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1 Introduction

The gradient estimates for the solution to partial differential equations involving the variable function spaces
such as generalized Lebesgue are an interesting topic in both pure and appliedmathematics, and have awide
range of applications from non-Newtonian fluids to image restoration. See for example [2, 12, 22, 30, 31].
Motivated from these works, this paper proves the nonlinear Muckenhoupt–Wheeden type estimates of the
quasilinear equation with measure data on the generalized Lebesgue spaces. Before coming to details, we
recall some preliminaries on the quasilinear equation with measure data.

In this paper, we consider the following Dirichlet with measure data

{
−div a(x, ∇u) = μ in Ω,

u = 0 on ∂Ω,
(1.1)

where μ is a signed measure with bounded totally variations in a bounded open domain Ω ⊂ ℝn, n ≥ 2. The
quasilinear elliptic equation with data measure has been studied intensively by many mathematicians. See
for example [3–6, 19, 20] and the references therein.

In this paper, we assume that the nonlinearity a(x, ξ) : ℝn × ℝn → ℝn is measurable in x for every ξ and
continuous in ξ for a.e. x; moreover, a(x, ξ) is differentiable in ξ away from the origin. In addition, there exist
2 − 1/n < p ≤ n and α, β > 0 so that

|a(x, ξ)| ≤ β|ξ|p−1 (1.2)

and
⟨aξ (x, ξ)λ, λ⟩ ≥ α|ξ|p−2|λ|2, |aξ (x, ξ)| ≤ β|ξ|p−2 (1.3)

for every (x, ξ) ∈ ℝn × ℝn\{(0, 0)} and a.e. x ∈ ℝn.
It is well known that condition (1.2) implies that a(x, 0) = 0 for a.e. x ∈ ℝn and condition (1.3) implies

that
⟨a(x, ξ) − a(x, η), ξ − η⟩ ≥ c(α, p)(|ξ|2 + |η|2)

p−2
2 |ξ − η|2
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for every (ξ, η) ∈ ℝn × ℝn\{(0, 0)} and a.e. x ∈ ℝn. See for example [32].
Note that the standard example of such a nonlinearity a(x, ξ) satisfying these conditions is the standard

p-Laplacian
∆pu = div(|∇u|p−2u)

with respect to a(x, ξ) = |ξ|p−2ξ .
We now set

Θ(a, Br(y)(x) = sup
ξ∈ℝn\{0}

|a(x, ξ) − aBr(y))(ξ)|
|ξ|p−1

,

where
aBr(y)(ξ) = −∫

Br(y)

a(x, ξ) dx.

In this paper, we assume that the nonlinearity a(x, ξ) satisfies the following small BMO semi-norm con-
dition with respect to x.

Definition 1.1. Let δ, R > 0. The nonlinearity a is said to be (δ, R) small if the following holds true:

sup
y∈ℝn ,0<r≤R

−∫
Br(y)

Θ(a, Br(y))(x)2 dx ≤ δ2. (1.4)

The small BMO semi-norm condition (1.4) was used in [9, 10, 28]. Note that the nonlinearity a(x, ξ), which
satisfies (1.4), may be merely measurable and discontinuous in x.

In what follows, for x = (x1, . . . , xn) ∈ ℝn and r > 0 we denote

Br(x) := {y ∈ ℝn : |x − y| < r}, B+r (x) = Br(x) ∩ {y : yn > xn} and Ωr(x) = Ω ∩ Br(x).

Definition 1.2. Let δ, R > 0. The domain Ω is said to be a (δ, R) Reifenberg flat domain if for every x ∈ ∂Ω
and 0 < r ≤ R there exists a coordinate system depending on x and r, whose variables are denoted by
y = (y1, . . . , yn) such that in this new coordinate system x is the origin and

Br(0) ∩ {y : yn > δr} ⊂ Br(0) ∩ Ω ⊂ Br(0) ∩ {y : yn > −δr}. (1.5)

Condition (1.5) is known as the δ-Reifenberg flatness condition which was first introduced in [29]. This con-
dition does not require any smoothness on the boundary of Ω, but is sufficiently flat in the Reifenberg sense.
The Reifenberg flat domain includes domains with rough boundaries of fractal nature (see for example [33]),
and Lipschitz domainswith small Lipschitz constants (see for example [27]). See for example [16, 27, 29]. For
our purpose, we always assume that δ is a small constant, and in this paper we always assume δ ∈ (0, 1/2).

We define
M1(μ)(x) = sup

r>0

|μ|(Br(x))
rn−1

to be the first order fractional function associated to the measure μ. The following gradient estimates for
the renormalized solution to problem (1.1) was proved in [28, Theorem 1.4] by adapting the approximation
method in [11].

Theorem 1.3. Let p ∈ (2 − 1/n, n] and 1 < q < ∞. Then there exists δ = δ(n, α, β, p, q) so that if a is (δ, R0)
small and Ω is a (δ, R0) Reifenberg flat domain for some R0 > 0, then any renormalized solution u to prob-
lem (1.1) satisfies the following estimate:

‖∇u‖Lq(Ω) ≤ C‖M1(μ)
1

p−1 ‖Lq(Ω).

