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1 Introduction
It is well known that one of the fundamental tools for studying different questions related to coercive elliptic

equations and inequalities onℝN is the so-called Kato inequality [14].
One of the earlier and main contributions in this direction has been proved by Brezis [3]. As a conse-

quence of a modified Kato inequality he considered, among other things, distributional solutions of elliptic

inequalities of the form

∆u ≥ |u|q−1u onℝN , (1.1)

where q > 1. The main conclusion of Brezis is that if u ∈ Lq
loc

(ℝN) solves (1.1), then

u(x) ≤ 0 a.e. onℝN .

A number of important results can be deduced from this simple statement (see [3] for details).

Quasilinear versions of the Kato inequality have been studied recently in [8], where general a-priori esti-

mates and Liouville theorems have been proved for weak solutions of coercive quasilinear elliptic equations

and inequalities in divergence form; see also [1, 5, 6, 10, 11, 16] for related results.

The goal of this paper is to prove a modified version of the Kato inequality (see (3.1) below) for distribu-
tional solutions for a Laplacian operator on a Carnot group; see [2].

It should be noted that a similar Kato inequality has been proved in [8] for weak solutions, i.e., W1,2

loc

solutions. We point out, see Remark 3.5 below, that a Kato inequality for distributional solutions cannot be
deduced from the corresponding inequality valid for weak solutions even in the standard Euclidean frame-

work; see [8, Theorem 2.1].

This paper is organized as follows: Section 2 contains some preliminary material on Carnot groups. In

Section 3, we prove one of the main results of this paper (see Theorem 3.2) and discuss its relation with the
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results proved in [8]. In Section 4, we prove some uniqueness results for a general semilinear second-order

inequality and give some concrete applications. In Section 5, we shall briefly discuss the ideas pointed out in

the preceding section to systems of semilinear inequalities; see [9] for other applications of Kato inequalities

to semilinear elliptic systems. Finally, in Section 6 we prove a modified version of Kato complex inequalities

in the setting of Carnot groups and present some applications to the so-called reduction principles and to

uniqueness of solutions of complex problems; see [6].

2 Preliminaries on Carnot groups
In this section, we recall some preliminary facts concerning Carnot groups (for more information and proofs

we refer the interested reader to [2, 12]).

A Carnot group is a connected, simply connected, nilpotent Lie groupG of dimension N ≥ 2 with graded

Lie algebra G = V
1
⊕ ⋅ ⋅ ⋅ ⊕ Vr such that [V1, Vi] = Vi+1 for i = 1, . . . , r − 1 and [V

1
, Vr] = 0. A Carnot groupG

of dimension N can be identified, up to an isomorphism, with the structure of a homogeneous Carnot group
(ℝN , ∘ , δλ) defined as follows: We identifyG with ℝN endowed with a Lie group law ∘ . We consider ℝN split
into r subspacesℝN = ℝn1 × ℝn2 × ⋅ ⋅ ⋅ × ℝnr with n

1
+ n

2
+ ⋅ ⋅ ⋅ + nr = N and ξ = (ξ (1), . . . , ξ (r))with ξ (i) ∈ ℝni .

We shall assume that there exists a family of Lie group automorphisms, called dilation, δλ with λ > 0 of

the form δλ(ξ) = (λξ (1), λ2ξ (2), . . . , λrξ (r)). The Lie algebra of left-invariant vector fields on (ℝN , ∘) is G. For
i = 1, . . . , n

1
= l, let Xi be the unique vector field in G that coincides with ∂/∂ξ (1)i at the origin. We require

that the Lie algebra generated by X
1
, . . . , Xn

1

is the whole G.

With the above hypotheses, we call G = (ℝN , ∘ , δλ) a homogeneous Carnot group. The canonical sub-
Laplacian on G is the second-order differential operator L = ∑l

i=1 X2i . Now, let Y1, . . . , Yl be a basis of

span{X
1
, . . . , Xl}; the second-order differential operator

∆G =
l
∑
i=1
Y2i

is called a sub-Laplacian onG. We denote by Q = ∑r
i=1 ini the homogeneous dimension ofG. In the sequel, we

assume Q ≥ 3.

