
Adv. Nonlinear Anal. 2016; 5 (4):395–405

Research Article

Luminita Barbu and Cristian Enache*

Maximum principles, Liouville-type theorems
and symmetry results for a general class of
quasilinear anisotropic equations
DOI: 10.1515/anona-2015-0127
Received September 17, 2015; accepted December 12, 2015
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1 Introduction
Let F : ℝN → [0,∞), N ≥ 2, be a positive homogeneous function of degree 1, with the following properties:

{
F ∈ C3,αloc (ℝ

N \ {0}), α ∈ (0, 1),
F(ξ ) > 0 for any ξ ∈ ℝN \ {0}.

(1.1)

We also have F(0) = 0, since F is homogeneous and defined at the origin. Let G ∈ C3,αloc (0,∞) ∩ C1[0,∞) be
a function such that

{
G(0) = 0, G�(0) = 0,
G(t) > 0, G�(t) > 0, G��(t) > 0 for any t > 0.

(1.2)

Let us also assume that either of the following conditions is satisfied (see [2]):
(I) There exists p > 1, k ∈ [0, 1), γ > 0 and Γ > 0 such that, for any ξ ∈ ℝN \ {0}, ζ ∈ ℝN ,

[Hess(G ∘ F)(ξ )]ijζiζj ≥ γ(k + |ξ |)
p−2|ζ |2,

and
N
∑
i,j=1

!!!![Hess(G ∘ F)(ξ )]ij
!!!! ≤ Γ(k + |ξ |)

p−2.

(II) The composition G ∘ F is of class C3,αloc (ℝ
N) and, for any R > 0, there exists a positive constant ρ such that

for any ξ , ζ ∈ ℝN with |ξ | ≤ R, we have

[Hess(G ∘ F)(ξ )]ijζiζj ≥ ρ|ζ |
2.
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Given a domain Ω ⊂ ℝN , f̃ ∈ C2,αloc (ℝ), we now consider the Wolf-type energy functional

WΩ(u) := ∫
Ω

[G(F(∇(x))) − f̃ (u(x))] dx

and the quasilinear anisotropic operator

Q(u) :=
N
∑
i=1

∂
∂xi

(G�(F(∇u))Fξ i (∇u)).

It is known that the critical points ofWΩ weakly satisfy the Euler–Lagrange equation

Qu + f(u) = 0 on Ω,

where f := f̃ �.
We immediately notice that when G(t) = tp/p, Q is the anisotropic p-Laplace operator, while when

G(t) = √1 + t2 − 1, Q is the anisotropic mean curvature operator.
The first main result of this paper is a Liouville-type (see the survey paper of Farina [5] or the papers

[3, 15, 16]), theorem for the solutions to the equation

Qu + f(u) = 0 onℝN , (1.3)

which states the following.

Theorem 1.1. Assume that F, G verify (1.1)–(1.2), f ∈ C1,αloc (ℝ) and one of the following conditions is satisfied:
(1) Assumption (I) holds and u ∈ L∞(ℝN) ∩W1,p

loc (ℝ
N) is a weak solution of (1.3).

(2) Assumption (II) holds and u ∈ W1,∞(ℝN) weakly solves (1.3).
Moreover, assume that there exists a C2 function ψ : (0,∞) → (0,∞) such that

ψ��ψ − (ψ�)2[2 − N
N − 1(1 −

G
tG� )] ≥ 0, (1.4)

f � ≤ −ψ
�

ψ
N

N − 1(1 −
G
tG� )f on (0,∞). (1.5)

If infℝN u(x) > 0, then u (x)must be identically constant.

The second main result of our paper is a Serrin-type symmetry result. More precisely, let us consider the
following overdetermined anisotropic boundary value problem:

{{{
{{{
{

Qu = −1 in Ω,
u = 0 on ∂Ω,

F(∇u) = c on ∂Ω,
(1.6)

where Ω ⊂ ℝN is a connected bounded open set and c > 0 is a given constant. Problem (1.6) is overdeter-
mined, so that in general it has no solution. On the other hand, we note that it is not difficult to verify that,
under appropriate conditions for F and G, if Ω is a Wulff shape (see Theorem 1.3 below), then problem (1.6)
has a unique solution. The delicate task now remains to determine if the overdetermined condition in (1.6)
is also necessary for the existence of a solution. The investigation of such problems has raised a good deal of
attention in the last decades. The first fundamental contribution is due to Serrin [17] (see, also, the paper of
Weinberger [21]) , who consider the case F(s) = |s|. His result states that if problem (1.6) has a C2 solution,
then Ω is a ball. This result was later extended by many authors to more general equations, see, for instance,
[6, 8–10] (when Q is a quasilinear elliptic operator) or [14, 19] (when Q is an anisotropic operator). Our result
is more general and states the following.