Here C depends only on n, p, α, β, q and diamΩ/R0.

In Theorem 1.3 we used the notion of renormalized solutions to problem (1.1). For its precise definition, we
refer the reader to Section 2.2. Note that the approach of getting estimates for the gradient via fractional
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operators is not new. This has been introduced in [24, 25]. It is important to stress that the interior version of
Theorem 1.3 was obtained in [25].

It is not difficult to see that for a nonnegative locally finite measure ν inℝn we have

M1(ν)(x) ≤ cnI1(ν)(x) := cn ∫
ℝn

dν(y)
|x − y|n−1

, x ∈ ℝn .

Hence, the estimate in Theorem 1.3 can be viewed as an integral potential bound for gradients of renormal-
ized solutions to problem (1.1). This finding is in line with the result obtained by Wheeden–Muckenhoupt
in [26].

The main aim of this paper is to extend the estimate in Theorem 1.3 to generalized Lebesgue spaces
Lq( ⋅ )(Ω). We first note that the gradient estimates of the solution to certain equations in PDEs on Lebesgue
spaces have beenwidely studied; meanwhile the estimates on the generalized Lebesgue spaces Lq( ⋅ )(Ω) have
been interesting in their own ways and have been an interesting topic in PDE theory. We now carry out some
results in this research direction.
(i) In [18], the authors investigated Calderón–Zygmund theory in the scale of the variable Lebesgue space

Lp( ⋅ )(Ω) for the first order divergence form problem

{
div u = f in Ω,

u = 0 on ∂Ω.

It was also proved in [18] that
‖|∇u|‖Lp( ⋅ )(Ω) ≤ C‖f‖Lp( ⋅ )(Ω),

provided that p( ⋅ ) ∈ LH. See Section 2 for the definition of the class LH.
(ii) TheW2,p( ⋅ ) regularity estimates for the Poisson problem in nondivergence form

{
∆u = f in Ω,
u = 0 on ∂Ω

was obtained in [17]. They proved that

‖|∇2u|‖Lp( ⋅ )(Ω) ≤ C‖f‖Lp( ⋅ )(Ω)
holds true for p( ⋅ ) ∈ LH.

(iii) Recently, the regularity estimates for solutions of elliptic equations indivergence formandnondivergence
form were obtained in [8] and [7], respectively.
In this paper,weprove the gradient estimates concerning themeasure data problems (1.1) on the variable

Lebesgue spaces. More precisely, we prove the following result.

Theorem 1.4. Let p ∈ (2 − 1/n, n] and let q( ⋅ ) ∈ LH. Then there exists δ = δ(n, α, β, p, q( ⋅ )) so that if a is
(δ, R0) small and Ω is a (δ, R0) Reifenberg flat domain for some R0 > 0, then for any renormalized solution u to
problem (1.1) the following estimate holds true:

‖∇u‖Lq( ⋅ )(Ω) ≤ C‖M1(μ)
1

p−1 ‖Lq( ⋅ )(Ω).

We remark that themaximal function approach in [17, 18] relying on the Calderón–Zygmund theorymay not
be applicable to our setting for two reasons. Firstly, there is no regularity condition in x which is imposed
on the nonlinearity a(x, ξ). Secondly, without the smoothness condition, the underlying domain Ω may be
beyond the Lipschitz category. To overcome this problem, we adapt the technique in [1] to our setting which
avoids the use of the maximal functions. Note that this method was also used in [7, 8].

The organization of this paper is as follows: In Section 2, we recall the notion and basic properties of
variable Lebesgue spaces. The notion of renormalized solutions to problem (1.1) and approximation results
for the solutions to problem (1.1) are also addressed in this section. Section 3 is devoted to give the proof of
Theorem 1.4.

Throughout the paper, we always use C and c to denote positive constants that are independent of the
main parameters involved but whose values may differ from line to line. We will write A ≲ B if there is a uni-
versal constant C so that A ≤ CB and A ∼ B if A ≲ B and B ≲ A.
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2 Preliminaries

We will begin with some notations which will be used frequently in the sequel.
For x ∈ ℝn and r > 0, we denote by

Br(x) := {y ∈ ℝn : |x − y| < r}

the open ball centered x with radius r inℝn. We also denote Ωr(x) = Ω ∩ Br(x).
For a measurable function f on a measurable subset E (E can be a measurable subset ofℝn) we define

f E = −∫
E

f = 1
|E| ∫

E

f.

2.1 Generalized Lebesgue spaces

We now recall some definitions and basic properties concerning the variable Lebesgue spaces in [13].
Let Ω ⊂ ℝn be a bounded domain, and let p( ⋅ ) : Ω → [1,∞) be a measurable function. We now define
the variable Lebesgue spaces Lp( ⋅ )(Ω) to be a generalization of the classical Lebesgue spaces consisting of all
measurable functions on Ω satisfying

∫
Ω

|f(x)|p(x) dx < ∞.

Then Lp( ⋅ )(Ω) is a Banach function space with the norm

‖f‖Lp( ⋅ )(Ω) = inf{λ > 0 : ∫
Ω

(
|f(x)|
λ )

p(x)
≤ 1}.

