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Abstract: In this paper, we concern ourselves with the following Kirchhoff-type equations:

{{
{{
{

−(a + b ∫
ℝ3

|∇u|2 dx)∆u + Vu = f(u) inℝ3,

u ∈ H1(ℝ3),

where a, b and V are positive constants and f has critical growth. We use variational methods to prove the
existence of ground state solutions. In particular, we do not use the classical Ambrosetti–Rabinowitz condi-
tion. Some recent results are extended.
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1 Introduction and main results
Consider the following Kirchhoff-type problem:

{{
{{
{

−(a + b ∫
ℝ3

|∇u|2 dx)∆u + Vu = f(u) inℝ3,

u ∈ H1(ℝ3),
(1.1)

where a, b and V are positive constants and f(u) satisfies the following hypotheses:
(f1) f(u) ∈ C(ℝ,ℝ) is odd.
(f2) limu→0+ f(u)/u = 0.
(f3) limu→+∞ f(u)/u5 = μ > 0.
(f4) There exist M > 0 and 2 < q < 6 such that f(u) ≥ μu5 +Muq−1 for u ≥ 0.

Kirchhoff-type problems are related to the stationary analogue of the equation

utt − (a + b∫
Ω

|∇u|2 dx)∆u = f(x, u) in Ω,

where u denotes the displacement, f(x, u) the external force, and b the initial tension while a is related to the
intrinsic properties of the string (such as Young’s modulus). Equations of this type arise in the study of string
or membrane vibration and were first proposed by Kirchhoff in 1883 (see [15]) to describe the transversal
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oscillations of a stretched string, particularly, taking into account the subsequent change in string length
caused by oscillations. Kirchhoff-type problems are often referred to as being nonlocal because of the pres-
ence of the integral over the entire domain Ω, which provokes some mathematical difficulties. Similar
nonlocal problems also model several physical and biological systems, where u describes a process which
depends on the average of itself, for example, the population density; see [10, 11], and the references therein.

If we set a = 1, b = 0, then (1.2) reduces to the following Schrödinger equation:

−∆u + V(x)u = f(u) inℝN .

There exist many studies on the existence and multiplicity of solutions for this equation. We refer to
[2–5, 20, 21] and the references therein.

There has been a lot of research on the existence of nontrivial solutions to (1.1) with subcritical nonlin-
earities by variational methods; see, e.g., [17–19, 24] and the references therein. Recently, some researchers
have considered the existence of ground state solutions for Kirchhoff-type problems with critical Sobolev
exponent. By using theNeharimanifold,Wang and Tian [23] proved the existence andmultiplicity of positive
ground state solutions for the following semilinear Kirchhoff problem with critical growth:

{{{
{{{
{

−(ε2a + bε ∫
ℝ3

|∇u|2 dx)∆u +M(x)u = f(u) + u5, x ∈ ℝ3,

u > 0, u ∈ H1(ℝ3),
(1.2)

where ε is a positive parameter and f is a C1 and subcritical function such that the following hold:
(F1) f(t) = o(t3) as t → 0 and f(t) ≡ 0 for all t ≤ 0.
(F2) f(t)t−3 is strictly increasing for t > 0.
(F3) f(t) = o(t5) as |t| → +∞.
We pull the energy level down below the following critical level: 13 (aS)

3
2 + 1

12b
3S6. He and Zou in [13] also

considered (1.2), where f(t) satisfies (F1), (F2) and the following:
(F4) νF(t) = ν ∫t0 f(s)ds ≤ tf(t) holds for some ν > 4.
(F5) f(t) = o(tq) as t →∞, 3 < q < 5.
By the use of variational methods, the authors showed that there exist ε∗ > 0, λ∗ > 0 such that for any ε > ε∗,
λ > λ∗, problem (1.2) has at least one positive ground state solution in H1(ℝ3).

Under conditions (F1)–(F4), by variational methods, Li and Ye [16] proved the existence of positive
ground state solutions for the following Kirchhoff-type problem:

{{{
{{{
{

−(a + b ∫
ℝ3

|∇u|2 dx)∆u + u = f(u) + u5, x ∈ ℝ3,

u ∈ H1(ℝ3), u > 0, x ∈ ℝ3.

Particularly, Alves and Figueiredo [1] obtained the existence of positive solutions for a periodic Kirchhoff
equation with critical or subcritical nonlinearity.