Theorem 1.2. Let Ω ⊂ ℝN , N ≥ 2, be a connected bounded open set in ℝN , with sufficiently smooth bound-
ary ∂Ω. Assume that the functions F and G satisfy assumptions (1.1)–(1.2) and also that one of the conditions
(I) or (II) is satisfied. If problem (1.6) has a weak solution u ∈ C10(Ω) then, up to a translation, ∂Ω is of Wulff
shape.
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The converse of the above theorem is also satisfied. More precisely, let us denote

F∘(x) = sup
ξ ̸=0

⟨x, ξ⟩
F(ξ )

,

the polar of F (see [8] for more details). We have the following theorem.

Theorem 1.3. Assume that F and G satisfy the assumptions of Theorem 1.2 and

Ω := {x ∈ ℝN : F∘(x) < NG�(c)}.

Then, problem (1.6) admits a unique solution of the form

u(x) =
NG�(c)
∫

F∘(x) G(s/N) ds,

where G is the inverse of the map t → G�(t).

The outline of the paper is as follows. The proofs of Theorems 1.1 and 1.2 rely on some key ingredients involv-
ing P-functions, which are presented in Section 2. In Section 3 we make use of some maximum principle for
P-functions, previously established in Section 2, to prove the Liouville-type result stated in Theorem 1.1. In
Section 4 we derive a Pohozaev-type integral identity and give the proofs of Theorems 1.2 and 1.3.

For convenience, notice that throughout the paper the prime is used to indicate differentiation, the
comma is used to indicate partial derivatives and the summation from 1 to N is understood on repeated
indices. Moreover, when appropriate we use the following notations:

{{{{{{{{{
{{{{{{{{{
{

F := F(∇u), Fi := Fξ i =
∂F
∂ξ i

, G� := G�(F(∇u)), G�� := G��(F(∇u)),

aij(∇u)(x) :=
∂2

∂ξ i∂ξ j
(G ∘ F)(∇u)(x) = G�Fij + G��FiFj ,

aijk(∇u)(x) :=
∂3

∂ξ i∂ξ j∂ξ k
(G ∘ F)(∇u)(x),

(1.7)

where i, j, k ∈ {1, . . . , N}.

2 Maximum principles for appropriate P-functions
Let F, G, u and ψ be as in the statement of Theorem 1.1. We introduce the following P-function:

P(u, x) = [G�(F(∇u(x)))F − G(F(∇u(x)))]ψ(u(x)). (2.1)

We then have the following maximum principle.

Theorem 2.1. Let Ω ⊂ ℝN , N ≥ 2, be a connected, bounded open set and let u(x) be as in Theorem 1.1. Assume
that infΩ|∇u(x)| > 0. If there exists x0 ∈ Ω such that

P(u, x0) = max
x∈Ω

P(u, x),

then P(u, ⋅ ) is identically constant in Ω.

For the proof of Theorem 2.1, the following two lemmas will play an important role.

Lemma 2.2. If F ∈ C3(ℝN \ {0}) is a positive homogeneous function of degree 1, then we have

Fi(ξ )ξ i = F(ξ ), Fij(ξ )ξ i = 0, Fijk(ξ )ξ i = −Fjk(ξ )

for any ξ ∈ ℝN \ {0} and i, j, k ∈ {1, . . . , N}.

For the proof of Lemma 2.2, we refer the reader to [7, Appendix, Lemma 3].
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Lemma 2.3. Let u(x) be as in Theorem 1.1. Then, we have

aijakluikujl ≥
(aijuij)2

N
+

N
N − 1(

aijuij
N
− G��FiFjuij)

2
. (2.2)

For a proof of Lemma 2.3, in the particular case G(t) = t2, we refer the reader to [20]. Using similar arguments
one may easily prove inequality (2.2) for a general function G(t).