It is well known that
‖f‖Lp( ⋅ )(Ω) ≤ 1 ⇐⇒ ∫

Ω

|f(x)|p(x) dx ≤ 1.

The variable Lebesgue spaces have attracted considerable interest since the early 1990s. These spaces have
an important role in the theory of function spaces and have a wide range of applications to the calculus of
variations and PDEs. For a thorough discussion of these spaces and their history see for example [13, 17].

We say that p( ⋅ ) ∈ LH if
1 < inf

x∈Ω
p(x) ≤ sup

x∈Ω
p(x) < ∞

and there exists a constant C0 such that

|p(x) − p(y)| ≤ C0
− log|x − y| =: γ(|x − y|), |x − y| ≤

1
2 . (2.1)

Condition (2.1) is known as the log-Hölder continuity condition. The class of p( ⋅ ) satisfying the log-
Hölder continuity condition plays an important role in harmonic analysis and PDE theory. This class was
used to deal with the boundedness of singular integrals in Calderón-Zygmund theory and the general-
ized Lebesgue–Sobolev space for regularity results for elliptic and parabolic problems. See for example
[13, 17, 18] and the references therein.

2.2 The notion of renormalized solutions

In this section, we recall the notion of renormalized solutions to problem (1.1) and its equivalent characteri-
zations. This part is taken from [3, 6, 15, 28].
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Let MB(Ω) be the set of all signed measures in Ω with bounded totally variations. Denote by M0(Ω)
(resp. Ms(Ω)) the subset of Mb(Ω) consisting of measures which are absolute continuous (resp. singular)
with respect to the capacity map capp( ⋅ , Ω) defined by

capp(K, Ω) = inf{∫
Ω

|∇ϕ|p dx : ϕ ∈ C∞0 (Ω), ϕ ≥ 1 on K}

for any compact subset K ⊂ Ω.
It was proved in [21, Lemma 2.1] that for every μ ∈Mb(Ω) there exist μ0 ∈M0(Ω) and μs ∈Ms(Ω) so

that μ = μ0 + μs.
The sequence of measures {μk} inMb(Ω) is said to converge in the narrow topology to μ ∈Mb(Ω) if

lim
k→∞
∫
Ω

φ dμk = ∫
Ω

φ dμ

for every bounded and continuous function φ on Ω.
In what follows, for any μ ∈Mb(Ω), its positive part and negative part are denoted by μ+ and μ−. The

notion of renormalized solutions is a generalization of that of entropy solutions for nonlinear elliptic equa-
tions andwas introduced in [3, 6] where themeasures are assumed to be in L1(Ω) or inMb(Ω). We now recall
two equivalent definitions of renormalized solutions in [15].

Definition 2.1. Suppose μ ∈Mb(Ω). Then u is said to be a renormalized solution to (1.1) if the following
conditions hold:
(i) The function u is measurable and finite almost everywhere, and Tk(u) = max{−k, min{k, u}} belongs to

W1,p
0 (Ω) for every k > 0.

(ii) The gradient ∇u satisfies |∇u|p−1 ∈ Lq(Ω) for all q < n
n−1 .

(iii) If w ∈ W1,p
0 (Ω) ∩ L∞(Ω) and if there exist w+∞, w−∞ ∈ W1,r(Ω) ∩ L∞(Ω) with r > n such that

{
w = w+∞ a.e. on the set {u > k},
w = w−∞ a.e. on the set {u < −k}

for some k > 0, then

∫
Ω

a(x, ∇u) ⋅ ∇w dx = ∫
Ω

w dμ0 + ∫
Ω

w+∞ dμ+s − ∫
Ω

w−∞ dμ−s .

Definition 2.2. Suppose μ ∈Mb(Ω). Then u is said to be a renormalized solution to (1.1) if the following
conditions hold:
(i) For every k > 0 there exist two nonnegative measures λ+k , λ

−
k ∈M0(Ω) concentrated on the sets {u = k}

and {u = −k}, respectively, so that λ+k → μ+s and λ−k → μ−s in the narrow topology of measures.
(ii) For every k > 0 we have

∫
{|u|<k}

a(x, ∇u) ⋅ ∇φ dx = ∫
{|u|<k}

φ dμ0 + ∫
Ω

φ dλ+k − ∫
Ω

φ dλ−k (2.2)

for every φ ∈ W1,p
0 (Ω) ∩ L∞(Ω).

Remark 2.3 ([15]). (i) Note that if u is a renormalized solution to (1.1), then u is finite everywhere with
respect to capp( ⋅ , Ω). Therefore, u is finite μ0-almost everywhere.

(ii) By (ii) of Definition 2.2, if u is a renormalized solution to (1.1), then (2.2) is equivalent to

−div a(x, ∇Tk(u)) = μk inD󸀠(Ω)

with
μk = χ{|u|<k}μ0 + λ+k − λ

−
k .
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It was proved that Tk(u) ∈ W1,p
0 (Ω) and |μk| converges to |μ| in the narrow topology of measures as well.