A nonnegative continuous function S : ℝN → ℝ+ is called a homogeneous norm on G in the case that

S(ξ) = 0 if and only if ξ = 0 and it is homogeneous of degree 1 with respect to δλ (i.e., S(δλ(ξ)) = λS(ξ)). We

say that a homogeneous norm is symmetric if S(ξ−1) = S(ξ).
The Lebesgue measure is the bi-invariant Haar measure. For any measurable set E ⊂ ℝN , we have

|δλ(E)| = λQ|E|. Since Y1, . . . , Yl generate the whole G, any sub-Laplacian ∆G satisfies the Hörmander hypo-

ellipticity condition. Moreover, the vector fields Y
1
, . . . , Yl are homogeneous of degree 1 with respect to δλ.

In what follows, we fix the vector fields Y
1
, . . . , Yl. In this setting, we use the symbol ∇

0
to denote the

vector field (Y
1
, . . . , Yl), and −div

0
:= ∇∗

0

, where ∇∗
0

is the formal adjoint of ∇
0
. Finally, we set

W1,2

loc

:= {u ∈ L2
loc

: |∇
0
u| ∈ L2

loc

}.

3 Kato’s inequality for a sub-Laplacian operator onG
In this section, we shall prove that a modified version of the Kato inequality for distributional solutions holds
for a sub-Laplacian operator on a Carnot groupG.

Similar inequalities can be proved for more general classes of linear differential operators. For instance,

one can handle second-order operators generated by a system of smooth vector fields in ℝN satisfying the

Hörmander condition, and left invariant differential operators on homogeneous groups; see [12]. However,

we shall not discuss these kinds of generalizations here.
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As usual, we denote by sign, sign

+
and u+ the functions defined by

sign(t) :=
{{{
{{{
{

1 if t > 0,

0 if t = 0,

−1 if t < 0,

sign

+(t) :=
{
{
{

1 if t > 0,

0 if t ≤ 0,

u+ := sign

+(u) u.

Throughout this paper, Ω ⊂ ℝN denotes an open subset.

Definition 3.1. Let f ∈ L1
loc

(Ω). A distributional solution of the inequality

∆Gu ≥ f inD�(Ω)

is a function u ∈ L1
loc

(Ω) such that for any nonnegative ϕ ∈ C 2

0

(Ω) we have that

∫
Ω

u∆Gϕ ≥ ∫
Ω

fϕ.

Theorem 3.2 (Kato inequality). Let u, f ∈ L1
loc

(Ω) be such that

∆Gu ≥ f inD�(Ω).

Then
∆Gu+ ≥ sign

+(u) f inD�(Ω) (3.1)

and
∆G|u| ≥ sign(u) f inD�(Ω). (3.2)

The proof is a consequence of the following lemma; see [1] for a related result.

Lemma 3.3. Let γ ∈ C 2(ℝ) be a convex function with bounded first derivative. Let u, f ∈ L1
loc

(Ω) be such that

∆Gu ≥ f inD�(Ω).

Then γ(u) ∈ L1
loc

(Ω) and
∆Gγ(u) ≥ γ�(u) f inD�(Ω).

Proof. We need to prove that for any nonnegative ϕ ∈ C 2

0

(Ω) we have

γ(u)ϕ ∈ L1(Ω),

and that the following inequality holds:

∫
Ω

γ(u)∆Gϕ ≥ ∫
Ω

γ�(u) fϕ.

Fix ϕ ∈ C 2

0

(Ω). Let (mη)η be a family of symmetric mollifiers associated to a fixed homogeneous norm S. Set
uη := u ⋆G mη in Ωη := {x ∈ Ω : dist(x, ∂Ω) > η}, that is,

uη(x) := ∫
Ω

u(y)mη(x ∘ y−1) dy = ∫
Ω

u(y−1 ∘ x)mη(y) dy, x ∈ Ωη .

For η small enough, it follows that supp(ϕ) ⊂ Ωη.
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Let x ∈ Ωη. Since mη(x ∘ ⋅−1) is a nonnegative test function in Ω, by using the Fubini–Tonelli theorem we

obtain

∫
Ω

uη(x)∆Gϕ(x) dx = ∫
Ω

∆Gϕ(x)(∫
Ω

u(y−1 ∘ x)mη(y) dy) dx

= ∫
Ω

mη(y)(∫
Ω

u(y−1 ∘ x)∆Gϕ(x) dx) dy

= ∫
Ω

mη(y)(∫
Ω

u(z)(∆Gϕ)(y ∘ z) dz) dy

= ∫
Ω

mη(y)(∫
Ω

u(z)∆G(z → ϕ(y ∘ z)) dz) dy

≥ ∫
Ω

mη(y)(∫
Ω

f(z)ϕ(y ∘ z) dz) dy

= ∫
Ω

mη(y)(∫
Ω

f(y−1 ∘ x)ϕ(x) dx) dy

= ∫
Ω

ϕ(x)(∫
Ω

f(y−1 ∘ x)mη(y) dy) dx

= ∫
Ω

ϕ(x)fη(x) dx,

that is,¹

∆Guη(x) ≥ fη(x) on Ωη .

