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Abstract: This paper offers a new perspective to look at the Riesz potential. On the one hand, it is shown that
not only £4:9p7' (n-ap) n @P.x-2p contains I, LP-¥ under the conditions 1 < p<00,1<qg<oo,q(k/p-a)<k<n,
0 < a < min{n, 1 + x/p}, but also £44 exists as an associate space under the condition —g < A < n, where
I,LP*¥ and £2 are the Morrey-Sobolev and Campanato spaces on R" respectively. On the other hand, a non-
negative Radon measure u is completely characterized to produce a continuous map I : Ly 1 — LZ under
the condition 1 < p < min{g, n/a} or 1 < g < p < min{g(n - ap)/(n - ag(q - 1)), n/a}, where L, ; and LZ
are the (p, 1)-Lorentz and (g, p)-Lebesgue spaces on R" respectively.
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Introduction

Forn € Nand (a, p) € (0, n) x (1, co) let vand Lf oc be the n-dimensional Lebesgue measure and its induced

locally p-Lebesgue integrable space respectively. We are interested in the Riesz potentials

If00 = [ b=y "y dvy) forallf e L.
]R)’l
Roughly speaking, IaLf:)C is regarded as the space of tempered distributions having derivatives of order a

i 1D
in LIOC.

Below is the classical Lebesgue—Sobolev space inclusion which plays a very important role in analysis
and partial differential equations (cf., e.g., [4, 19, 21]):

L?* asac< 1%
IaLp1 cIeLP € {BMO asa = 1%
n

_n
C*?» asl+

n
5>a> g
Here and henceforth, L, 1 (as a subspace of L?), BMO and CP are respectively the (p, 1)-Lorentz space, the
John-Nirenberg space of functions with bounded mean oscillation and the Lipschitz space of order § — more
precisely —
(o)

felpa = Il = J(v({x €eR" : |f(x)| > t}))% dt < oo,
0

1f€BMO < |flsmo = sup " If = fBx,n] dv < 00,
(x,r)eR"%(0,00)
B(x,r)
fech = Ifle= sup If0)-fWlx-yIF <oco forpe(0,1),

x#y in R"
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and
o = VB[ Fav
B(x,r)
is the v-integral mean value of f over B(x, r) — the x-centred Euclidean ball with radius r.
As a matter of fact, the above inclusion for BMO and C? can be obtained from an elementary computation:

since
2n+1

[ =y 2 v v <

B(x,r) B(x,r)

holds for all (x, r, w) € R" x (0, co) x R" (where A < B means that there is a constant ¢ > 0 such that A < ¢B),
it follows that

j Uah) — UaDBoen] dv < 11111

B(x,r)

Using the Fubini theorem and the Holder inequality yields that if p’ = p/(p — 1) and O < a < min{n, 1 + n/p},
then

Uaf) - UaPBeen] dv < (V(Bx, 1)) j j D) ~ P (@) dv(y) dv(z)

B(x,1) B(x,r) B(x,r)
<r j (If(W)I j j [ly = wi*™ =1z = wl*™"| dv(y) dv(Z>> dv(w)
R B(x,r) B(x,r)

-

p

pl
< r-"nﬂup([ j j lly = Wi — 1z - W] dv(y) dv(z)) dv(w))

R"™ "B(x,r) B(x,r)

< r"“llﬂlm( j (r + |w)yP'@n-1) dv(w))p'

RN

_n
<l

Interestingly, the preceding calculation of mean oscillation actually tells us that the Lebesgue—Sobolev
space I,LP is contained in the Campanato space £1"/P=@ (cf. Theorem 1 for a detailed information), and
moreover suggests exploiting not only the associate space $y°/P~% of £1:n/P=@ (cf, Theorem 2 for a complete
account) but also the $7"*-Sobolev space I,59"* whose precise description is presented in Theorem 3 which
may be regarded as an associate form of Theorem 1. Even more interestingly, the oscillatory nature of I,LP
motivates us to characterize a nonnegative Radon measure y on R" such that I, continuously maps Ly, 1 into
the (g, u)-Lebesgue space LY; see Theorem 4.

1 Morrey-Sobolev spaces in Campanato spaces

Significantly, the foregoing Lebesgue—-Sobolev space inclusion can be extended to the following Morrey—
Sobolev space inclusion:
LF apra asq< X

ILP* ¢ {BMO asa =%,
_K
c“»r asl+f>a>k,

where LP*Y is the Morrey space of order (p, y) — more precisely —

’
felPV — |fllr = sup <r”‘" J If1P dv) < oo undery € (-0, 00).