As a consequence, if u is a renormalized solution to (1.1) then u is a solution to (1.1). A solution u to
problem (1.1) is understood in the following sense in [28]: For each k > 0 the truncation

Tk(u) = max{−k, min{k, u}} ∈ W1,p
0 (Ω)

and satisfies
−div a(x, ∇Tk(u)) = μk

in the sense of distributions in Ω for a finite measure μk in Ω. Moreover, if we extend both μ and μk by
zero to ℝn\Ω then μ+k and μ−k converges to μ

+ and μ−k weakly as measures in ℝn, respectively. Note that
for the existence and the uniqueness for the solution and the renormalized solution to the measure data
problem (1.1), we refer to [15]. Alternatively, the notion of solutions obtained by limit of approximations
(SOLA) can be employed in this situation. See for example [4, 5, 14, 19, 20].

2.3 Approximation results for the solutions to measure data problems

Wefirst recall the approximation results related to problem (1.1). The first result (Lemma2.4) gives an interior
approximation result for weak solutions to problem (1.1), whereas the latter (Lemma 2.5) gives a boundary
approximation result for weak solutions to problem (1.1). We refer the reader to [20] (see also [19, 28]) for
the proof of Lemma 2.4, and [28, Corollary 2.13] for the proof of Lemma 2.5. Set

F(μ, u, Br(x)) = [
|μ|(Br(x))

rn−1
]

1
p−1 + [
|μ|(Br(x))

rn−1
]( −∫

Br(x)

|∇u|)
2−p

χ{p<2}.

Lemma 2.4. For any ε > 0 there exists δ > 0 so that the following holds: If a is (δ, R0) small and Ω is a (δ, R0)
Reifenberg flat domain for some R0 > 0, and u ∈ W1,p

0 (Ω) is a weak solution to (1.1) in B2R ≡ B2R(x0) ⊂ Ω with
2R ≤ R0, then there exist a function v ∈ W1,p(BR) ∩W1,∞(BR/2) and C = C(n, p, α, β) so that

‖∇v‖L∞(BR/2) ≤ C −∫
B2R

|∇u| dx + CF(μ, u, B2R(x0)),

and −∫
BR

|∇(u − v)| ≤ CF(μ, u, B2R(x0)) + ε −∫
B2R

|∇u| dx.

Lemma 2.5. For any ε > 0 there exists δ > 0 so that the following holds: If a is (δ, R0) small and Ω is a
(δ, R0) Reifenberg flat domain for some R0 > 0, and u ∈ W1,p

0 (Ω) is a weak solution to (1.1) with x0 ∈ ∂Ω
and 0 < 10R < R0, then there exist a function v ∈ W1,∞(BR/10(x0)) and C = C(n, p, α, β) so that

‖∇v‖L∞(BR/10(x0)) ≤ C −∫
Ω10R(x0)

|∇u| dx + CF(μ, u, B10R(x0)),

and −∫
ΩR(x0)

|∇(u − v)| ≤ CF(μ, u, B10R(x0)) + ε −∫
Ω10R(x0)

|∇u| dx.

3 Proof of Theorem 1.4

We first note that for x ∈ Ω and 0 < r ≤ R0, from (1.5), we have
|Br(x)|
|Ωr(x)|

≤ (
2

1 − δ )
n
≤ 4n . (3.1)

This simple observation will be used frequently.
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To prove Theorem 1.4, it suffices to prove that for any renormalized solution u to problem (1.1), we have

∫
Ω

|∇u|q(x) dx ≤ c(n, α, β, q( ⋅ ), Ω, δ) (3.2)

uniformly under the assumption
∫
Ω

M1(μ)(x)
q(x)
p−1 dx ≤ 1. (3.3)

Indeed, once (3.2) is proved, by using the rescaled maps

ã = a(x, r0ξ)
rp−10

, ũ = u(x)
r0

and μ̃ = μ
rp−10

,

where r0 = ‖M1(μ)
1

p−1 ‖Lq( ⋅ )(Ω), we get that ũ is a renormalized solution to the problem

{
−div ã(x, ∇ũ) = μ̃ in Ω,

ũ = 0 on ∂Ω.

Note that under these rescaled maps ã is (δ, R0) small and Ω is a (δ, R0) Reifenberg flat domain. Therefore,
from (3.2) we get that

∫
Ω

|∇ũ|q(x) dx ≤ c(n, α, β, q( ⋅ ), Ω, δ),

which implies that
‖∇u‖Lq( ⋅ )(Ω) ≤ C‖M1(μ)

1
p−1 ‖Lq( ⋅ )(Ω).

We now prove (3.2). Let τ be a positive number so that 1 < τ < q1 < q(x) < q2 < ∞ for all x ∈ Ω, where

q1 := inf
x∈Ω

q(x) and q2 := sup
x∈Ω

q(x).

Then from (3.3) we have

∫
Ω

M1(μ)(x)
τ

p−1 dx + ∫
Ω

M1(μ)(x)
q1
p−1 dx ≤ 2∫

Ω

[M1(μ)(x)
q(x)
p−1 + 1] dx ≤ 2(1 + |Ω|). (3.4)

On the other hand, Theorem 1.3 tells us that there exists δ0 so that if a is (δ, R0) small and Ω is a (δ, R0)
Reifenberg flat domain for some R0 > 0, then for any renormalized solution u to problem (1.1) the following
estimates hold:

‖∇u‖Lq1 (Ω) ≤ C‖M1(μ)
1

p−1 ‖Lq1 (Ω) (3.5)

and
‖∇u‖Lτ(Ω) ≤ C‖M1(μ)

1
p−1 ‖Lτ(Ω). (3.6)

Hence, from (3.4), (3.5) and (3.6) we have

∫
Ω

|∇u|τ dx + ∫
Ω

|∇u|q1 dx ≤ C1[∫
Ω

M1(μ)(x)
τ

p−1 dx + ∫
Ω

M1(μ)(x)
q1
p−1 dx] ≤ 2C1(1 + |Ω|).