Motivated by the above works described, we borrow an idea from [25] to prove the existence of ground
state solutions for problem (1.1) with a general nonlinearity in the critical growth. Our main result is the
following.

Theorem 1.1. Assume that (f1)–(f4) hold, then for 2 < q ≤ 4 with M > 0 sufficiently large or 4 < q < 6, prob-
lem (1.1) possesses a radial ground state solution.

Remark 1.2. Conditions (f1)–(f4) were introduced in [25] to obtain the existence of ground state solutions
for a class of Schrödinger–Poisson equations with critical growth. An interesting question now is whether
the same existence results occur to the nonlocal problem (1.1) with critical growth. In this paper, we study
problem (1.1) and give some positive answers. Theorem 1.1 extends the main result in [25] to the Kirchhoff-
type equation.

Remark 1.3. Set V = 1 in (1.1). Compared to [16, Theorem 1.3], we need not consider the usual Ambrosetti–
Rabinowitz (AR) condition (F4), which is restrictive. The lack of the (AR)-condition gives rise to two obstacles
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to the standard mountain pass arguments both in checking the geometrical assumptions in the functional
and in proving the boundedness of its (PS) sequences. In the present paper, we use another method to obtain
our results. Moreover, there exist some functions which satisfy our conditions (f1)–(f4), but do not satisfy the
conditions of [16]. For example, the function f(t) = μt5 +Mt3, μ,M > 0, satisfies our conditions (f1)–(f4), but
does not satisfy conditions (F3) and (F4) in [16]. For this reason, Our main results can be viewed as a partial
extension of [16].

The outline of the paper is as follows: In Section 2, we present some preliminary results. In Section 3, we give
the proof of Theorem 1.1.

Notations. We use the following notations:
∙ H1(ℝ3) is the Sobolev space equipped with the norm

‖u‖H1(ℝ3) = ∫
ℝ3

(|∇u|2 + u2) dx.

∙ Define
‖u‖2 := ∫

ℝ3

(a|∇u|2 + Vu2) dx for u ∈ H1(ℝ3).

Note that ‖ ⋅ ‖ is an equivalent norm on H1(ℝ3).
∙ For any 1 ≤ s ≤ ∞, we denote by

‖u‖Ls := (∫
ℝ3

|u|s dx)
1
s

the usual norm of the Lebesgue space Ls(ℝ3).
∙ For any x ∈ ℝ3, we set

Br(x) ≜ {y ∈ ℝ3 : |x − y| < r}.

∙ Let D1,2(ℝ3) := {u ∈ L6(ℝ3) : ∇u ∈ L2(ℝ3)} be the Sobolev space equipped with the norm

‖u‖2D1,2(ℝ3) := ∫
ℝ3

|∇u|2 dx.

∙ S denotes the best Sobolev constant

S := inf
u∈D1,2(ℝ3)\{0}

∫ℝ3 |∇u|
2 dx

(∫ℝ3 u
6 dx) 13

.

∙ C denotes various positive constants.

2 Preliminaries
It is clear that problem (1.1) are the Euler–Lagrange equations of the functional I : H1(ℝ3) → ℝ defined by

I(u) = 12 ‖u‖
2 +

b
4(∫
ℝ3

|∇u|2 dx)
2
− ∫
ℝ3

F(u) dx, (2.1)

where F(u) = ∫u0 f(t) dt. Obviously, by (f1)–(f3), we can obtain that I is a well-defined C1 functional and
satisfies

⟨I󸀠(u), v⟩ = ∫
ℝ3

(a∇u∇v + Vuv) dx + b ∫
ℝ3

|∇u|2 dx ∫
ℝ3

∇u∇v dx − ∫
ℝ3

f(u)v dx

for v ∈ H1(ℝ3). For simplicity, by (f4), we may assume that μ = 1. Let g(t) = f(t) − t5. Then

I(u) = 12 ‖u‖
2 +

b
4(∫
ℝ3

|∇u|2 dx)
2
− ∫
ℝ3

G(u) dx − 16 ∫
ℝ3

u6 dx,
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where G(u) = ∫u0 g(t) dt. It is well known that u ∈ H1(ℝ3) is a critical point of the functional I if and only if u
is a weak solution of (1.1).