On the other hand, by the convexity of γ it follows that

∆Gγ(uη) = γ�(uη)∆Guη + γ��(uη)|∇Lu|2 ≥ γ�(uη)∆Guη ,

which implies

∫
Ω

γ(uη)∆Gϕ ≥ ∫
Ω

γ�(uη)∆Guηϕ ≥ ∫
Ω

γ�(uη)fηϕ.

The convergence of γ(uη) → γ(u) in L1
loc

(Ω) is assured by the convergence of uη → u in L1
loc

(Ω) and the fact
that γ is a Lipschitz function (since γ� is bounded). By observing that

∫
Ω

γ�(uη)(x)fη(x)ϕ(x) dx = ∫
Ω

∫
Ω

γ�(uη)(x)ϕ(x)mη(x ∘ y−1)f(y) dy dx

= ∫
Ω

mη ⋆G (γ�(uη)ϕ)(y)f(y) dy,

it suffices to prove that

∫
Ω

mη ⋆G (γ�(uη)ϕ)(y)f(y) → ∫
Ω

γ�(u)ϕf.

To this end, we first claim that

mη ⋆G (γ�(uη)ϕ) → γ�(u)ϕ in L1(Ω). (3.3)

1 The above argument can be applied to a general second-order linear operator which is translation left invariant in a nilpotent

Lie group.
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Indeed, since γ� is continuous and uη → u a.e. in Ω (if necessary by passing to a subsequence), it follows that

γ�(uη)ϕ → γ�(u)ϕ a.e. in Ω. Now, by γ� being bounded, an application of the Lebesgue dominated conver-

gence gives γ�(uη)ϕ → γ�(u)ϕ in L1(Ω). Moreover,

!!!!!!!
∫
Ω

mη ⋆G (γ�(uη)ϕ)(y) − γ�(u)ϕ
!!!!!!!
=
!!!!!!!
∫
Ω

mη ⋆G (γ�(uη)ϕ)(y) − mη ⋆G γ�(u)ϕ + mη ⋆G γ�(u)ϕ − γ�(u)ϕ
!!!!!!!

≤
!!!!!!!
∫
Ω

mη ⋆G (γ�(uη)ϕ)(y) − mη ⋆G γ�(u)ϕ
!!!!!!!
+
!!!!!!!
∫
Ω

mη ⋆G γ�(u)ϕ − γ�(u)ϕ
!!!!!!!

≤ (∫
Ω

mη)
!!!!!!!
∫
Ω

(γ�(uη)ϕ) − γ�(u)ϕ
!!!!!!!
+
!!!!!!!
∫
Ω

mη ⋆G γ�(u)ϕ − γ�(u)ϕ
!!!!!!!
→ 0.

Next, if necessary by passing to a subsequence, we may suppose that the convergence in (3.3) is a.e. on Ω.

Now, since γ�(uη)ϕ is uniformly bounded by M := |γ�|∞|ϕ|∞, we deduce that

|mη ⋆G (γ�(uη)ϕ)| ≤ ∫
Ω

mηM ≤ M.

Noticing that mη ⋆G (γ�(uη)ϕ) has compact support contained in suptϕ + Bη ⊂ suptϕ + B
1
=: K, it follows

that

|mη ⋆G (γ�(uη)ϕ)|f ≤ MfχK ∈ L1
loc

(Ω).

Finally, by the Lebesgue theorem we have

∫
Ω

γ�(uη)fηϕ = ∫
Ω

mη ⋆G (γ�(uη)ϕ)(y)f(y) dy → ∫
Ω

γ�(u) fϕ dy.

This completes the proof.

Proof of Theorem 3.2. The idea is first to approximate the function sign

+
with a family of convex functions γϵ

having bounded derivatives, and then apply Lemma 3.3 above.

Let m ∈ C (ℝ) be nonnegative with supt(m) ⊂ [−1, 1] and ∫m = 1. For ϵ > 0, set mϵ := 1

ϵm( t−ϵϵ ) and con-
sider γϵ as the solution of the problem

γ��ϵ = mϵ with γ�ϵ(0) = γϵ(0) = 0.