Proof of Theorem 2.1. First of all we remark that u is in C3(ℝN \ C), where C := {x ∈ ℝN : ∇u(x) = 0} (see
[2, Proposition 3.1 and Proposition 3.2]), therefore u ∈ C3(Ω).

The proof is mainly based on the construction of an elliptic differential inequality for the P-function
defined in (2.1). The conclusion of the theorem will then follow immediately, as a direct consequence of
Hopf’s first maximum principle (see [18]). To this end, we compute successively

Pi = G��FFkukiψ + Hψ�ui , (2.3)
Pij = G(3)FFlFkukiuljψ + G��FlFkuljukiψ + G��FFkluljukiψ + G��FFkukijψ

+ G��FFkukiujψ� + G��FFluljψ�ui + Hψ��uiuj + Hψ�uij , (2.4)

where, for simplicity, we denote H := G�F − G. Next, making use of notation (1.7), we can see that equation
(1.3) may be rewritten as follows:

aijuij = [G�Fij + G��FiFj]uij = −f. (2.5)

From Lemma 2.2, we also have
Fiui = F, Fijuj = 0, Fijkui = −Fjk (2.6)

for any i, j, k ∈ {1, . . . , N}. Therefore, making use of (2.4), (2.5) and (2.6), we evaluate

aijPij = G(3)G�FFlFkFijukiuljψ + G(3)G��FFlFkFiFjukiuljψ + G��G�FijFlFkuljukiψ
+ (G��)2FkFlFiFjuljukiψ + G��G�FFijFlkuljukiψ + (G��)2FFiFjFlkuljuikψ
+ G��FFkaijukijψ + 2(G��)2FFkFiFjuikujψ� + 2G��G�FFkFijuikujψ�

+ G�HFijuiujψ�� + G��HFiFjuiujψ�� − Hfψ�. (2.7)

We are now going to compute each term of (2.7). First, we note that from (2.3) and (2.6) we get

Fkuki = −
Hψ�ui
G��Fψ
+ (terms containing Ps), (2.8)

FiFkuki = −
Hψ�

G��ψ
+ (terms containing Ps). (2.9)

Moreover, making use of the third equation in (2.6) and (2.9) in (2.5), we obtain

G�Fijuij = −G�Fijluliuj = −f +
Hψ�

ψ
+ (terms containing Ps). (2.10)

Next, differentiating (2.5), we find

2G��FilFjulkuij + G��FlFijulkuij + G�Fijlulkuij + G(3)FiFlFjulkuij + aijuijk = −f �uk . (2.11)

Now, substituting aijuijk from (2.11) into (2.7), we get

aijPij = G(3)G�FFlFkFijukiuljψ + G(3)G��FFlFkFiFjukiuljψ + G��G�FijFlFkuljukiψ
+ (G��)2FkFlFiFjuljukiψ + G��G�FFijFlkuljukiψ + (G��)2FFiFjFlkuljuikψ
+ 2(G��)2FFkFiFjuikujψ� + G��HF2ψ�� − Hfψ� − G��F2f �ψ − (G��)2FFkFlFijulkuijψ
− G��G�FFkFijlulkuijψ − G(3)G��FFkFlFiFjulkuijψ − 2(G��)2FFkFjFilulkuijψ,
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where we have used the first two identities from (2.6). Next, from (2.8)–(2.10), we infer

aijPij = G��G�FFijFlkuljukiψ +
H2(ψ�)2

ψ
+ HG��F2ψ�� − 2G

��F2(ψ�)2H
ψ

− Hψ�f − G��F2f �ψ

+
G��FHψ�

G� (
Hψ�

ψ
− f) + HG�Fijlulkulψ� + (terms containing Ps)

= G��G�FFijFlkuljukiψ + HG��F2ψ�� − 2G
��F2(ψ�)2H

ψ

+ FH2 G��

G�
(ψ�)2

ψ
−
G��

G� HFfψ
� − G��F2f �ψ� + (terms containing Ps),

so that

aijPij =G��G�FFijFkluljukiψ + G��FH(Fψ�� − 2F (ψ
�)2

ψ
+
F
G�

(ψ�)2

ψ )

− G��F( HG�ψ
�f + Ff �ψ) + (terms containing Ps). (2.12)

Now, the term FijFkluljuki can be computed as follows:

FijFkluljuki = (
aij
G� −

G��

G� FiFj)(
akl
G� −

G��

G� FkFl)uljuki

=
1
G�2 aijakluljuki +

(G��)2

G�2 [−
Hψ�

G��ψ
+ (terms containing Ps)]

2

− 2G
��

G� [Fkl +
G��

G� FkFl][
H2ψ�2

(G��)2F2ψ2 uluk + (terms containing Ps)]

=
aijakluljuki

G�2 −
G2ψ�2

G�2ψ2 + (terms containing Ps), (2.13)

where we have used (2.6), (2.8) and (2.9). Thus, from (2.13) and (2.12) it follows that

aijPij =
G��

G� Fψaijakluljuki + G
��F2H(ψ�� − 2 (ψ

�)2

ψ ) − G��F( HG�ψ
�f + Ff �ψ) + (terms containing Ps). (2.14)

Now, Lemma 2.3, equation (2.5) and (2.9) lead to

aijakluljuki ≥
f 2

N
+

N
N − 1(

f
N
+
Hψ�

ψ
+ (terms containing Ps))

2

=
f 2

N − 1 +
2Hfψ�

(N − 1)ψ +
N

N − 1
H2ψ�2

ψ2 + (terms containing Ps). (2.15)

Consequently, making use of (2.15) in (2.14), we obtain

aijPij ≥ f 2
G��Fψ

G�(N − 1) + G
��F2H(ψ�� − 2 (ψ

�)2

ψ
+

NH
(N − 1)FG�

(ψ�)2

ψ )

− G��F2( H
FG�

N + 1
N − 1 fψ

� + f �ψ) + (terms containing Ps).

Thus, under assumptions (1.4)–(1.5), we have the inequality

aijPij + (terms containing Ps) ≥ 0 in Ω,

and Theorem 2.1 follows as a direct consequence of Hopf’s first maximum principle (see [18]).

In order to prove Theorem 1.2, let us consider another functional defined as follows:

P̃(u, x) := G�(F(∇u(x)))F − G(F(∇u(x))) + 1
N
u(x). (2.16)

We have the following theorem.
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Theorem 2.4. LetΩ ⊂ ℝN be a connected bounded open setwith sufficiently smooth boundary and let u ∈ C10(Ω)
be aweak solution of problem (1.6). Then, P̃(u, x) takes its maximum value on ∂Ω. Moreover, if P̃ is not constant
in Ω, then any maximum point for P̃ in Ω is necessarily a critical point for u.

Proof. Under the assumptions concerning the functions F and G, we know that P̃ ∈ C3(Ω \ C), where
C := {x ∈ Ω : ∇u(x) = 0}. The following computations are all considered in Ω \ C.

By using similar arguments and computations as in the proof of Theorem 2.1, one may see that

aij P̃ij = G��G�FFijFkluljuki −
1
N
G��

G� +
1
N2

G��

G� F + (terms containing Ps). (2.17)

Moreover, using the fact that

FijFkluljuki =
1
G�2 (aijakluljuki −

1
N2 ) + (terms containing Ps), (2.18)

and substituting (2.18) into (2.17), we get

aij P̃ij =
G��F
G� (aijakluljuki −

1
N ) + (terms containing Ps). (2.19)

Now, since the matrix (aij) is symmetric and positive define in ℝN \ {0} for a fixed point x, we can choose
coordinates around x such that aij(x) = λiδij with λi > 0 for any i. Obviously, the first equation in (1.6) is
rewritten as λiuii = −1, and therefore (2.19) becomes

aij P̃ij + (terms containing Ps) =
G��F
G� (λiλju2ij −

1
N )

≥
G��F
G� (λ2i u

2
ii −

1
N )

≥
G��F
NG� [(λiuii)

2 − 1] = 0.

According to the maximum principle we have that maxΩ\C P̃ = max∂Ω P̃. Indeed, if we suppose that there
exists a point x0 ∈ Ω such that P̃(x0) > max∂Ω P̃, then x0 belongs to the interior of C. From the first equation
in (1.6), the interior of C is empty, thus P̃ achieves its maximum over Ω on ∂Ω. Moreover, if P̃ is not constant
in Ω, then any maximum point for P̃ in Ω belongs necessarily to C. This completes the proof.

3 Proof of Theorem 1.1
For the proof we adapt an idea employed by Caffarelli, Garofalo and Segala [1] to obtain a different Liouville-
type theorem (see also the recent works [2, 7]).