Let E := H1
r (ℝ3) = {u ∈ H1(ℝ3) : u is radial}. Then, by the principle of symmetric criticality, a critical

point of I on E is a critical point of I on H1(ℝ3). We refer the readers to [6, 12]. Thus, we only need to look
for critical points of I on E. To complete the proof of our theorem, the following result will be needed in our
argument.

Theorem 2.1 (See [14]). Let (X, ‖ ⋅ ‖) be a Banach space and h ⊂ ℝ+ an interval. Consider the following family
of C1 functionals on X:

Iλ(u) = A(u) − λB(u), λ ∈ h,

with B nonnegative and either A(u) → +∞ or B(u) → +∞ as ‖u‖ → ∞. We assume there are two points v1, v2
in X such that

cλ = inf
γ∈Γλ

max
t∈[0,1]

Iλ(γ(t)) > max{Iλ(v1), Iλ(v2)} for all λ ∈ h,

where
Γλ = {γ ∈ C([0, 1], X) : γ(0) = v1, γ(1) = v2}.

Then for almost every λ ∈ h there is a sequence {un} ⊂ X such that
(i) {un} is bounded,
(ii) Iλ(un) → cλ,
(iii) I󸀠λ(un) → 0 in the dual X−1 of X.
Moreover, the map λ → cλ is continuous from the left.

3 Proof of the main result
This section is devoted to the proof of Theorem1.1. According to Theorem2.1,we need the following lemmas.

Lemma 3.1. If uλ, for λ ∈ [12 , 1], is a critical point of Iλ, then uλ satisfies the following Pohožaev-type identity:

1
2 ∫
ℝ3

a|∇u|2 dx + b2(∫
ℝ3

|∇u|2 dx)
2
+
3
2 ∫
ℝ3

Vu2 dx − 3λ ∫
ℝ3

F(u) dx = 0.

Since the proof can be done as in [16], we omit it here.

Lemma 3.2. Assume that conditions (f1), (f2)–(f4) are satisfied. Then the conclusions of Theorem 2.1 hold.

Proof. By Theorem 2.1, we set

X = E, h = [12 , 1], A(u) = 12 ‖u‖
2 +

b
4(∫
ℝ3

|∇u|2 dx)
2
, B(u) = ∫

ℝ3

F(u) dx.

By (f3)–(f4), we obtain that f(u) is odd and by the definition of A(u), we can see that B(u) ≥ 0 for u ∈ E and
A(u) → +∞ as ‖u‖ → ∞. By (f1)–(f3), for any ε > 0, there exists C(ε) > 0 such that

|F(u)| ≤ εu2 + C(ε)u6. (3.1)

Then, by the Sobolev embedding theorem, there holds

Iλ(u) =
1
2 ‖u‖

2 +
b
4(∫
ℝ3

|∇u|2 dx)
2
− λ ∫
ℝ3

F(u) dx ≥ 12 ‖u‖
2 − ∫
ℝ3

εu2 dx − ∫
ℝ3

C(ε)u6 dx ≥ C‖u‖2 − C‖u‖6,

which implies that there exists ρ > 0 small enough and α > 0 such that

Iλ(u) ≥ α > 0 for all ‖u‖ = ρ. (3.2)
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By (f4) and (2.1), for ϕ ∈ E, ϕ ≥ 0 and ϕ ̸≡ 0, we have

Iλ(tϕ) ≤
t2

2 ‖ϕ‖
2 +

bt4

4 (∫
ℝ3

|∇ϕ|2 dx)
2
−
Mtq

2q ∫
ℝ3

|ϕ|q dx − t6

12 ∫
ℝ3

|ϕ|6 dx → −∞ as t → +∞.

Taking v2 = t1ϕ with t1 > 0 large enough, we have ‖v2‖ > ρ and

Iλ(v2) < 0 for all λ ∈ [12 , 1]. (3.3)

On the other hand, Iλ(0) = 0. Set v1 = 0; then inequalities (3.2) and (3.3) imply that the conclusions of The-
orem 2.1 hold.

Lemma 3.3. Assume that (f1)–(f4) hold. Then

0 < cλ < c∗λ :=
abS3

4λ +
b3S6

24λ2
+
(b2S4 + 4aλS) 32

24λ2

for q ∈ (2, 4] with M sufficiently large or q ∈ (4, 6).

