫Ω0
z0 dx ≤ Mt|B(a, r)| and note that supΩ� z ≥ supΩ�∩B(a,sr) z = Ms, then we have

M
q−δ (1−ε)

α +1
s F

q−δ −p
+
δ +1−(q

−
δ −p

−
δ +1)ε

α ≤ CM1−
p−δ ε+1−ε

α
t [

Mp+δ
t

rp
+
δ (t − s)p

+
δ
]

1
α

r
(p−δ −1)ε

α rn(1−
p−δ ε+1−ε

α ),

where C = C(n, μ, p−δ , p
+
δ , q
+
δ ).

Choosing

F
q−δ −p

+
δ +1−(q

−
δ −p

−
δ +1)ε

α = r
(p−δ −1)ε

α rn(1−
p−δ ε+1−ε

α )r−
p+δ
α ,

then F = r−τ, where

τ = −[
(p−δ − 1)ε

α
+ n(1 −

p−δ ε + 1 − ε
α ) −

p+δ
α ][

q−δ − p
+
δ + 1 − (q

−
δ − p
−
δ + 1)ε

α ]
−1

= −
p−δ ε − p

+
δ

q−δ − p
+
δ + 1 − (q

−
δ − p
−
δ + 1)ε

>
p+δ

q−δ − p
+
δ + 1
> 0

when ε ∈ (0, q
−
δ−p

+
δ+1

q−δ−p
−
δ+1

).
On the other hand,

Ms ≤ C(n, μ, p−δ , p
+
δ , q
+
δ )

Mθ
t

(t − s)σ
,

where

θ = [(1 −
p−δ ε + 1 − ε

α ) +
p+δ
α ][

q−δ (1 − ε)
α
+ 1]
−1
=
α − (p−δ − 1)ε + p

+
δ − 1

α − q−δ ε + q
−
δ
< 1,

σ =
p+δ
α [

q−δ (1 − ε)
α
+ 1]
−1
> 0.

By virtue of Lemma 2.6, we derive M 1
2
≤ C(n, μ, p−δ , p

+
δ , q
+
δ , q
−
δ ).

From the substitution u = FW we obtain

sup{u(x) : x ∈ B(a, r2) ∩ Ω
�} = FM 1

2
≤ CF. (3.6)

If supB(a, r2 )∩Ω� W ≤ 0, then there exists x�� ∈ B(a, r2 ) ∩ Ω
�� such that −W(x��) > 0, in the same way, we can

obtain
sup{−u(x) : x ∈ B(a, r2) ∩ Ω

��} = FM 1
2
≤ CF. (3.7)

Combining (3.6) and (3.7), we can give the estimate

sup
B(a, r2 )

|u(x)| ≤ Cr−τ ,

where τ = τ(p−δ , p
+
δ , q
−
δ , ε) >

p+δ
q−δ−p

+
δ+1
> 0, ε ∈ (0, q

−
δ−p

+
δ+1

q−δ−p
−
δ+1

) is a constant and C = C(n, μ, p−δ , p
+
δ , q
+
δ , q
−
δ ).

From Theorem 3.1, we can easily obtained the following theorem.

Theorem 3.2. Let conditions (1.2)–(1.5) and (2.1) be fulfilled. Let u ∈ W1,p(x)
loc (Ω \ {x0}) ∩ L∞loc(Ω \ {x0}) be a

solution of equation (1.1) in Ω \ {x0}, then for any 0 < |x − x0| = r < min{12 dist(x0, ∂Ω), δ2 }, the following in-
equality is valid:

|u(x)| ≤ Cr−τ� , (3.8)
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where

τ� = τ�(p−x0 ,δ , p
+
x0 ,δ , q

−
x0 ,δ , ε

�) >
p+x0 ,δ

q−x0 ,δ − p
+
x0δ + 1
> 0,

ε� ∈ (0,
q−x0,δ−p

+
x0,δ
+1

q−x0,δ−p
−
x0,δ
+1 ) is a constant and C = C(n, μ, p−x0 ,δ , p

+
x0 ,δ , q

+
x0 ,δ , q

−
x0 ,δ). Moreover,

p+x0 ,δ = sup
y∈B(x0 ,δ)∩Ω

p(y), p−x0 ,δ = inf
y∈B(x0 ,δ)∩Ω

p(y), q+x0 ,δ = sup
y∈B(x0 ,δ)∩Ω

q(y), q−x0 ,δ = inf
y∈B(x0 ,δ)∩Ω

q(y).