First of all, we notice that if u satisfies the statement of Theorem 1.1, then u ∈ C3(ℝN) (for clear proofs of
these statements, see [2, Proposition 3.1 and Proposition 3.2]). Now, let us define the following set:

Su := {v satisfies (1.3) : inf
ℝN
u ≤ v(x) ≤ sup

ℝN
u for all x ∈ ℝN},

which is compact in the topology of C1,αloc (ℝ
N) (see [11, 13]). Let us now define

P0 := sup{P(v;x) : v ∈ Su , x ∈ ℝN}. (3.1)

We claim that P0 ≡ 0. From this, Theorem 1.1 follows immediately. To this end, we argue by contradiction
and assume contrariwise that

P0 > 0.

By (3.1), there exist two sequences (vk)k∈ℕ ⊂ Su and (xk)k∈ℕ ⊂ ℝN such that

lim
k→∞

P(vk , xk) = P0 > 0.
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Consider now the functions wk(x) := vk(x + xk). One can easily checks that wk ∈ Su , P(vk , xk) = P(wk , 0) and

lim
k→∞

P(vk , xk) = lim
k→∞

P(wk , 0) = P0 > 0.

Moreover, up to a subsequence, we can suppose that there exists w ∈ C1,αloc (ℝ
N) ∩ Su such that

lim
k→∞

wk = w and lim
k→∞

P(wk , 0) = P(w, 0) = P0 > 0.

In particular, we find that F(∇w(0)) ̸= 0 and therefore ∇w(0) ̸= 0. By continuity, there exists ρ > 0 such
that

inf
Bρ(0)

|∇u| > 0.

On the other hand, by the definition of P0, we know that

P(w;x) ≤ P0 = P(w, 0) for all x ∈ Bρ(0),

so that 0 is a local maximum for P(w, ⋅ ) in Bρ(0). Then, Theorem 2.4 implies that P(w; ⋅ ) is constant
in Bρ(0). By the continuity of P(w; ⋅ ) and connectedness arguments one can see that P(w; ⋅ ) is constant
on the wholeℝN . More exactly, we have

P(w;x) := (G�F − G)(F(∇w(x)))ψ(w(x)) = P0 > 0 for all x ∈ ℝN . (3.2)

Next, since w is bounded onℝN , we must have infℝN |∇w| = 0.
Let (yk)k∈ℕ ⊂ ℝN be a sequence such that limk→∞|∇w(yk)| = 0. From (3.2) we get

(G�F − G)(F(∇w(yk)))ψ(w(yk)) = P0 > 0. (3.3)

Letting k →∞ in (3.3) and taking into account that have infℝN w(x) = 0, we get P0 = 0, which contradicts
our assumption. Therefore, we have P0 ≡ 0 on ℝN . On the other hand, from (1.2) and (1.4) one can easily
see that (G�(t)t − G(t))ψ(t) > 0 for any t > 0, therefore ∇u ≡ 0 on ℝN , and thus the proof of Theorem 1.1 is
achieved.

In what follows we give some examples of functions ψ and f which verify assumptions (1.4)–(1.5). More
precisely, we look for functions of the form ψ(u) = u−βN , where βN is a positive constant. Let us define

θ(t) := 1 − G
tG� , θ0 := inft>0

θ(t).

From these definitions one may immediately notice that θ, θ0 ∈ [0, 1), so that kN := (2 − N
N−1 θ0) > 0

for N > 1. Obviously, if the following inequalities hold:

ψ��ψ ≥ kN(ψ�)2, (3.4)

f � ≤ −θ0
ψ�

ψ
N + 1
N

f for any t > 0, (3.5)

then conditions (1.4)–(1.5) are satisfied. Replacing ψ = u−βN into (3.4) and (3.5), we obtain

1 ≥ βN(1 − kN),
respectively,

f � ≤ θ0βN
f
t
N + 1
N

for any t > 0. (3.6)