Proof. For ε, r > 0, define

uε(x) =
φ(x)ε 1

4

(ε + |x|2) 12
,

where φ ∈ C∞0 (B2r(0)), 0 ≤ φ ≤ 1 and φ|Br(0) ≡ 1. Using the method of [9], we obtain

∫
ℝ3

|∇uε|2 dx = K1 + O(ε
1
2 ), ∫
ℝ3

|uε|6 dx = K2 + O(ε
3
2 ) (3.4)

and

∫
ℝ3

|uε|t dx =
{{{{
{{{{
{

Kε
t
4 , t ∈ [2, 3),

Kε
3
4 |ln ε|, t = 3,

Kε
6−t
4 , t ∈ (3, 6),

(3.5)

where K1, K2, K are positive constants. Moreover, the best Sobolev constant is S = K1K−1/32 . By (3.4), we have

∫ℝ3 |∇uε|
2 dx

(∫ℝ3 u
6
ε dx)

1
3
= S + O(ε

1
2 ).

By Lemma 3.2 and the definition of cλ, we can deduce that cλ ≤ supt≥0 Iλ(tuε). Let

h(t) = t
2

2 ‖uε‖
2 +

bt4

4 (∫
ℝ3

|∇uε|2 dx)
2
−
λt6

6 ∫
ℝ3

u6ε dx for all t ≥ 0.

Note that h(t) attains its maximum at

t0 = (
b(∫ℝ3 |∇uε|

2 dx)2 + √b2(∫ℝ3 |∇uε|
2 dx)4 + 4λ‖uε‖2 ∫ℝ3 u

6
ε dx

2λ ∫ℝ3 u
6
ε dx

)
1
2

.

Then

max
t≥0

h(t) =
b‖uε‖2(∫ℝ3 |∇uε|

2 dx)2

4λ ∫ℝ3 u
6
ε dx

+
b3(∫ℝ3 |∇uε|

2 dx)6

24λ2(∫ℝ3 u
6
ε dx)2
+
[b2(∫ℝ3 |∇uε|

2 dx)4 + 4λ ∫ℝ3 u
6
ε dx‖uε‖2]

3
2

24λ2(∫ℝ3 u
6
ε dx)2

=
abS3

4λ +
b3S6

24λ2
+
(b2S4 + 4aλS) 32

24λ2
+ O(ε

1
2 ) := c∗λ + O(ε

1
2 )

for ε > 0 small enough.
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Obviously, we see that there exists 0 < t1 < 1 such that for ε < 1, we have

sup
0≤t≤t1

Iλ(tuε) ≤ sup
0≤t≤t1
[
1
2 t

2‖uε‖2 +
b
4 t

4(∫
ℝ3

|∇uε|2 dx)
2
] ≤ sup

0≤t≤t1
(
1
2 t

2‖uε‖2 + Ct4‖uε‖4) ≤ c∗λ . (3.6)

By (f4) , we have

Iλ(tuε) = h(t) − λ ∫
ℝ3

G(tuε) dx ≤ h(t) − λ
M
q
tq ∫
ℝ3

|uε|q dx ≤ h(t) − CMtq ∫
ℝ3

|uε|q dx. (3.7)

It follows from (3.4), (3.5) and (3.7) that there exists 0 < ε0 < 1 such that for ε < ε0, we have

lim
n→∞

Iλ(tuε) = −∞.

Thus, there exists t2 > 0 such that
sup
t≥t2

Iλ(tuε) ≤ c∗λ . (3.8)

From (3.7) and the definition of h(t), we have

sup
t1≤t≤t2

Iλ(tuε) ≤ sup
t≥0

h(t) − CM ∫
ℝ3

|uε|q dx ≤
abS3

4λ +
b3S6

24λ2
+
(b2S4 + 4aλS) 32

24λ2
+ O(ε

1
2 ) − CM ∫

ℝ3

|uε|q dx. (3.9)

For q ∈ (2, 4], fix ε ∈ (0, ε0), it follows from (3.9) that

sup
t1≤t≤t2

Iλ(tuε) < c∗λ for M sufficiently large. (3.10)

For q ∈ (4, 6), by (3.5) and (3.9), we obtain

sup
t1≤t≤t2

Iλ(tuε) ≤ c∗λ + O(ε
1
2 ) − CO(ε

6−q
4 ). (3.11)

Since 6−q
4 <

1
2 , then there exists ε1 ∈ (0, ε0) small enough such that for ε ∈ (0, ε1), we have

sup
t1≤t≤t2

Iλ(tuε) ≤ c∗λ . (3.12)

By (3.6), (3.8) and (3.10)–(3.12), the proof of Lemma 3.3 is complete.