4 The removability of isolated singular points
The following theorem is the main theorem in this paper.

Theorem 4.1. Let conditions (1.2)–(1.6) and (2.1) be fulfilled. Let u be a solution of equation (1.1) in Ω \ {x0}.
Then, the singularity of u(x) at the point x0 is removable.

Proof. We let R0 = min{12 dist(x0, ∂Ω), δ2 } and for 0 < r < R0 we denotem(r) = sup{|u(x)| : r ≤ |x − x0| ≤ R0}.
It is assumed that limr→0 m(r) = ∞, then there exists 0 < ρ < R0 such that m(ρ) > 1. For su�ciently small
values r ≤ min{ 1

e2 , R
2
0}, we define the function ψr(x) as follows:

ψr(x) ≡ 0 for |x − x0| < r,
ψr(x) ≡ 1 for |x − x0| > √r,

ψr(x) =
2

ln 1
r
ln |x − x0|

r
for r < |x − x0| < √r.

For r < |x − x0| < √r, we have
∂
∂xi

ψr(x) =
2

ln 1
r

∂
∂xi

ln |x − x0|
r
=

2(xi − x0i)
|x − x0|2 ln 1

r
,

!!!!!!!
∂
∂xi

ψr(x)
!!!!!!!
≤

2
|x − x0|

≤
2
r

and

|∇ψr(x)| =
2

|x − x0|2 ln 1
r
[

n
∑
i=1

(xi − x0i)2]
1
2
=

2
|x − x0| ln 1

r
.

We take the test function
φ(x) = ψã

r (x)[ln
u

m(ρ)]+
(4.1)

for any x ∈ Ωρ, where Ωρ = {x ∈ Ω : u(x) > m(ρ)}, ã = supx∈Ω
p(x)q(x)

q(x)−p(x)+1 is a constant and φ(x) ≡ 0 for x ∉ Ωρ.
Take G ⊂ Ω\{x0}. Since u ∈ W1,p(x)

loc (Ω\{x0}) ∩ L∞loc(Ω\{x0}), we have

∫
G

|φ(x)|p(x) dx = ∫
G∩Ωρ

|ψr(x)|ãp(x)(ln
u

m(ρ))
p(x)

dx ≤ ∫
G∩Ωρ

(
u

m(ρ))
p(x)

dx < ∞

and

∫
G

!!!!!!!
∂φ(x)
∂xj

!!!!!!!

p(x)
dx = ∫

G∩Ωρ

[ãψã−1
r

∂ψr(x)
∂xj

(ln u
m(ρ))
+ ψã

r
1
u
∂u
∂xj

]
p(x)

dx

≤ C ∫
G∩Ωρ

ãp(x)ψ(ã−1)p(x)
r

!!!!!!!
∂ψr(x)
∂xj

!!!!!!!

p(x)
(ln u

m(ρ))
p(x)
+ ψãp(x)

r
1
up(x)

!!!!!!!
∂u
∂xj

!!!!!!!

p(x)
dx

≤ C ∫
G∩Ωρ

ãp(x)(2r )
p(x)

(
u

m(ρ))
p(x)
+

1
(m(ρ))p(x)

!!!!!!!
∂u
∂xj

!!!!!!!

p(x)
dx < ∞.

Then, we obtain φ(x) ∈ W1,p(x)
loc (Ω\{x0}) ∩ L∞loc(Ω\{x0}) with compact support in Ω\{x0}.
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For some 0 < ρ < R0, let the domain Ωρ be nonempty. Testing the equality (2.3) by the test function φ,
we have

∫
Ωρ

n
∑
j=1
aj(x, u, ∇u)

∂u
∂xj

ψã
r
u
+ g(x, u)ψã

r (x) ln(
u

m(ρ))
dx + ∫

Ωρ

n
∑
j=1
aj(x, u, ∇u)ãψ

ã−1
r (x)∂ψr

∂xj
ln( u

m(ρ))
dx = 0.