(x,r)eR"x(0,00) Beur)
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The cases a < x/p of the last inclusion are due to Adams (cf. [2, 4]). To check the case 1 + k/p > a > x/p,
setf = a —x/p € (0, 1). Because IgBMO is contained in CP according to Strichartz’s papers [22, 23], it follows
that (cf. [6, Remark 9])

I, LP* = Igl, LP¥ ¢ I3BMO ¢ CP = C*77.

Observe that BMO can be treated as the limit space of both L¥//P=®.X a5 ¢ — (x/p)~ and C&¥/? as
a — (x/p)*. So the following new inclusion seems to be a natural matter upon unifying three spaces
L¥/(/p=2) BMO and C*~*/P or embedding the Morrey potentials I, LP’¥ into the so-called Campanato spaces.

Theorem 1. For (g, A) € [1, 00) x (-00, 00) let £9* be the Campanato space of all v-measurable functions f
on R" obeying

1
a
Il gar = sup (r/t—n J |f—fB(x,r)|q dV) < 00.

(x,r)eER"%(0,00) BGLY)

If

X
l<p<oo, 0O0<k<n, qp‘l(K—ap)sK, 0<a<min{n,1+;},

then
[,LPX ¢ £2:9p7 (k-ap) o ap.x-ap

Proof. The inclusion
[ LPX c gpr-ap

follows from the inclusion stated above since (cf. [13, p. 70])

BMO ask=ap,

[PK-ap - p.K-ap _ -
C*r asp+x>ap>k.

In order to verify the inclusion
I,LP¥ ¢ £3.9p™ (k-ap)

let us handle two cases below.

Case k/p > a. Using the Holder inequality we obtain that if p; > p,, then

p2

1 p xp
J If1P2 dv < ( J |f1P dv) ) < ||ﬂ|IL7§1.xTn_T21 forall (x, r) € R" x (0, c0),
B(x,r) B(x,r)

in other words,
Kp1 Kp1
LP1,K c LPZ’TZ c sz’ipz .

As a consequence, we get

, 21 K
L cL» as/l=q(——a>sxsn.
p
Now, via the Adams inclusion
[P c LF"
we have

k_ X_ K
I LP¥ ¢ L9969 ¢ ¢29G-%  ynder q(; - a) < K.

Case x/p < a < 1+ k/p. Again, according to [13, p. 70] we have

K _
0a.a(5-0) _ {BMO as; =a,
a-% K K
C"?» as p<a<l+o.

So the desired inclusion under this situation is valid. O
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2 Pre-associate spaces of Campanato spaces

To get a better understanding of Theorem 1, it is appropriate to point out that LP* and £% actually exist
as associate spaces. For x € [0, n), p € [1,00) and p’ = p/(p - 1) € (1, o] denote by HP'¥ the space of all

functions f ¢ Lﬁ)’c obeying

1A g = inf{z lejl: f=) c,-a,-} < 00,
j j=1
where {a;} are (p', (1 - k/n)(1 - 1/p'))-atoms. Recall that such an atom a is defined to be a function enjoying
that supp(a), the support of a, is contained in a ball B and

—(1-5y1-L
lall, < (v(B)) 1),
According to [5, Theorems 2.3-3.3] and their proofs, we have that HP'¥ is the associate space of LP'¥ — in
other words (cf. [20, Theorem 4.1]) — if
< oo},

then [HP'*X]* = LP-¥_ Since LP’¥ = {0} under x < 0, this last identity can be trivially extended to x < 0O via set-
ting HP'-* = {0}. However, this triviality will not appear in discovering the pre-associate space of a Campanato
space as seen below.