Lemma 3.4. Set

Λ = lim
n→∞
∫
ℝ3

|∇un|2 dx and Jλ(u) =
1
2 ‖u‖

2 +
bΛ2

2 ∫
ℝ3

|∇u|2 dx − λ ∫
ℝ3

F(u) dx.

If J󸀠λ(u) = 0, where λ ∈ [
1
2 , 1], then Jλ(u) ≥ 0.

Proof. Since ⟨J󸀠λ(u), u⟩ = 0, by Lemma 3.1, we get the following the Pohožaev-type identity:

1
2 ∫
ℝ3

a|∇u|2 dx + bΛ
2

2 ∫
ℝ3

|∇u|2 dx + 32 ∫
ℝ3

Vu2 dx − 3λ ∫
ℝ3

F(u) dx = 0.

Then we get that

1
6 ∫
ℝ3

a|∇u|2 dx + bΛ
2

6 ∫
ℝ3

|∇u|2 dx + 12 ∫
ℝ3

Vu2 dx − λ ∫
ℝ3

F(u) dx = 0. (3.13)

Combining (3.13) with the definition of Jλ(u), we obtain that

Jλ(u) =
1
3 ∫
ℝ3

a|∇u|2 dx + bΛ
2

3 ∫
ℝ3

|∇u|2 dx ≥ 0.
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Using a notion similar to [16, Lemma 3.6], we can obtain the following result.

Lemma 3.5. For s, t > 0 , the system

{{{
{{{
{

Γ(t, s) = t − aS( s + tλ )
1
3 = 0,

Υ(t, s) = s − bS2( s + tλ )
2
3 = 0

has a unique solution (t0, s0). Moreover, if

{
Γ(t, s) ≥ 0,
Υ(t, s) ≥ 0,

then t ≥ t0 and s ≥ s0, where

t0 =
abS3 + a√b2S6 + 4λaS3

2λ , s0 =
bS6 + 2λabS3 + b2S3√b3S6 + 4λaS3

2λ2
.

Lemma 3.6. Assume that (f1)–(f3) hold. If {un} ⊂ E, for λ ∈ [12 , 1], is a sequence such that ‖un‖ < C, Iλ(un)→ cλ,
I󸀠λ(un) → 0, and, moreover, cλ < c∗λ , then {un} has a strong convergent subsequence in E.

Proof. Since ‖un‖ < C in E, there exists a u ∈ E such that

un ⇀ u weakly in H, un → u strongly in Ls(ℝ3) for all s ∈ (2, 6).

Set
Λ = lim

n→∞
∫
ℝ3

|∇un|2 dx.

By Lemma 3.4 and the fact that cλ < c∗λ , we have

cλ − Jλ(u) ≤ c∗λ . (3.14)

Usinganargument similar to [7, Radial LemmaA.II.], by theboundedness of {un},wehave lim|x|→∞ un(x) = 0.
Since

lim
|t|→∞

G(t)
t2 + t6
= 0 and lim

t→0

G(t)
t2 + t6
= 0,

we also get
∫
ℝ3

(u2n + u6n) dx < ∞.

By the compactness lemma of Strass [22], one has

lim
n→∞
∫
ℝ3

(G(un) − G(u)) dx = 0. (3.15)

Similarly,
lim
n→∞
∫
ℝ3

(g(un)un − g(u)u) dx = 0. (3.16)

Setting ωn = un − u, due to Brezis–Lieb (see [8]), we have

∫
ℝ3

|∇ωn|2 dx = ∫
ℝ3

|∇un|2 dx − ∫
ℝ3

|∇uλ|2 dx + o(1),

∫
ℝ3

|ωn|6 dx = ∫
ℝ3

|un|6 dx − ∫
ℝ3

|uλ|6 dx + o(1),

and
Λ2 + o(1) = ∫

ℝ3

|∇un|2 dx = ∫
ℝ3

|∇ωn|2 dx + ∫
ℝ3

|∇u|2 dx + o(1).
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Then, from (3.15) and (3.16), we have