Clearly, we have γϵ(t) = γ�ϵ(t) = 0 for t ≤ 0. In addition, γ�ϵ(t) = 1 for t > 2ϵ and 0 ≤ γϵ(t) ≤ t+, 0 ≤ γ�ϵ(t) ≤ 1.

This implies the pointwise convergence, as ϵ → 0, of γϵ(t) → t+ and γ�ϵ(t) → sign

+ t. Finally, by Lemma 3.3

we have

∫
Ω

γϵ(u)∆Gϕ ≥ ∫
Ω

γ�ϵ(u) fϕ,

and by the Lebesgue theorem we obtain

∫
Ω

u+∆Gϕ ≥ ∫
Ω

sign

+ ufϕ.

The proof of (3.2) follows from a similar argument as above, so we shall omit it.

Remark 3.4. Theorem 3.2 holds if we replace the functions sign

+
and u+ respectively with

sign

+
h(t) :=

{
{
{

1 if t > h,
0 if t ≤ h,

and u+h := (u − h)+, where h ∈ ℝ. To this end, we can argue as in the proof of Theorem 3.2, replacing γϵ(t) by
γϵ(t − h).
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Remark 3.5. Theorem 3.2 deals with L1
loc

(Ω) solutions of the inequality

∆Gu ≥ f in Ω,

while [8, Theorem 2.1] allows to considerW1,2

loc

(Ω) solutions.
One may try to prove (3.1) by mollifying the solution and then applying [8, Theorem 2.1]. In this case,

one would obtain

∆Gu+η ≥ sign

+(uη)fη in Ω.

Clearly, in order to prove (3.1) we need to know that

sign

+(uη) → sign

+(u)

at least a.e. This is not always possible. Indeed, we can construct a function u (even continuous) such that

each mollification uη has sign+(uη) ≡ 1, while sign

+(u) ̸≡ 1. We shall prove this when Ω = ]0, 1[.
Let {qn}n≥1 be the set of rational numbers contained in ]0, 1[. Fix 1 > ϵ > 0 and set

In := ]qn − ϵ2−n , qn + ϵ2−n[ ∩ ]0, 1[, I := ⋃
n≥1

In , S := [0, 1] \ I.

The set I is open and dense in [0, 1]. Moreover, 0 < |I| ≤ ϵ < 1, thus |S| > 0.

Next, for each n ≥ 1 let ϕn : [0, 1] → ℝ be a continuous nonnegative function such that ϕn(x) > 0 if and

only if x ∈ In and ‖ϕn‖∞ ≤ 1. Set

u := ∑
n≥1

ϕn2−n .

Since the above series is uniformly convergent, the function u is continuous. Moreover, u(x) > 0 if and only

if there exists n ≥ 1 such that ϕn(x) > 0. This is obviously equivalent to the fact that x ∈ In. In other words,

u vanishes on S and it is positive on I.
Let η > 0 and let uη be a mollification of u, that is, u ⋆ mη, where (mη)η is a standard family of mollifiers.

We claim that uη(x0) > 0 for any x
0
∈ ]0, 1[. Indeed, let x

0
∈ ]0, 1[. By our choice of {qn}n there exists n ≥ 1

such that |qn − x0| < η. Hence In ∩ ]x
0
− η, x

0
+ η[ ̸= 0 and

uη(x0) = ∫ u(y)mη(x0 − y) dy ≥ ∫
In∩|y−x0|<η

ϕn(y)2−nmη(x0 − y) dy > 0.

4 Applications to uniqueness of solutions
In this section, we consider weakly elliptic linear differential operators of the form

Lu := div(B(x)∇u) = divL(∇Lu),

and the associated uniqueness problem for the semilinear equation

Lu = f(u) + h on Ω.

Notice that since Lu = div(B(x)∇u), where B is a positive semidefinite matrix, by writing B as B = μT ⋅ μ
and defining divL = div(μT ⋅) and ∇L = μ∇, it follows that

Lu = div(μT ⋅ μ∇u) = divL(∇Lu).

This means that a Kato inequality holds for L; see [8].

Definition 4.1. Let f ∈ C (ℝ) and h ∈ L1
loc

(Ω). A weak solution of

Lu ≥ f(u) + h on Ω, (4.1)
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is a function

u ∈ W1,2

L,loc(Ω) := {u ∈ L2
loc

: |∇Lu| ∈ L2
loc

}

with f(u) ∈ L1
loc

(Ω), such that for any nonnegative ϕ ∈ C 1

0

(Ω) we have

−∫
Ω

∇Lu ⋅ ∇Lϕ ≥ ∫
Ω

(f(u) + h)ϕ.