By virtue of the conditions (1.2)–(1.5), we have

∫
Ωρ

μ |∇u|
p(x)

u
ψã
r (x) dx + ∫

Ωρ

uq(x)ψã
r (x) ln(

u
m(ρ))

dx ≤ nμ−1ã ∫
Ωρ

|∇u|p(x)−1|∇ψr|ψ
ã−1
r (x) ln( u

m(ρ))
dx.

As

nμ−1ã ∫
Ωρ

|∇u|p(x)−1|∇ψr|ψ
ã−1
r (x) ln( u

m(ρ))
dx

≤ C(n, μ, ã, ε3) ∫
Ωρ

up(x)−1ψã−p(x)
r |∇ψr|p(x)(ln

u
m(ρ))

p(x)
dx + nμ−1ãε3 ∫

Ωρ

ψã
r u−1|∇u|p(x) dx,

take ε3 = μ2
2nã. Then,

μ
2 ∫
Ωρ

|∇u|p(x)

u
ψã
r (x) dx + ∫

Ωρ

uq(x)ψã
r (x) ln(

u
m(ρ))

dx

≤ C(n, μ, ã) ∫
Ωρ

up(x)−1ψã−p(x)
r |∇ψr|p(x)(ln

u
m(ρ))

p(x)
dx.

Furthermore,

∫
Ωρ

up(x)−1ψã−p(x)
r |∇ψr|p(x)(ln

u
m(ρ))

p(x)
dx

≤ C(ε4) ∫
Ωρ

(ln u
m(ρ))

1+ (p(x)−1)q(x)q(x)−p(x)+1
|∇ψr|

p(x)q(x)
q(x)−p(x)+1 dx + ε4 ∫

Ωρ

ln( u
m(ρ))

uq(x)ψ
(ã−p(x))q(x)
p(x)−1

r dx.

Take ε4 = min{ 1
2C(n,μ,ã) ,

1
2 }. Since

(ã−p(x))q(x)
p(x)−1 > ã, ψr(x) ≤ 1 and ã < n, we have

μ
2 ∫
Ωρ

|∇u|p(x)

u
ψã
r (x)dx +

1
2 ∫
Ωρ

uq(x)ψã
r (x) ln(

u
m(ρ))

dx

≤ C ∫
Ωρ∩{x:r≤|x−x0|<√r}

(ln u
m(ρ))

1+ (p(x)−1)q(x)q(x)−p(x)+1
|∇ψr|

p(x)q(x)
q(x)−p(x)+1 dx

= C ∫
Ωρ∩{x:r≤|x−x0|<√r}

(ln u
m(ρ))

1+ (p(x)−1)q(x)q(x)−p(x)+1
(

2
|x − x0| ln 1

r
)

p(x)q(x)
q(x)−p(x)+1

dx

≤ C ∫
Ωρ∩{x:r≤|x−x0|<√r}

(ln |x − x0|−τ
�
)
1+ (p(x)−1)q(x)q(x)−p(x)+1 (

2
|x − x0| ln 1

r
)

p(x)q(x)
q(x)−p(x)+1

dx

≤ C(ln 1
r )
−

q−x0,δ
p−x0,δ

q+x0,δ
−p−x0,δ

+1 ∫
Ωρ∩{x:r≤|x−x0|<√r}

(ln 1
|x − x0|

)
1+ (p(x)−1)q(x)q(x)−p(x)+1

(
1

|x − x0|
)

p(x)q(x)
q(x)−p(x)+1

dx

≤ C(ln 1
r )
−

q−x0,δ
p−x0,δ

q+x0,δ
−p−x0,δ

+1 ∫
Ωρ∩{x:r≤|x−x0|<√r}

(ln 1
|x − x0|

)
1+

(p+x0,δ
−1)q+x0,δ

q−x0,δ
−p+x0,δ

+1 (
1

|x − x0|
)
ã
dx

≤ C(ln 1
r )
−

q−x0,δ
p−x0,δ

q+x0,δ
−p−x0,δ

+1

√r

∫
r

(
1
t )