Iλ(un) −
b
4(∫
ℝ3

|∇un|2 dx)
2
+
bΛ2

2 ∫
ℝ3

|∇un|2 dx − Jλ(u)

= Jλ(un) − Jλ(u)

=
1
2 ‖ωn‖2 +

bΛ2

4 ∫
ℝ3

|∇ωn|2 dx

+
b
4[(∫
ℝ3

|∇ωn|2 dx)
2
+ ∫
ℝ3

|∇ωn|2 dx ∫
ℝ3

|∇u|2 dx] − λ6 ∫
ℝ3

|ωn|6 dx + o(1), (3.17)

and
J󸀠λ(u) = 0.

Then, by (3.16) and the fact that I󸀠λ(un) → 0, we have

o(1) = ⟨J󸀠λ(un), un⟩ − ⟨J
󸀠
λ(u), u⟩

= ‖ωn‖2 + b(∫
ℝ3

|∇ωn|2 dx)
2
+ b ∫
ℝ3

|∇ωn|2 dx ∫
ℝ3

|∇u|2 dx − λ ∫
ℝ3

ω6
n dx + o(1). (3.18)

We can assume that there exists li ≥ 0 (i = 1, 2, 3) such that

‖ωn‖2 → l1, b(∫
ℝ3

|∇ωn|2 dx)
2
+ b ∫
ℝ3

|∇ωn|2 dx ∫
ℝ3

|∇u|2 dx → l2, λ ∫
ℝ3

ω6
n dx → l3.

Then by (3.18) and (3.17), we have

{{{
{{{
{

l1 + l2 − l3 = 0,
1
2 l1 +

1
4 l2 −

1
6 l3 +

bΛ2

4 lim
n→∞
∫
ℝ3

|∇ωn|2 dx = cλ +
bΛ2

4 − Jλ(u).

By the definition of S, we see that

∫
ℝ3

|∇ωn|2 dx ≥
S

λ1/3
(λ ∫
ℝ3

|ωn|6 dx)
1
3
, b(∫

ℝ3

|∇ωn| dx)
2
≥ b S2

λ2/3
(λ ∫
ℝ3

|ωn|6 dx)
2
3
.

Then
l1 ≥ aS(

l1 + l2
λ )

1
3 and l2 ≥ bS2(

l1 + l2
λ )

2
3 .

Obviously, if l1 > 0, then l2, l3 > 0. By Lemma 3.5, we have that

cλ +
bΛ2

4 − Jλ(u) =
1
3 l1 +

1
12 l2 +

bΛ2

4 lim
n→∞
∫
ℝ3

|∇ωn|2 dx

≥
1
3
abS3 + a√b2S6 + 4λaS3

2λ +
1
12

bS6 + 2λabS3 + b2S3√b3S6 + 4λaS3
2λ2

+
bΛ2

4

=
abS3

4λ +
b3S6

24λ2
+
(b2S4 + 4aλS) 32

24λ2
+
bΛ2

4

= c∗λ +
bΛ2

4 ,

which is contrary to (3.14). Therefore, ‖ωn‖ → 0 and Lemma 3.6 is complete.

Lemma 3.7. Under the assumptions of Theorem 1.1, for almost every λ ∈ [12 , 1] there exists uλ ∈ E, uλ ̸= 0 such
that Iλ(uλ) = cλ and I󸀠λ(uλ) = 0.
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Proof. By Lemma 3.2, there is a sequence{un} ⊂ E satisfying ‖un‖ < C, Iλ(un) → cλ and I󸀠λ(un) → 0. More-
over, 0 < cλ < c∗λ . Then, by Lemma 3.6, the sequence {un} has a strong convergent subsequence, still denoted
by{un}. In other words, there exists uλ ∈ E such that Iλ(uλ) = cλ and I󸀠λ(uλ) = 0.

Lemma 3.8. Under the assumptions of Theorem 1.1, the functional I admits nontrivial critical points.

Proof. From Lemma 3.7, there exist cλn ∈ (0, c∗λn ), λn ∈ [
1
2 , 1] and uλn ⊂ E with uλn ̸= 0 such that λn → 1,

I󸀠λn (uλn ) = 0 and Iλn (uλn ) = cλn . Then, by Lemma 3.1, we have

3cλn = ∫
ℝ3

a|∇uλn |2 dx +
b
4(∫
ℝ3

|∇uλn |2 dx)
2
.