[Hp,’K]* - {f € Lfoc : "f”[Hp,’K]* = sup jfgdv

I8lp<1 |

Theorem 2. Letq € [1,00) and q' = q/(q - 1) € (1, co].
(i) For A € [0, n) write 7 as the space of all functions f € L satisfying

loc

Il a2 = inf{Z|Cj| i f = z c;a,-} <00,
j j=1
where each ajisa(q', (1 -A/n)(1 -1/q'),0)-atom, i.e.,a(q’', (1 - A/n)(1 - 1/q"))-atom with

J a; dv =0.
IRH
(ii) ForA € (-q,0] and @ = n/(n - A/q) write H7' A gs the space of all functions f € quéc satisfying
1 [e's)
Al gy = inf{(z |cj|q>q f=)y c]-a,-} < 00,
j j=1

where each aj is a (q', (1 -A/n)(1 - 1/q"), -An/q)-atom, i.e., a (q', (1 - A/n)(1 - 1/q"))-atom with all

moments
y y L An
J Xy -xy'ai(x)dv(x) =0 for Z Yi<——.
s i=1 q
Then $7 is the pre-associate space of £9* — namely — if
[Sﬁq”/l]* = {f € L;ZOC : ”ﬂl[y]q’,/\]x = sup Jfgdv < OO},
Il 151

RH
then [H7A]* = g9,

Proof. Under (i), the desired associate relation says essentially that the dual space of the Hardy space HY of
Fefferman-Stein [12] is identical to BMO under g = 1 and is identical to C"*4 under g < 1 (cf. [9-11]).
Therefore it is enough to check the associate relation under (i). However, under (g, A) € (1, 0o) x [0, n)
the associate relation follows from Zorko’s duality [27, Proposition 5], so it remains to deal with the case
(q,A) € {1} x [0, n).
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On the one hand, if f € £ and g = Zj cjaj € $H° 4 with Zj Icj| < oo and aj being an (co, 1 - A/n, 0)-atom
(supported in a ball B;), then

Aen
jfa; dv| = [(f—fB,.)a,- dv| < (v(B))F j|f—fB,.|dvsuﬂ|2u,
R" R B;
and hence
[ rgav< Y| [ fajav) < Miess Yleyl
]R'l j IR" j

namely, each f € 212 induces a member of the associate space [5500A]*.
On the other hand, suppose f € [$9°A]* . For a given ball B(x, r) let ¢ be a constant such that

Bfsc(x, 1) ={x € B(x, 1) : f(x) 2 ¢}, Bpec(x,1) = B(X, 1)\ Bfsc(x, 1)
obeys
V(Bf<c(x, 1)) = V(Bfsc(x, 1)).

The existence of such a constant ¢ follows from the basic equation
V(B(x, 1)) = V(Bf<c(x, 1)) + V(Bfsc(x, 1)).

Without loss of generality, we may assume

j If - cldv > J If - cl dv.
Bysc(x,1) Byrec(x,1)
Then, choosing
A=n 1 asy € BfZC(Xs r)’
a(y) = (V(B(X, r)))T V(szc(x,r))
_<V(Bf<C(X,I’))) asy € Brec(x, 1),
we find that a is an (co, (1 — A/n), 0)-atom with

lallgeoa < lallze (v(B(x, r)))L;A <1 and J (f-c)adv > 0.

Brcc(x,1)

Consequently, we compute

[ If - fapnl dv < 2 j If - cldv
B(x,r) B(x,r)

=z( [ recave | If—CIdV>

Bfsc(x,1) Byec(x,1)

<4 J If = cl dv
By (x,1)

= 4(v(B(x, 1))

A
n

(f —-c)adv

BfZC(X) r)

< 4(v(B(x, r)))n"A< J (f-c)adv+ J (f-ca dv)
Bysc(x,1) Bpec(x,1)

= 4(v(B(x, 1)) I (f-cadv

B(x,7)

Jfa dv

R"

n-A
n

< 4(v(B(x, 1))

>
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whence reading off

A-n
n

(V(B(x, 1)) If = facen| dv < 4 I fa dv

B(x,r) R"

< 4||ﬂ|[5m,ﬁ]*||a||ﬁoo,)l < 4||ﬂ|[ﬁoo,/\]*

whence arriving at f € £54 with [fllg1a < Ifllig0n)- O

3 Riesz images of pre-associate Campanato spaces

Given the atomic decomposition of $9'* in Theorem 2 and Theorem 1 connecting I, LP-¥ and £%, it seems
natural that there should be a relation between I,$7-* and H?"-¥. Indeed, we can make the following asser-
tion.