Thus, as kN > 1 ⇔ θ0 < N−1N , one can choose

βN := 1
kN − 1

for θ0 <
N − 1
N

,

βN ≥ 0 for θ0 ≥
N − 1
N

,
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and see that (3.6) can be rewritten as

f � ≤
{{{
{{{
{

θ0(N + 1)
N(1 − θ0) − 1

f
t

if θ0 <
N − 1
N

,

L f
t

if θ0 ≥
N − 1
N

,
(3.7)

for any t > 0, where L ≥ 0 is an arbitrary constant.
Summarizing, we obtain that the conclusion of Theorem 1.1 holds if f satisfies (3.7).
Let us now consider some particular examples for G. If G := tp/p, p > 1, then θ = θ0 = 1 − 1

p and (3.7)
becomes

f �(t) ≤
{{{
{{{
{

(p − 1)N + 1
N − p

f(t)
t

if 1 < p < N,

L f(t)
t

if p ≥ N,

for all t > 0. On the other hand, if G(t) := √1 + t2 − 1, we have θ = 1/(√1 + t2 + 1) and θ0 = 0. In this case,
(3.7) implies that f must be a non-decreasing function.

4 Proof of Theorems 1.2 and 1.3

4.1 A Pohozaev-type identity

In what follows we establish a Pohozaev-type integral identity for P̃. More precisely, we have the following
lemma.

Lemma 4.1. If u is given as in Theorem 1.2, then the auxiliary function P̃, defined in (2.16), satisfies the
Pohozaev-type identity

∫
Ω

P̃(u(x);x) dx = (cG�(c) − G(c))|Ω|, (4.1)

where |Ω| is the n-dimensional volume of Ω. Moreover, P̃ is identically constant in Ω.

Proof. Let us multiply the first equation in (1.6) with u and integrate it by parts. Then, we obtain

∫
Ω

u dx = ∫
Ω

G�(F(∇u))F(∇u) dx. (4.2)

Taking into account the assumptions of Theorem 1.2, we can apply [4, Theorem 2] in order to obtain

∫
∂Ω

G(F(∇u))⟨x, ν⟩ dσ − ∫
∂Ω

G�(F(∇u))∇ξF(∇u) ⋅ ∇u⟨x, ν⟩ dσ

= N ∫
Ω

G(F(∇u))) dx − ∫
Ω

G�(F(∇u))∇u∇ξF(∇u) dx − ∫
Ω

∇ξG(F(∇u)) ⋅ ∇u dx + ∫
Ω

⟨x, ∇u⟩ dx + ∫
Ω

u dx

= N ∫
Ω

G(F(∇u)) dx − ∫
Ω

G�(F(∇u))F(∇u) dx + ∫
Ω

⟨x, ∇u⟩ dx, (4.3)

where we have used (2.6) and (4.2). Making use of the known identities

∫
∂Ω

⟨x, ν⟩ dx = N|Ω|,

∫
Ω

⟨x, ∇u⟩ dx = −N ∫
Ω

u dx
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together with (4.3), and taking into account the last equation in (1.6), we derive

N(G(c) − G�(c)c)|Ω| = N ∫
Ω

(G(F(∇u)) − G�(F(∇u))F(∇u)) dx + (N − 1) ∫
Ω

G�(F(∇u))F(∇u)dx + ∫
Ω

⟨x, ∇u⟩ dx

= N ∫
Ω

(G(F(∇u)) − G�(F(∇u))F(∇u) − 1
N
u) dx,

from which (4.1) follows.
Finally, from Theorem 2.4 and equality (4.1), one can conclude that

P̃ ≡ G�(c)c − G(c) on Ω,

and the proof is completed.

4.2 Proof of Theorem 1.2

If P̃ ≡ G�(c)c − G(c) on Ω, then

Λ(F(∇u(x))) := G�(F(∇u(x)))F(∇u(x)) − G(F(∇u(x))) = Λ(c) − 1
N
u(x) on Ω, (4.4)

where Λ(t) := tG�(t) − G(t), t > 0. Now, the strict monotonicity of the map t → Λ(t) on (0,∞) can be used to
write F(∇u) explicitly as a function of u, i.e.,

F(∇u(x)) = Λ−1(Λ(c) − 1N u(x)) := g(u(x)), (4.5)

where g(u) is of class C1, according to assumptions (1.2). Next, we can see that ∇u vanishes only at points
where u attains its maximum on Ω and, also, that u is positive in Ω.