Let x0 ∈ Ω and R > 0. We set

1 < τ < q1 ≤ q− = inf
x∈Ω2R(x0)

q(x) ≤ q+ = sup
x∈Ω2R(x0)

q(x) ≤ q2 < ∞.

We will choose the constant R as follows: Since limr→0 γ(4r) = 0 and γ( ⋅ ) is increasing on (0,1/2) with γ
defined in (2.1), there exists Rγ so that

τ(q− + γ(4Rγ))
q−

< q1.
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In the rest of this paper, we assume that 0 < R < min{R0, Rγ , 1/10}. Hence,

τ(q− + γ(4R))
q−

< q1.

Moreover, from (2.1), for x ∈ Ω2R(x0) we have

q(x) − q− ≤ γ(4R).

This implies that for x ∈ Ω2R(x0) we have

τq(x)
q−
≤
τ(q− + γ(4R))

q−
≤ q1. (3.7)

We now define
Λδ = −∫

Ω2R(x0)

{|∇u(x)|
τq(x)
q− +

1
δ [
M1(μ)(x)

1
p−1 ]

τq(x)
q− } dx + 1δ .

Note that Λδ is well-defined since τq(x)
q− ≤ q1 for x ∈ Ω2R(x0). Fix 1 ≤ s1 ≤ s2 ≤ 2. For λ > 0 we define the level

set
E(λ) = {x ∈ Ωs1R(x0) : |∇u(x)|

τq(x)
q− > λ}.

For y ∈ E(λ) and r > 0 we define

Φy(r) = −∫
Ωr(y)

{|∇u(x)|
τq(x)
q− +

1
δ [
M1(μ)(x)

1
p−1 ]

τq(x)
q− } dx.

Hence, for 0 < r < (s2 − s1)R, by (3.1) we have

Φy(r) =
|Ω2R(x0)|
|Ωr(y)|

−∫
Ω2R(x0)

{|∇u(x)|
τq(x)
q− +

1
δ [
M1(μ)(x)

1
p−1 ]

τq(x)
q− } dx

≤
|B2R(x0)|
|Br(y)|

|Br(x0)|
|Ωr(y)|

Λδ ≤ 4n(
2R
r )

n
Λδ . (3.8)

This implies that

Φy(r) ≤ (
8 × 106
s2 − s1
)
n
Λδ ,

as long as
(s2 − s1)R

106
< r < (s2 − s1)R.

We now fix
λ > (8 × 10

6

s2 − s1
)
n
Λδ .

Then from (3.8) we can conclude that for all y ∈ E(λ) and

(s2 − s1)R
106

< r < (s2 − s1)R

we have
Φy(r) < λ. (3.9)

On the other hand, by the Lebesgue differentiation theorem, we also get, for y ∈ E(λ), that

lim
r→0+

Φy(r) > λ.

This along with (3.9) implies that for y ∈ E(λ) there exists 0 < ry ≤ (s2−s1)R106 so that

Φy(ry) = λ and Φy(r) < λ for all r ∈ (ry , (s2 − s1)R).
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We now apply the Besicovitch covering theorem to pick up the finite overlap family {Ωri (yi)}∞i=1 with yi ∈ E(λ)
and 0 < ri < (s2−s1)R106 so that

E(λ) ⊂ ⋃
i
Ω5ri (yi), ∑

i
χΩ5ri (yi) ≤ κ := κ(n),

and
Φyi (ri) = λ and Φyi (r) < λ for all r ∈ (ri , (s2 − s1)R). (3.10)

For t > 0 we define
FM1(μ)(t) = {x : [M1(μ)(x)

1
p−1 ]

τq(x)
q− > t}

and
Fu(t) = {x : |∇u|

τq(x)
q− > t}.

Then, from (3.10), we obtain

|Ωri (yi)| =
1
λ ∫
Ωri (yi)

{|∇u(x)|
τq(x)
q− +

1
δ [
M1(μ)(x)

1
p−1 ]

τq(x)
q− } dx

≤
1
λ { ∫

Ωri (yi)∩Fu(λ/4)

|∇u(x)|
τq(x)
q− dx + ∫

Ωri (yi)∩FM1(μ)(δλ/4)

1
δ [
M1(μ)(x)

1
p−1 ]

τq(x)
q− dx} +

|Ωri (yi)|
2 ,

which implies

|Ωri (yi)| ≤
2
λ { ∫

Ωri (yi)∩Fu(λ/4)

|∇u(x)|
τq(x)
q− dx + ∫

Ωri (yi)∩FM1(μ)(δλ/4)

1
δ [
M1(μ)(x)