Theorem 3. Letq € (1,00) and q' = q/(q - 1).
(i) If -q <A <0, then

' L,K K
1,97 ¢ Hr@and as0< —<a<n.
p

(ii) If 0 < A < n, then

, A
<q <-.

f A o
1,97 ¢ He " qn HT A% g5 1 <
A-a a

Proof. To reach the desired inclusion, recall an equivalent description of H7*A — if A;Of/{(E) expresses the

Hausdorff capacity of E ¢ R" with order n — A, i.e., A;Of,Z(E) = inf Z]- r}“", where the infimum ranges over all
countable coverings of E by open balls of radius r;, then

ES
"A q . I 1-g' a
HY ={feL10C:|||f|||qu,A= m(gb<j|ﬂqw ‘ dv) <ool,
weB;

]R'l
where B(1H) comprises all nonnegative functions w with
(00
J wdA;O_OZ = JA(HO_O/{({y eR": w(y) > t})dt < 1.
R 0

Now, using [5, Theorem 2.3] and modifying its argument, we have that not only

(HTAY =L,
but also $7' consists of all H7'-A-functions f with vanishing moment fw fdv=0.

On the one hand, note that if A € (-g, 0], then $7"* = H7, where 0 < g = n/(n — A/q) < 1 (see the argu-
ment for Theorem 2). So a combination of Kalita’s [14, Theorem 2] on I,H? (which is also investigated in
Strichartz’s [24, Theorem 5.2] via some suitable atoms) and Adams—Xiao’s [5, Theorem 3.3] gives the desired
inclusion under A € (-q, 0].

On the other hand, suppose A € (0, n). According to [6, Theorem 16 (ii)] we find that if

A A
! s - I _ -
1<gq <m1n{a,(q 1)a}
ie.

A
-«

1</1 <q’<g,

then

LHYA ¢ HVsr! o o' A-aa,
and hence

L7} ¢ Hi A o g A-ea,

This completes the argument for the case A € (0, n). O
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4 Trace measures for Lorentz—Sobolev spaces

Recall that for a given nonnegative Radon measure y on R", the characteristic function 1r and the Riesz
(a, p)-capacity of a set E
Ca,p(E) = inf{|Ifl}, : f € L? and If > 1},

we have that under 1 < p < n/a (cf. Adams [1] for p < g, Adams and Maz’ya [3, 17, 18] for p = g, and
Cascante—Ortega—Verbitsky [8] for p > q):

sup  uBX, r)rf 1@ <o asp<gq,
(x,r)eR"x(0,00)

sup y(K)(Ca,p(K))*1 <oo asp=gq,

Io : L? — L}l is continuous = 1 compact KcR"
T uBo, )\ dr\ 7
uB(x, ) \#1 dr 7=
I(J’(r”T) 7) dv(x) <oo asp>q,
R\ 0

thereby finding that the continuity of I, : LP — LZ under p > g cannot be fully determined by the trace
measure condition pu(B(x,r)) < rPla(n-ap)  But nevertheless, upon replacing LP with Ly,1, we can estab-
lish the following trace measure principle whose case p = g € (1, 2) is obtained via a dyadic partitioning
technique in [15].

Theorem 4. Let y be a nonnegative Radon measure on R". If

. n . qg(n - ap) n

1< <m1n{ ,—} or 1<qgc< <m1n{—,—},
p qa =P n-aq(g-1)1" a
then
Ip:Lpq — LZ is continuous < ||ullp,q,« = sup u(B(x, r))rpflq("‘p‘") < 00.
(x,r)eR"x(0,00)
Proof. Onthe one hand, assumethatl, : Ly — LZ is continuous. Choose f as the indicator 1p, ) of a given
ball B(x, r), and compute
I1Benly,, = v(B(X, 1) = 1"
and
Inlppn(y) = J ly = z|* " dv(z) = (2r)“"v(B(x, 1)) 2 r* forally € B(x, ).
B(x,r)

Consequently,

Q=

r*(u(B(x, n))* < Malpnlzs < 11BenllL,,: < re,

namely, [lully,q,q« < 0.
On the other hand, let [|pll, 4,4 < co. The verification of the continuity of I, : L1 — LZ is split into
two steps.

Step 1. Setting K be any compact subset of R" we show

j U107 dt < Ml .o (VD) .