If L = ∆G is a sub-Laplacian on a Carnot group, then a distributional solution of (4.1) is a function

u ∈ L1
loc

(Ω) such that f(u) ∈ L1
loc

(Ω), and for any nonnegative ϕ ∈ C 2

0

(Ω) we have

∫
Ω

u ⋅ ∆Gϕ ≥ ∫
Ω

(f(u) + h)ϕ.

Theorem 4.2. Let X be a subspace of L1
loc

(Ω) such that if u ∈ X, then u+ ∈ X. Let b : [0,∞[→ [0, +∞[ be a con-
tinuous function such that b(0) = 0 and the problem

Lv ≥ b(v) [∆Gu ≥ b(v)], v ≥ 0, on Ω, (4.2)

has no nontrivial weak [distributional] solution belonging to X.
Let h ∈ L1

loc

(Ω) and let f ∈ C (ℝ) be such that

f(t) − f(s) ≥ b(t − s) for any t > s.

Then the equation
Lv = f(v) + h [∆Gv = f(v) + h] on Ω (4.3)

has at most one weak [distributional] solution belonging to X.

Proof. Let h ∈ L1
loc

(Ω) and let u, v ∈ X be solutions of (4.3). The function u − v ∈ X is a weak solution of

L(u − v) = f(u) − f(v) on Ω.

An application of the appropriate Kato inequality (3.1) or [8, Theorem 2.1] yields

L((u − v)+) ≥ sign

+(u − v)(f(u) − f(v)) on Ω,

which in turn implies that the function w := (u − v)+ is a weak (or distributional) solution of

Lw ≥ sign

+(u − v)(f(u) − f(v)) ≥ sign

+(u − v)b(u − v) = b(w) on Ω.

In other words, w solves (4.2). Hence w ≡ 0 a.e. on Ω, that is, u ≤ v a.e. on Ω. Inverting the role of u and v,
the claim follows.

A concrete application of Theorem 4.2 is contained in the following result.

Theorem 4.3. Let f ∈ C (ℝ) be such that

f(t) − f(s) ≥ b(t − s) for any t > s, (4.4)

where b : [0, +∞[→ [0, +∞[ is a continuous function satisfying the following assumptions:
(i) b(0) = 0, b(t) > 0 for t > 0;
(ii) it holds that

+∞

∫
1

(
t

∫
1

b(s) ds)
− 1
2

dt < +∞; (4.5)

(iii) b is convex.



320 | L. D’Ambrosio and E. Mitidieri, Uniqueness and comparison principles

Let h ∈ L1
loc

(ℝN). Then the problem

∆Gu = f(u) + h inD�(ℝN)

has at most one distributional solution u ∈ L1
loc

(ℝN). Moreover, if h ≥ 0, then u ≤ 0 a.e. onℝN .

Proof. The obvious idea is to apply Theorem 4.2. To this end, it is enough to check that the inequality

∆Gv ≥ b(v), v ≥ 0, inD�(ℝN) (4.6)

has only the trivial solution. Indeed, let us assume that v ∈ L1
loc

(ℝN) is a solution of (4.6). By a mollification

argument (as in the proof of Lemma 3.3) we have

∆G(vη) ≥ (b(v))η .

Next, by the convexity of b and the Jensen inequality, it follows that

∆G(vη) ≥ b(vη), vη ≥ 0, onℝN . (4.7)

Now vη is smooth and solves (4.7) with the function b nondecreasing (indeed, it satisfies (i) and it is

convex) and satisfying (4.5), thus we are in the position to apply [7, Theorem 3.10] (by changing u := −vη),
so we deduce that vη ≡ 0. Thus, by letting η → 0 we obtain v ≡ 0.

Remark 4.4. When dealing with C 1

solutions, hypothesis (iii) can be relaxed by assuming that b is nonin-
creasing; see [7].

Corollary 4.5. Let q > 1 and let h ∈ L1
loc

(ℝN). The problem

∆Gu = |u|q−1u + h inD�(ℝN)

has at most one solution u ∈ Lq
loc

(ℝN). Moreover, if h ≥ 0, then u ≤ 0 a.e. onℝN .

Remark 4.6. The above result, as far it is concerned with uniqueness and nonpositivity of the possible solu-
tions, is the analog on Carnot groups of [3, Theorem 2].