1
p−1 ]

τq(x)
q− dx}. (3.11)

We now estimate the level set E(λ) by making use of Lemma 2.4 and Lemma 2.5. However, we can
not apply these two approximation results directly, since a renormalized solution is not a weak solution.
To do this, from the definition of the renormalized solution we observe that for each k > 0, we have that
uk = Tk(u) ∈ W

1,p
0 (Ω) is a weak solution to the problem

−div a(x, ∇uk) = μk

for a finite measure μk in Ω. Moreover, if we extend both μ and μk by zero toℝn\Ω, then μ+k and μ
−
k converge

to μ+ and μ− weakly as measures inℝn, respectively. This implies that

lim
k→∞
|μk|(B) ≤ |μ|(B)

for all balls B ⊂ ℝn. Hence,

lim sup
k→∞

M1(μk)(x) ≤ c(n)M1(μ)(x), x ∈ ℝn .

Without loss of generality we may assume that for every k > 0 we have

M1(μk)(x) ≤ c(n)M1(μ)(x), x ∈ ℝn .

Since a is (δ, R0) small and Ω is a (δ, R0) Reifenberg flat domain for some R0 > 0 and some δ ≤ δ0, from
Theorem 1.3, for any k > 0 we have

‖∇uk‖Lq1 (Ω) ≤ C‖M1(μk)
1

p−1 ‖Lq1 (Ω) ≤ C‖M1(μ)
1

p−1 ‖Lq1 (Ω)

and
‖∇uk‖Lτ(Ω) ≤ C‖M1(μk)

1
p−1 ‖Lτ(Ω) ≤ C‖M1(μ)

1
p−1 ‖Lτ(Ω).

Hence,

∫
Ω

|∇uk|τ dx + ∫
Ω

|∇uk|q1 dx ≤ C2[∫
Ω

M1(μ)(x)
τ

p−1 dx + ∫
Ω

M1(μ)(x)
q1
p−1 dx] ≤ 2C2(1 + |Ω|). (3.12)
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For y ∈ E(λ) and r > 0 we define

Φk
y(r) = −∫

Ωr(y)

{|∇uk(x)|
τq(x)
q− +

1
δ [
M1(μk)(x)

1
p−1 ]

τq(x)
q− } dx.

Since Φk
y(r) < Φy(r), from (3.10) we have

Φk
yi (r) < λ for all r ∈ (ri , (s2 − s1)R). (3.13)

We now prove the following approximation results.

Lemma 3.1. If B20ri (yi) ⊂ Ω, then for any ε > 0 there exists δ > 0 so that for k > 0 there is vk,i satisfying the
following:

‖vk,i‖L∞(B5ri (yi)) ≤ c1λ
q−

τq+i

and −∫
B10ri (yi)

|∇(uk − vk,i)| ≤ ελ
q−

τq+i ,

where q+i = supx∈B20ri (yi) q(x).

Proof. Set q−i = infx∈B20ri (yi) q(x) and q
+
i = supx∈B20ri (yi) q(x). We then have from (2.1) that

q+i − q
−
i ≤ γ(40ri).

Observe that −∫
B20ri (yi)

|∇uk|τ dx = ( −∫
B20ri (yi)

|∇uk|τ dx)
q−i
q+i ( −∫

B20ri (yi)

|∇uk|τ dx)
1−

q−i
q+i

≤ ( −∫
B20ri (yi)

|∇uk|
τq−i
q− dx)

q−

q+i ( −∫
B20ri (yi)

|∇uk|τ dx)
1−

q−i
q+i

≤ [( −∫
B20ri (yi)

|∇uk|
τq(x)
q− dx)

q−

q+i + 1]( −∫
B20ri (yi)

|∇uk|τ dx)
1−

q−i
q+i ,

which along with (3.13) yields that

−∫
B20ri (yi)

|∇uk|τ dx ≤ (λ
q−

q+i + 1)( −∫
B20ri (yi)

|∇uk|τ dx)
1−

q−i
q+i ≤ 2λ

q−

q+i ( −∫
B20ri (yi)

|∇uk|τ dx)
1−

q−i
q+i .

On the other hand, we have

( −∫
B20ri (yi)

|∇uk|τ dx)
q+i −q

−
i
≲ (

1
rni
)
γ(40ri)
( ∫
B20ri (yi)

|∇uk|τ dx)
q+i −q

−
i
.

Note that
(
1
rni
)
γ(40ri)
= 40nγ(40ri)( 1

40ri
)
nC0 log 1

40ri
e
≤ 40nγ(R)enC0 ≤ 40nγ(1/2)enC0 .

Hence,

( −∫
B20ri (yi)

|∇uk|τ dx)
q+i −q

−
i
≲ ( ∫

B20ri (yi)

|∇uk|τ dx)
q+i −q

−
i
≲ (1 + |Ω|)γ(40ri),

where we used (3.12).
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Since 40ri ≤ 2
5R ≤ R0, we further obtain

( −∫
B20ri (yi)

|∇uk|τ dx)
q+i −q

−
i
≲ (1 + |Ω|)γ(R) ≲ (1 + |Ω|)γ(1/2).