The Sobolev embedding theorem implies the boundedness of ∫ℝ3 |uλn |
6 dx. From (3.1) and Lemma 3.1 we get

1
2 ∫
ℝ3

a|󳶚uλn |2 dx +
3
2 ∫
ℝ3

Vu2λn dx +
b
2(∫
ℝ3

|󳶚uλn |2 dx)
2
= 3λλn ∫

ℝ3

F(uλn ) dx ≤ ε ∫
ℝ3

|uλn |2 dx + C(ε) ∫
ℝ3

|uλn |6 dx

for any ε > 0 and some C(ε) > 0. Hence, ‖uλn‖ is bounded. Since

I(uλn ) = Iλn (uλn ) + (λn − 1) ∫
ℝ3

F(uλn ) dx,

we have
⟨I󸀠(uλn ), uλn⟩ = ⟨I󸀠λn (uλn ), uλn⟩ + (λn − 1) ∫

ℝ3

f(uλn )uλn dx

and

lim
n→∞

cλn = c1 ∈ (0, c∗), where c∗ = abS
3

4 +
b3S6

24 +
(b2S4 + 4aS) 32

24 .

By a standard argument, we obtain that limn→∞ I(uλn ) = c1 and limn→∞ I󸀠(uλn ) = 0. By the boundedness of
‖uλn‖, similarly to the proof of Lemma3.6, we can prove that there exists u0 ∈ E such that I󸀠(u0) = 0.We claim
that u0 ̸= 0. Otherwise, if u0 = 0, then uλn → 0 weakly in E and

uλn → 0 strongly in Ls(ℝ3), s ∈ (2, 6). (3.19)

From (3.19) and (f1)–(f3), we have

∫
ℝ3

G(uλn ) = o(1) and ∫
ℝ3

g(uλn )uλn = o(1).

From limn→∞ I(uλn ) = c1 and limn→∞ I󸀠(uλn ) = 0, we have that

c1 + o(1) =
1
2 ‖uλn‖

2 +
b
4(∫
ℝ3

|∇uλn |2 dx)
2
−
1
6 ∫
ℝ3

|uλn |6 dx (3.20)

and
o(1) = ‖uλn‖2 + b(∫

ℝ3

|∇uλn |2 dx)
2
− ∫
ℝ3

|uλn |6 dx. (3.21)

Assume that
‖uλn‖2 → h1 ≥ 0, b(∫

ℝ3

|∇uλn |2 dx)
2
→ h2 ≥ 0, ∫

ℝ3

u6λn dx → h3 ≥ 0.

Then by (3.21) and (3.20), we have

{{
{{
{

h1 + h2 − h3 = 0,

c1 =
1
2h1 +

1
4h2 −

1
6h3,
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where c1 > 0 implies that h1, h2, h3 > 0. By the definition of S, we see that

h1 ≥ aS(h1 + h2)
1
3 and h2 ≥ bS2(h1 + h2)

2
3 .

By Lemma 3.5, we have that

c1 =
1
3h1 +

1
12h2

≥
1
3
abS3 + a√b2S6 + 4aS3

2 +
1
12

bS6 + 2abS3 + b2S3√b3S6 + 4aS3
2

=
abS3

4 +
b3S6

24 +
(b2S4 + 4aS) 32

24 = c∗,

which is contrary to c1 < c∗.

In the following, we prove c1 ≥ I(u0). From I󸀠λn (uλn ) = 0, I
󸀠(u0) = 0 and by Lemma 3.1, we obtain that

cλn = Iλn (uλn ) =
a
3 ∫
R3

|∇uλn |2 dx +
b
12(∫

R3

|∇uλn |2 dx)
2

and
I(u0) =

a
3 ∫
ℝ3

|∇u0|2 dx +
b
12(∫
ℝ3

|∇u0|2 dx)
2
.

Thus, by Fatou’s Lemma,

c1 = lim
n→∞

cλn ≥
a
3 ∫
ℝ3

|∇u0|2 dx +
b
12(∫
ℝ3

|∇u0|2 dx)
2
= I(u0).