Remark 4.7. All the above results still holdwhenone replaces the function h ∈ L1
loc

withadistribution h ∈ D�
.

Theorem 4.3 allows us to generalize Corollary 4.5 to a more general class of nonlinearities, as the following

example shows.

Example 4.8. Let f be defined by

f(t) := {
tq1 if t ≥ 0,

−|t|q2 if t < 0,

where q
1
, q

2
> 1. Theorem 4.3 applies to such f . Indeed, for t ≥ 0 define g(t) := min{tq1 , tq2 }. The function b

that we need is the convexification of cg for a small constant c > 0.

We claim that there exists a constant c > 0 such that for any t > s we have

f(t) − f(s) ≥ cg(t − s).

Assume that q
1
≤ q

2
. By the well-known inequality

tp − sp ≥ cp(t − s)p for t > s and p > 1,

we have the following three cases:

(i) Let t > s > 0. Then

f(t) − f(s) = tq1 − sq1 ≥ cq
1

(t − s)q1 ≥ cq
1

g(t − s).

(ii) Let 0 > t > s. Then

f(t) − f(s) = −|t|q2 + |s|q2 ≥ cq
2

(|s| − |t|)q2 ≥ cq
2

g(|s| − |t|) = cq
2

g(t − s).
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(iii) Let t > 0 > −s. The proof of the claim will follow if we prove that

tq1 + sq2 ≥ cg(t + s) for any t, s > 0.

By using the inequality

ap + bp ≥ 2

1−p(a + b)p for a, b > 0 and p > 1

and distinguishing three different cases, we have the following:

(a) Let s ≥ 1 and t > 0. Then

tq1 + sq2 ≥ tq1 + sq1 ≥ 2

1−q
1 (t + s)q1 ≥ 2

1−q
1g(t + s).

(b) Let 1 > t > 0 and 1 > s > 0. Then

tq1 + sq2 ≥ tq2 + sq2 ≥ 2

1−q
2 (t + s)q2 ≥ 2

1−q
2g(t + s).

(c) Let t ≥ 1 and 1 > s > 0. Then

tq1 + sq2 ≥ tq1 ≥ 2

−q
1 (t + 1)q1 ≥ 2

−q
1 (t + s)q1 ≥ 2

−q
1g(t + s).

Next, by choosing

c := min{cq
1

, cq
2

, 2

1−q
1

, 2

1−q
2

, 2

−q
1},

we get the claim.

By defining b := conv(cg), it follows that assumptions (4.4) and Theorem 4.3 (i) and (iii) are fulfilled.

Notice that Theorem 4.3 (ii) is satisfied since at infinity the function b behaves like tq1 with q
1
> 1.

We point out that f does not satisfy the Brezis condition f �(t) ≥ |t|q−1 for any t ∈ ℝ unless q
1
= q

2
. The

interested reader may compare this with [3].

5 Some applications to a class of semilinear systems
In this section, as in the previous Section 4, we consider weakly elliptic linear differential operators of the

form Lu = divL(∇Lu). We refer to Definition 4.1 for the appropriate notion of solutions.

Theorem 5.1. Let X be a subspace of L1
loc

(Ω) such that if u ∈ X, then u+ ∈ X. Let b : [0,∞[→ [0, +∞[ be a con-
tinuous function such that b(0) = 0 and the problem

Lv ≥ b(v) [∆Gv ≥ b(v)], v ≥ 0 on Ω (5.1)

has no nontrivial weak [distributional] solutions belonging to X. Let f ∈ C (ℝ) be such that

f(t) + f(s) ≥ b(t + s) for any t > −s. (5.2)

Let (u, v) ∈ X × X be a weak [distributional] solution of the system of inequalities

{
Lv ≥ f(u),
Lu ≥ f(v)

[{
∆Gv ≥ f(u),
∆Gu ≥ f(v)

] on Ω. (5.3)

Then the following assertions hold:
(i) u + v ≤ 0 a.e. on Ω.
(ii) Let C ≥ 1 and assume that the function f (t) := −Cf(−t) satisfies (5.2). Let (u, v) ∈ X × X be a weak [distri-

butional] solution of the system

{
Cf(u) ≥ Lv ≥ f(u),
Cf(v) ≥ Lu ≥ f(v)

[{
Cf(u) ≥ ∆Gv ≥ f(u),
Cf(v) ≥ ∆Gu ≥ f(v)

] on Ω. (5.4)
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Then u = −v a.e. on Ω. Therefore, u satisfies

Cf(u) ≥ −Lu ≥ f(u) [Cf(u) ≥ −∆Gu ≥ f(u)] on Ω, (5.5)

and the function f must be odd on the range of u, that is, for any t ∈ u(Ω) the condition f(t) = −f(−t) holds.