Hence, −∫
B20ri (yi)

|∇uk|τ dx ≤ cλ
q−

q+i . (3.14)

By a similar argument, we can prove that−∫
B20ri (yi)

M1(μk)(x)
τ

p−1 dx ≤ −∫
B20ri (yi)

M1(μ)(x)
τ

p−1 dx

≤ c[( −∫
B20ri (yi)

M1(μ)(x)
τq(x)
q− dx)

q−

q+i + 1]

≤ c[(δλ)
q−

q+i + 1]

≤ c(δλ)
q−

q+i , since δλ > δΛδ ≥ 1. (3.15)

Hence, for every k > 0, applying Lemma 2.4, we obtain that for any ε󸀠 > 0 there exists 0 < δ ≤ δ0 and a
function

vk,i ∈ W1,p(B20ri (yi)) ∩W1,∞(B20ri (yi))
and C = C(n, p, α, β) so that

‖∇vk,i‖L∞(B5ri (yi)) ≤ C −∫
B10ri (yi)

|∇uk| dx + CF(μk , uk , B10ri (yi)) (3.16)

and −∫
B10ri (yi)

|∇(uk − vk,i)| ≤ CF(μk , uk , B20ri (yi)) + ε󸀠 −∫
B20ri (yi)

|∇uk| dx. (3.17)

Note that for x ∈ B20ri (yi) we have
|μk|(B20ri (yi))

rn−1i
≤ c(n)
|μk|(B40ri (x))

rn−1i
≤ c1(n)M1(μk)(x) ≤ c2(n)M1(μ)(x),

which implies
|μk|(B20ri (yi))

rn−1i
≲ [ −∫

B20ri (yi)

M1(μ)(x)
τ

p−1 dx]
p−1
τ
.

This along with (3.14)–(3.17) yields that

‖∇vk,i‖L∞(B5ri (yi)) ≤ C[λ
q−

τq+i + (δλ)
q−

τq+i + (δλ)
q−

q+i

p−1
τ λ

q−

q+i

2−p
τ χ{p<2}]

and −∫
B10ri (yi)

|∇(uk − vk,i)| ≤ C[ε󸀠λ
q−

τq+i + (δλ)
q−

τq+i + (δλ)
q−

q+i

p−1
τ λ

q−

q+i

2−p
τ χ{p<2}].

Lemma 3.2. If B20ri (yi) ∩ Ωc ̸= 0, then for any ε > 0 there exists δ > 0 so that for every k > 0 there is vk,i satis-
fying the following:

‖vk,i‖L∞(B5ri (yi)) ≤ c2λ
q−

τq+i

and −∫
Ω50ri (yi)

|∇(uk − vk,i)| ≤ ελ
q−

τq+i ,

where q+i = supx∈B3000ri (yi) q(x).
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Proof. The proof of this lemma is similar to that of Lemma 3.1 and hence we just sketch it here.
Set q−i = infx∈Ω3000ri (yi) q(x) and q

+
i = supx∈Ω3000ri (yi) q(x). We then have

q+i − q
−
i ≤ γ(6000ri).

Let xi0 ∈ B20ri (yi) ∩ ∂Ω. Then we have

B5ri (yi) ⊂ B25ri (xi0) ⊂ B50ri (yi) ⊂ B250ri (x
0
i ) ⊂ B2500ri (x

0
i ) ⊂ B3000ri (yi). (3.18)

Similarly to Lemma 3.2 , we also obtain that −∫
Ω3000ri (x

i
0)

|∇uk|τ dx ≤ cλ
q−

q+i

and −∫
Ω3000ri (x

i
0)

M1(μk)(x)
τ

p−1 dx ≤ c(δλ)
q−

q+i .

At this stage, we use the argument in the proof of Lemma 3.2, which makes use of Lemma 2.5 instead of
Lemma 2.4, to conclude that for any ε󸀠 > 0 there exists δ > 0 and a function

vk,i ∈ W1,p(B25ri (xi0)) ∩W
1,∞(B250ri (xi0))

and C = C(n, p, α, β) so that

‖∇vk,i‖L∞(B25ri (x
i
0))
≤ C[λ

q−

τq+i + (δλ)
q−

τq+i + (δλ)
q−

q+i

p−1
τ λ

q−

q+i

2−p
τ χ{p<2}]

and −∫
Ω250ri (x

i
0)

|∇(uk − vk,i)| ≤ C[ε󸀠λ
q−

τq+i + (δλ)
q−

τq+i + (δλ)
q−

q+i

p−1
τ λ

q−

q+i

2−p
τ χ{p<2}].

This along with (3.18) gives the desired estimates.

Proposition 3.3. For any ε > 0 there exists0 < δ ≤ δ0 such that ifa is (δ, R0) small andΩ is a (δ, R0)Reifenberg
flat domain, and u is a renormalized solution to (1.1), then for any 1 ≤ s1 ≤ s2 ≤ 2 we have

|E(Aλ)| ≤ C ε
λ{ ∫

Ωs2R(x0)∩Fu(λ/4)

|∇u|
τq(x)
q− dx + 1

δ ∫
Ωs2R(x0)∩FM1(μ)(δλ/4)

[M1(μ)(x)
1

p−1 ]
τq(x)
q− dx}

for all

λ > (8 × 10
6

s2 − s1
)
n
Λδ ,

where A ≥ 3(1 + c1 + c2).