Indeed, if ∇u(x0) = 0, then by (4.4) we have NΛ(c) = u(x0). On the other hand,

u(x) = N(Λ(c) − Λ(F(∇u(x)))) ≤ u(c) in Ω,

so u(x0) = maxΩ u. Also, u is positive on Ω. Otherwise, there exists x1 ∈ Ω with u(x1) = minΩ u ≤ 0 < NΛ(c),
hence ∇u(x1) does not vanish, which is a contradiction. Hence, ν = ∇u

|∇u| is well defined on the open set
U := {x ∈ Ω : 0 < u(x) < maxΩ u}.

On the other hand, denoting by HF(St) the H-mean curvature of the level set of u, St := {x ∈ Ω : u(x) = t},
we have (see [19, Theorem 3])

Q(u(x)) = G(F(∇u))HF(St) + G��(F(∇u))∂
2u
∂ν2F

(4.6)

for all x such that u(x) = t, where νF is the normal of St with respect to F, namely νF = Fξ (∇u).
Now from (4.6) and (4.5), HF(St) depends only on u if ∂

2u
∂ν2F

depends only on u. Taking into account the
first equation in (2.6) and (4.5), one can see that

∂u
∂νF
= ∇u ⋅ Fξ (∇u) = g(u),

∂
∂νF

(
∂u
∂νF

)
2
= 2∂

2u
∂ν2F

∂u
∂νF
=

∂
∂νF

(g2(u)) = 2g(u)g�(u) ∂u
∂νF

. (4.7)

In consequence, as
∂u
∂νF
̸= 0 on U,

we find from (4.7) that
∂2u
∂ν2F
= g(u)g�(u) on U.
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Therefore, using (4.6) we deduce

HF(St) = −
1

G(g(u)) (
1 + G��(g(u))g(u)g�(u)) for all 0 < t < max

Ω
u.

But this equality says that every level set of u at height between 0 and maxΩ u is a set of constant HF-mean
curvature. Therefore, each connected component of it must be a Wulff shape, up to a translation (see [12]).
In particular, Ω must be simply connected, because otherwise we have a foliation of N − 1 submanifolds Tt,
t ∈ (0, t0), for some small positive constant t0 < NΛ(c)with the property that Tt is one of the connected com-
ponent of St. If the level set of u has another connected component T�

t , then one of them must be enclosed
in the other. Since both of them are of Wulff shape of equal radius, we conclude that St = Tt, t ∈ (0, t0), has
only one connected component of Wulff shape.

Therefore, ∂Ω = S0 is also a Wulff shape and this concludes the proof.

It isworth pointing out that there exists atmost one solution u ∈ C10(Ω) of problem (1.6). Indeed, it is sufficient
to point out that any solution of (1.6) is a critical point of the following functional:

WΩ(u) = ∫
Ω

(G(F(∇u(x))) − u(x)) dx. (4.8)

Due to assumption (1.2), (I) or (II), the map G ∘ F is strictly convex, therefore umust coincide with its unique
minimizer.

4.3 Proof of Theorem 1.3

Taking into account the previous remarks, we know that if problem (1.6) admits a solution, then it is unique
and coincides with the minimizer of the functional given in (4.8). According to standard arguments, we are
looking for a minimizer of the form u(x) = u(F∘(x)) := v(r), where r = F∘(x) is decreasing as function of r.

First let us note that

WΩ(u) = NωN
1

∫
0

(G(F(v�(r)∇F∘(x))) − v(r))rN−1 dr = NωN
1

∫
0

(G(−v�(r)) − v(r))rN−1 dr,

where we have used the equality F(∇F∘(x)) = 1, the positively homogeneity of F of degree 1 as well as the fact
that v�(r) < 0.

Next, we remark that the corresponding Euler equation of our problem is

(G�(−v�(r))rN−1)� = rN−1 on [0, R]. (4.9)

Integrating (4.9) from 0 to r, we get
G�(−v�(r)) = r

N
. (4.10)

Hence, if G is the inverse function of t → G�(t), we have v�(r) = −G(r/N), which implies

u(x) =
R

∫
F∘(x) G(

s
N ) ds for any x ∈ Ω.

Now, writing (4.10) for r = R, and making use of the third equality in (1.7), we get R = NG�(c).
Finally, the formula obtained for u implies u = 0 and

∇u(x) = −G(F
∘(x)
N )∇F∘(x) ⇒ F(∇u(x)) = G( RN ) = G(G�(c)) = c

on {x ∈ ℝN : F∘(x) = NG�(c)}. This completes the proof.
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