Proof. Let (u, v) ∈ X × X be a solution of (5.3). The function u + v ∈ X solves

L(u + v) ≥ f(v) + f(u) on Ω.

An application of the Kato inequality yields

L((u + v)+) ≥ sign

+(u + v)(f(v) + f(u)) on Ω,

which in turn implies that the function w := (u + v)+ is a weak solution of

Lw ≥ sign

+(u + v)(f(u) + f(v)) ≥ sign

+(u + v)b(u + v) = b(w) on Ω,

that is, w solves (5.1). Hence w ≡ 0 a.e. on Ω, that is, u + v ≤ 0 a.e. on Ω. This proves case (i).

(ii) The functions ū := −u and v̄ := −v satisfy also the inequalities

Lū ≥ −Cf(v) = ̄f (v̄) and Lv̄ ≥ ̄f (ū).

Since condition (5.2) is satisfied by
̄f , from (i) we have ū + v̄ ≤ 0, that is, u = −v.

From the first inequality in (5.4) it follows that u solves (5.5). Adding (5.5) and the second inequality

of (5.4) (and taking into account that v = −u), we obtain

C(f(u) + f(−u)) ≥ 0 ≥ f(u) + f(−u).

This last chain of inequalities implies that f(u) = −f(−u), completing the proof.

Remark 5.2. (i) If f is odd and (5.2) holds, then the function f in statement (ii) satisfies condition (5.2) as

well.

(ii) If f is odd and (5.2) holds, then f is nondecreasing.
(iii) If f is odd, then (5.2) is equivalent to (4.4).

A concrete application of Theorem 5.1 is given by the following result.

Theorem 5.3. Let f ∈ C (ℝ) satisfy (5.2), where b : [0, +∞[→ [0, +∞[ is a continuous function such that
(i) b(0) = 0, b(t) > 0 for t > 0;
(ii) it holds

+∞

∫
1

(
t

∫
1

b(s) ds)
− 1
2

dt < +∞;

(iii) b is convex.
Let (u, v) be a distributional solution of the problem

{
∆Gv ≥ f(u),
∆Gu ≥ f(v)

inD�(ℝN).

Then the conclusions of Theorem 5.1 hold.

Proof. It is enough to check that the inequality

∆Gw ≥ b(w), w ≥ 0, inD�(ℝN),

has only the trivial solution. This follows from the proof of Theorem 4.3.

Remark 5.4. Dealing withC 1

solutions, hypothesis (iii) can be weakened, assuming that b is nonincreasing.
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Corollary 5.5. Let q > 1. Let (u, v) be a distributional solution of the problem

{
∆Gv = |u|q−1u,
∆Gu = |v|q−1v

inD�(ℝN).

Then u = −v a.e. onℝN and
−∆Gu = |u|q−1u inD�(ℝN).

An immediate consequence is the following corollary.

Corollary 5.6. Let q > 1. Let (u, v) be a distributional solution of the problem

{
−∆Gv = |u|q−1u,
−∆Gu = |v|q−1v

inD�(ℝN).

Then u = v a.e. onℝN .

The above results improve some theorems obtained in [4].

6 A note on the complex case
In this section, we shall prove a complex version of some results stated in Section 3 and [8] in the framework

of Carnot groups. For the Euclidean case, see [13, 14].

Theorem 6.1 (Kato’s inequality: The complex case). Let u, f ∈ L1
loc

(Ω;ℂ) be such that

∆Gu = f inD�(Ω).

Then
∆G|u| ≥ ℜ(

ū
|u|
f) inD�(Ω). (6.1)

The proof is based on the following lemma.

Lemma 6.2. Let γ ∈ C 2(ℝ2) be a convex function with bounded first derivatives. Let u, f ∈ L1
loc

(Ω;ℂ) be such
that

∆Gu = f inD�(Ω).

Then γ(u) ∈ L1
loc

(Ω) and

∆Gγ(u) ≥ ℜ(2
∂γ
∂z

(u) f),

where ∂γ
∂z is the Wirtinger operator defined by

∂γ
∂z

(x, y) = 1

2

(
∂γ
∂x

− i ∂γ
∂y )

.