R

Here, it is appropriate to mention that our forthcoming approach is partially influenced by the argument for
[7, Theorem 3.2 (iii)], but nevertheless essentially different from the method of proving [15, Theorem 0.3].
To proceed, for 1 < p < nfaand 1 < g < co let

y=p"'q(n-ap) < q(n-a)
and the parameter pair (a1, a>) € (0, n) x (0, n) obey

a=a1qg " +a(1-q ).
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Then an application of the Holder inequality gives

:
Llk(y) = j ly - 2% du(z) < ( j ly — z| dv(z)) ( j ly - 2% dv(z)) .
K

K K

First, according to [16, Lemma 1.30], we have
j ly - %" dv(z) < (VK)™, j=1,2.
K

Via fixing a point x¢ € K and taking an xo-symmetric ball B(xy, ro) such that

n_ V(K)
Ty = —v(B(O, D) and K c B(xq, 2r9),

we consider the following two cases under the granted condition 1 < p < n/a.

Case 1 < p < q. Under this condition @, can be chosen to ensure n — y < a; < n. Utilizing the Fubini theorem
and [16, Lemma 1.27] we calculate

dv(z) B du(y)
(J |y—z|“1>d“(y )= j( J |y—z|“1>dv(z)
B(x0,2r9) K K B(xog,2r9)
< J ( Jy(B(xo, 2rp) N B(z, s))s™™" ds) dv(z)
K~ 0

21’0 [ee]

< J ( j + I >y(B(xo, 2r9) N B(z, 5))s™ ™" ds dv(z)
K S0 21

2ro

o0
< Ml j( j srran-lgg j(Zro)ysal_"_ldS) dv(2)

K 0 2ro
y+tag-n

< pllp, g,a(V(K))

The previous analysis guarantees

ytag-n ay(g-1)

(Ie 1) dp < vIB) Iy, g, (VK)) ™ (V(K)) ™™
B(xo,2r0)

q
< Mpllp, g,a(V(K)) P
Second, a combination of the Minkowski inequality and [16, Lemma 1.27] or [26, (2.4.7)] produces

( j (IalK)qd}l);SJ( j |y—z|<“-”>qdu<y));dv<z>

R"\B(x0,270) K R™\B(xg,2r0)
[ 1
< J( J s@M4-1y(B(z, s) N (R™ \ B(x, 2r0))) ds)qdv(z)
K 2r
< v(1<)|||,u|||§,q,a( J S/-(n-ag-1 ds)q
2rg

1 1
< My, g,a(VE))? .

Now, putting the first and second estimates together deduces

j 1) dpt < Ml .o (VD)

R"
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Case p>q>pn-aq(qg-1)"1)(n-ap)~l. Under this circumstance we easily find g < p < q/(q - 1) and
soq € (1, 2).Choosing a; asn — y < a, < n, we use the Holder inequality and the Fubini theorem to similarly

get
dviz) \"" ( dv(z) ) )‘H -
j ( j RS ) du(y) < ( J 1! TRELEC du(y) )  (u(B(xo, 210)))

B(xo,2r0) K B(xo0,2r0)
y+ag

< (Wl .0 (V) T ) Ml (VKO

y+(g-1ay

< Mullp,g,a(VEK)) — 7.

y2-9)
n

This in turn implies

| derordus | ((j|y—z|“1-"dv(z)>(j|y—z|“2-"dv<z))q_1)du(y)

B(x0,2r0) B(x0,2r0) K K
ay y+(g-Day
< (v(EB) ™ Mlullp,g,a(V(K)) —
-1
< (V)Y UNplly,g,a-

Meanwhile, just repeating the calculation made in the case p < g we can get

q
Ta1) T dp < My, g0 (VEK))?
R"\B(xo,2r0)

thereby finding

j L1 dpt < Ml .o (VD) .
]RTl

Step 2. Notice that 0 < g € Lp 1 can be written as g = lim;_,, g;j (cf. [25, p. 88]) with
j2
g =) (-1271g, +j1g,
i=1
Eij={xeR":(i-1)27 <gx) <i27},
Ej={xeR": gx) >j}.
Thus, an application of the Minkowski inequality, plus the estimate for ||I51k]| L obtained in Step 1, yields
j2

Magillzy < Y G = D27 Malp, s +jlals g
i=1

1 2 ; 1 1
< |I|ulllﬁ,q,a(20 - 1)27(v(Eij))? +j(v(E)))? )
i=1
1
< lpllp,q.allgilL,, -
Now, for f € L, 1 let g = |f]. Then sending j to co in the last estimation derives
1 1
Maflzs < MagliLs < Mullp,q,al8lz,, < Wpllp,q,alflL,, - O
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