ã
(ln 1

t )
1+

(p+x0,δ
−1)q+x0,δ

q−x0,δ
−p+x0,δ

+1 tn−1 dt,

where C = C(n, μ, ã, p+x0 ,δ , p
−
x0 ,δ , q

−
x0 ,δ , q

+
x0 ,δ).
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Further, by (1.6), if ã < n, then

(ln 1
r )
−

q−x0,δ
p−x0,δ

q+x0,δ
−p−x0,δ

+1

√r

∫
r

(
1
t )

ã
(ln 1

t )
1+

(p+x0,δ
−1)q+x0,δ

q−x0,δ
−p+x0,δ

+1 tn−1 dt

≤ (ln 1
r )
−

q−x0,δ
p−x0,δ

q+x0,δ
−p−x0,δ

+1 (ln 1
r )

1+
(p+x0,δ

−1)q+x0,δ
q−x0,δ

−p+x0,δ
+1

√r

∫
r

tn−1−ã dt

= (ln 1
r )
−

q−x0,δ
p−x0,δ

q+x0,δ
−p−x0,δ

+1 (ln 1
r )

1+
(p+x0,δ

−1)q+x0,δ
q−x0,δ

−p+x0,δ
+1 1
n − ãr

1
2 (n−ã)(1 − r

1
2 (n−ã)) → 0 as r → 0.

Therefore, we obtain

lim
r→0

μ
2 ∫
Ωρ

|∇u|p(x)

u
ψã
r (x) dx +

1
2 ∫
Ωρ

uq(x)ψã
r (x) ln(

u
m(ρ))

dx ≤ 0

and then
μ ∫
Ωρ

|∇u|p(x)

u
dx + ∫

Ωρ

uq(x) ln u
m(ρ)

dx = 0.

Hence, u(x) ≡ m(ρ) almost everywhere in Ωρ and the Lebesgue measure of Ωρ equals zero. Considering fur-
ther the function −u(x) instead of u(x), we obtain the boundedness of −u(x) in a neighborhood of the point
x0. Thus, we have proved that u ∈ L∞(Ω).

Next, we take the test function
φ̃ = ψp+u,

where ψ ≡ 1 in B(x0, 2ρ)\B(x0, ρ), ψ ≡ 0 outside B(x0, 5ρ2 )\B(x0, ρ2 ), 0 ≤ ψ(x) ≤ 1, |∇ψ| ≤
C
ρ and 0 < ρ ≤ 1.

Testing the equality (2.3) by the test function φ̃, we have

∫
Ω

n
∑
j=1
aj(x, u, ∇u)(p+ψp

+−1 ∂ψ
∂xj

u + ψp+ ∂u
∂xj

) + g(x, u)ψp+u dx = 0.

By virtue of the conditions (1.2)–(1.5), we have

∫

B(x0 , 5ρ2 )

μ|∇u|p(x)ψp+ + |u|q(x)+1ψp+ dx

≤ np+μ−1 ∫

B(x0 , 5ρ2 )

|∇u|p(x)−1ψp+−1|∇ψ||u| dx

= np+μ−1 ∫

B(x0 , 5ρ2 )

[|∇ψ||u|ψp
+−1− p+

p�(x) ][|∇u|p(x)−1ψ
p+

p�(x) ] dx

≤ C(n, μ, p+, ε5) ∫

B(x0 , 5ρ2 )

|∇ψ|p(x)|u|p(x)ψp+−p(x) dx + np+μ−1ε5 ∫

B(x0 , 5ρ2 )

|∇u|p(x)ψp+ dx.

Take ε5 = μ2
2np+ . Then, we have

∫

B(x0 , 5ρ2 )

|∇u|p(x)ψp+ dx ≤ C(n, μ, p+) ∫

B(x0 , 5ρ2 )

|∇ψ|p(x)|u|p(x)ψp+−p(x) dx

≤ C(n, μ, p+) 1
ρp+

max{‖u‖p
+

∞ , ‖u‖p
−

∞}
!!!!!!!
B(x0,

5ρ
2 )

!!!!!!!