Proof. We shall use the same notations as in the proof of Lemma 3.3. Without loss of generality, we assume

that u and f are smooth (if this is not the casewe can use amollification process as in the proof of Lemma3.3).

Let u := s + it. By computation it follows

∆Gγ(u) = γxx|∇Ls|2 + 2γxy∇Ls ⋅ ∇L t + γyy|∇L t|2 + γx∆Gs + γy∆G t.

We claim that

∆Gγ(u) ≥ γx∆Gs + γy∆G t.
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Indeed, taking into account that γ is convex and writing α
1
e
1
:= ∇Ls and α2e2 := ∇L t with unitary vectors ei

and real numbers αi, we have

γxx|∇Ls|2 + 2γxy∇Ls ⋅ ∇L t + γyy|∇L t|2 = γxxα2
1

+ ϵ2γxyα1α2 + γyyα2
2

+ 2γxyα1α2[e1 ⋅ e2 − ϵ]
≥ 2γxyα1α2[e1 ⋅ e2 − ϵ], (6.2)

where ϵ ∈ {1, −1}. By a suitable choice of ϵ, the right-hand side of inequality (6.2) becomes nonnegative, and

we get the claim.

Since

2f ∂γ
∂z

= (∆Gs + i∆G t)(
∂γ
∂x

− i ∂γ
∂y )

= γx∆Gs + γy∆G t + i(γx∆G t − γy∆Gs),

we complete the proof.

Proof of Theorem 6.1. Apply Lemma 6.2 to the convex function γ(x, y) := √ϵ2 + x2 + y2 and let ϵ → 0. We

leave the remaining details to the interested reader.

As an application of Theorem 6.1 we have the following result.

Theorem 6.3 (Reduction principle: Complex case). Let Ω ⊂ ℝN be an open set and let f : Ω × ℝ → ℝ be
a Caratheodory function. Let X ⊂ L1

loc

(Ω). Assume that the problem

∆Gv ≥ f(x, v), v ≥ 0, inD�(Ω) ∩ X,

has no nontrivial distributional solutions. If u ∈ L1
loc

(Ω;ℂ) is a complex distributional solution of

∆Gu = f(x, |u|) u
|u|

inD�(Ω)

such that |u| ∈ X, then u ≡ 0 a.e. on Ω.

Proof. By (6.1) it follows that the function |u| is a nonnegative distributional solution of

∆G|u| ≥ f(x, |u|) inD�(Ω) ∩ X.

By assumption it follows that |u| ≡ 0 a.e. on Ω.

We end this section with easy consequences that follow from the proof of Theorem 4.3.

Theorem 6.4. Let f ∈ C (ℝ) be such that

−f(−t), f(t) ≥ b(t) > 0 for any t > 0,

where b : [0, +∞[→ [0, +∞[ is a continuous convex function satisfying (4.5). If u ∈ L1
loc

(ℝN ;ℂ) is a complex
distributional solution of

∆Gu = f(x, |u|) u
|u|

inD�(ℝN),

then u ≡ 0 a.e. onℝN .

Corollary 6.5. Let q > 1 and h ∈ L1
loc

(ℝN ;ℂ). Then the problem

∆Gu = |u|q−1u + h inD�(ℝN) (6.3)

has at most one distributional solution u ∈ Lq
loc

(ℝN ;ℂ). Moreover, if there exists θ ∈ ℝ such that eiθh ∈ ℝ, then
eiθu ∈ ℝ.

Proof. Let u and v be distributional solutions of (6.3) and set w := u − v. The function w satisfies

∆Gw = |u|q−1u − |v|q−1v.
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Hence, by the Kato inequality (6.1) we have

∆G|w| ≥ ℜ((|u|q−1u − |v|q−1v) ⋅ w
|w| )

.

Now, by a well-known inequality (see for example [15]) it follows that

ℜ(
(|u|q−1u − |v|q−1v) ⋅ (u − v)

|u − v| ) =
(|u|q−1u − |v|q−1v) ⋅ (u − v)

|u − v|
≥ 2

1−q|u − v|q .

Thus the uniqueness follows from the fact that

∆G|w| ≥ 2

1−q|w|q â⇒ w = 0 a.e. onℝN .

The second claim is a consequence of the uniqueness property. Indeed, if θ = 0, that is, if h is a real

function, since u and u are solutions of (6.3), it follows that u = u. This proves the claim for θ = 0. If θ ̸= 0 it

suffices to multiply (6.3) by eiθ and apply the uniqueness property.
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