Proof of Theorem 1.1. Let
m = inf{I(u) : u ∈ E, u ̸= 0, I󸀠(u) = 0 in E−1}.

By Lemma 3.8 and Lemma 3.4, we have 0 ≤ m ≤ I(u0) ≤ c1 < c∗. We choose a minimizing sequence {un}
for m, i.e. un ̸= 0, I(un) → m and I󸀠(un) = 0. Now, we prove that {un} is bounded. The proof is divided into
two steps.

Step 1: {‖un‖L2 } is bounded. By contradiction, we assume that ‖un‖L2 →∞ as n →∞. Set

vn =
un
‖un‖L2

, Xn = ∫
ℝ3

|∇un|2 dx‖un‖−2L2 , Yn = (∫
ℝ3

|∇un|2 dx)
2
‖un‖−2L2 , Zn = ∫

ℝ3

F(un) dx‖un‖−2L2 .

Since I(un) → m and I󸀠(un) = 0, using (2.1) and Lemma 3.1, we have

{{{{{{
{{{{{{
{

1
2 ∫
ℝ3

a|∇un|2 dx +
1
2 ∫
ℝ3

V|un|2 dx +
b
4(∫
ℝ3

|∇un|2 dx)
2
− ∫
ℝ3

F(un) dx = m + o(1),

1
2 ∫
ℝ3

a|∇un|2 dx +
3
2 ∫
ℝ3

V|un|2 dx +
b
2(∫
ℝ3

|∇un|2 dx)
2
− 3 ∫
ℝ3

F(un) dx = 0,
(3.22)

and m is bounded. Multiplying (3.22) by 1
‖un‖L2

, we get

{{{
{{{
{

1
2aXn +

1
2V +

b
4Yn − Zn = o(1),

1
2aXn +

3
2V +

b
2Yn − 3Zn = 0,

(3.23)

where o(1) denotes that the quantity tends to zero as n →∞. Solving (3.23), we have

Xn = −
b
4a Yn + o(1). (3.24)

Since Yn ≥ 0, Xn ≥ 0 and a, b > 0 for all n ∈ N, equation (3.24) is a contradiction for n large enough. Thus,
{‖un‖L2 } is bounded.
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Step 2: ‖∇un‖L2 is bounded. Similarly, by contradiction, we can assume that ‖∇un‖L2 →∞ as n →∞. Set

vn =
un
‖∇un‖L2

, Mn = ∫
ℝ3

u2n dx‖∇un‖−2L2 , Nn = (∫
ℝ3

|∇un|2 dx)
2
‖∇un‖−2L2 , Sn = ∫

ℝ3

F(un) dx‖∇un‖−2L2 .

Then, multiplying (3.22) by 1
‖∇un‖L2

, we get

{{{
{{{
{

1
2a +

1
2VMn +

b
4Nn − Sn = o(1),

1
2a +

3
2VMn +

b
2Nn − 3Sn = 0.

(3.25)

Solving (3.25), we have
Nn = −

4a
b
+ o(1). (3.26)

Since Nn ≥ 0 and a, b > 0, equation (3.26) is a contradiction for n large enough. Thus, {‖∇un‖L2 } is bounded.
Thus, we prove the boundedness of {un}. Similarly to the proofs of Lemma 3.6 and Lemma 3.8, we can prove
that there exists u ̸= 0 ∈ E such that I󸀠(u) = 0.

Next, we will give the proof of m ≥ I(u). In fact, by I󸀠(u) = 0, I󸀠(un) = 0 and Lemma 3.1, we have that

I(u) = a3 ∫
ℝ3

|∇u|2 dx + b
12(∫
ℝ3

|∇u|2 dx)
2

and
I(un) =

a
3 ∫
ℝ3

|∇un|2 dx +
b
12(∫
ℝ3

|∇un|2 dx)
2
.

Then
m + o(1) = I(un) =

a
3 ∫
ℝ3

|∇un|2 dx +
b
12(∫
ℝ3

|∇un|2 dx)
2
.

Thus, by Fatou’s Lemma,

m ≥ a3 ∫
ℝ3

|∇u|2 dx + b
12(∫
ℝ3

|∇u|2 dx)
2
= I(u).

By combinationwith the definition ofm, there exists u ̸= 0 satisfyingm = I(u) and I󸀠(u) = 0,which completes
the proof of Theorem 1.1.
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