≤ C(n, μ, p+) 1
ρp+

ωn(
5ρ
2 )

n
= C(n, μ, p+)ρn−p+ ,
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where ωn is the volume of the unit ball. Further,

∫
B(x0 ,2ρ)\B(x0 ,ρ)

|∇u|p(x) dx ≤ C(n, μ, p+)ρn−p+

and then we obtain

∫
B(x0 ,ρ)

|∇u|p(x) dx =
∞

∑
j=1

∫
B(x0 ,21−jρ)\B(x0 ,2−jρ)

|∇u|p(x) dx ≤ C
∞

∑
j=1

(2−jρ)n−p+ ≤ C(n, μ, p+)ρn−p+ → 0 as ρ → 0.

So |∇u| ∈ Lp(x)(Ω) and thus we have proved that u ∈ W1,p(x)(Ω) ∩ L∞(Ω).
Next, we will show that u(x) is a solution of equation (1.1) in the domain Ω. Let ηρ ∈ C∞0 (Rn) be the

cuto� function for the ball B(x0, ρ) with ηρ ≡ 1 in B(x0, ρ), ηρ ≡ 0 outside the ball B(x0, 2ρ), |∇ηρ| ≤ Cρ and
0 < ρ ≤ 1. Let φ ∈ W1,p(x)

0 (Ω) ∩ L∞(Ω). Testing the equation (2.3) by the test function (1 − ηρ)φ, we have

∫
Ω

n
∑
j=1
aj(x, u, ∇u)

∂(1 − ηρ)φ
∂xj

dx + ∫
Ω

g(x, u)(1 − ηρ)φ dx = 0,

that is

∫
Ω

n
∑
j=1
aj(x, u, ∇u)

∂φ
∂xj

(1 − ηρ) dx − ∫
Ω

n
∑
j=1
aj(x, u, ∇u)

∂ηρ
∂xj

φ dx + ∫
Ω

g(x, u)(1 − ηρ)φ dx = 0.

Indeed,
!!!!!!!!!

n
∑
j=1
aj(x, u, ∇u)

∂φ
∂xj

(1 − ηρ)
!!!!!!!!!
≤ nμ−1|∇u|p(x)−1|∇φ|

≤ nμ−1(p(x) − 1p(x)
|∇u|p(x) + 1

p(x)
|∇φ|p(x)) ∈ L1(Ω),

therefore we have
lim
ρ→0

∫
Ω

n
∑
j=1
aj(x, u, ∇u)

∂φ
∂xj

(1 − ηρ) dx = ∫
Ω

n
∑
j=1
aj(x, u, ∇u)

∂φ
∂xj

dx.

In the same way,
lim
ρ→0

∫
Ω

g(x, u)(1 − ηρ)φ dx = ∫
Ω

g(x, u)φ dx.

Since
!!!!!!!!!
∫
Ω

n
∑
j=1
aj(x, u, ∇u)

∂ηρ
∂xj

φ dx
!!!!!!!!!

≤
Cn
μρ ∫

B(x0 ,2ρ)\B(x0 ,ρ)

|∇u|p(x)−1φ dx

≤
C(n, μ)
ρ ∫

B(x0 ,2ρ)\B(x0 ,ρ)

|∇u|p(x)−1 dx

≤
C(n, μ)
ρ

""""|∇u|
p(x)−1""""L

p(x)
p(x)−1 (B(x0 ,2ρ)\B(x0 ,ρ))

‖1‖Lp(x)(B(x0 ,2ρ)\B(x0 ,ρ))

≤
C(n, μ)
ρ

max{[ ∫
B(x0 ,2ρ)\B(x0 ,ρ)

|∇u|p(x) dx]
p−−1
p+

, [ ∫
B(x0 ,2ρ)\B(x0 ,ρ)

|∇u|p(x) dx]
p+−1
p−

} ⋅ |B(x0, 2ρ) \ B(x0, ρ)|
1
p+

≤
C(n, μ, p+)

ρ
ρ

(p−−1)(n−p+)
p+ (ρn)

1
p+ = C(n, μ, p+)ρ

p−(n−p+)
p+ → 0 as ρ → 0.

So we have obtained that equality (2.3) is fulfilled for any test function. Therefore, an isolated singular point
x0 is removable for solutions of equation (1.1).
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