Proof. From the definition of E(Aλ), for every k > 0 we have

|E(Aλ)| =
󵄨󵄨󵄨󵄨󵄨󵄨{x ∈ Ωs1R(x0) : |∇u|

τq(x)
q− > Aλ}

󵄨󵄨󵄨󵄨󵄨󵄨

≤ ∑
i

󵄨󵄨󵄨󵄨󵄨󵄨{x ∈ Ωs1R(x0) ∩ B5ri (yi) : |∇u|
τq(x)
q− > Aλ}

󵄨󵄨󵄨󵄨󵄨󵄨

≤ ∑
i

󵄨󵄨󵄨󵄨󵄨󵄨{x ∈ Ωs1R(x0) ∩ B5ri (yi) : |∇vk,i|
τq(x)
q− > Aλ/3}

󵄨󵄨󵄨󵄨󵄨󵄨

+ ∑
i

󵄨󵄨󵄨󵄨󵄨󵄨{x ∈ Ωs1R(x0) ∩ B5ri (yi) : |∇(uk − vk,i)|
τq(x)
q− > Aλ/3}

󵄨󵄨󵄨󵄨󵄨󵄨

+ ∑
i

󵄨󵄨󵄨󵄨󵄨󵄨{x ∈ Ωs1R(x0) ∩ B5ri (yi) : |∇(u − uk)|
τq(x)
q− > Aλ/3}

󵄨󵄨󵄨󵄨󵄨󵄨.

By Lemma 3.1 and Lemma 3.2, we have

‖∇vk,i‖
τq(x)
q−

L∞(Ω5ri (yi))
≤ (c1 + c2)λ ≤ Aλ/3.
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Hence, we have

|E(Aλ)| ≤ ∑
i

󵄨󵄨󵄨󵄨󵄨󵄨{x ∈ Ωs1R(x0) ∩ B5ri (yi) : |∇(uk − vk,i)|
τq(x)
q− > Aλ/3}

󵄨󵄨󵄨󵄨󵄨󵄨

+ ∑
i

󵄨󵄨󵄨󵄨󵄨󵄨{x ∈ Ωs1R(x0) ∩ B5ri (yi) : |∇(u − uk)|
τq(x)
q− > Aλ/3}

󵄨󵄨󵄨󵄨󵄨󵄨 =: E1,k(Aλ) + E2,k(Aλ).

For the first term, by Lemma 3.1 and Lemma 3.2 we have

E1,k(Aλ) ≤ ∑
i

󵄨󵄨󵄨󵄨󵄨󵄨{x ∈ Ωs1R(x0) ∩ B5ri (yi) : |∇(uk − vk,i)| > (Aλ/2)
q−

τq+i }
󵄨󵄨󵄨󵄨󵄨󵄨

≤ ∑
i

1
(Aλ/2)q−/τq+i

∫
Ωs1R(x0)∩B5ri (yi)

|∇(uk − vk,i)| dx

≤ ∑
i

ε
(Aλ/2)q−/τq+i

λ
q−

τq+i |Ω5ri (yi)|

≤ cε∑
i
|Ω5ri (yi)| ≤ cε∑

i
|Ωri (yi)|.

On the other hand, since {B5ri (yi)}i is a finite overlap, we have

E2,k(Aλ) ≤ C
󵄨󵄨󵄨󵄨󵄨󵄨{x ∈ Ω : |∇(u − uk)|

τq(x)
q− > Aλ/3}

󵄨󵄨󵄨󵄨󵄨󵄨
≤ C
󵄨󵄨󵄨󵄨󵄨󵄨{x ∈ Ω : |∇(u − uk)|

τq1
q− > Aλ/6}

󵄨󵄨󵄨󵄨󵄨󵄨 + C
󵄨󵄨󵄨󵄨󵄨󵄨{x ∈ Ω : |∇(u − uk)|

τq2
q− > Aλ/6}

󵄨󵄨󵄨󵄨󵄨󵄨

≤ C
󵄨󵄨󵄨󵄨󵄨󵄨{x ∈ Ω : |∇(u − uk)| > (Aλ/6)

q−
τq1 }
󵄨󵄨󵄨󵄨󵄨󵄨 + C
󵄨󵄨󵄨󵄨󵄨󵄨{x ∈ Ω : |∇(u − uk)| > (Aλ/6)

q−
τq2 }
󵄨󵄨󵄨󵄨󵄨󵄨.

This implies
E2,k(Aλ) → 0 as k →∞.

Hence, by letting k →∞ , we obtain that

|E(Aλ)| ≤ cε∑
i
|Ω5ri (yi)| ≤ cε∑

i
|Ωri (yi)|.

This together with (3.11) implies that

|E(Aλ)| ≤ cε
λ ∑i
{ ∫
Ωri (yi)∩Fu(λ/4)

|∇u(x)|
τq(x)
q− dx + ∫

Ωri (yi)∩FM1(μ)(δλ/4)

1
δ [
M1(μ)(x)

1
p−1 ]

τq(x)
q− dx}.

Since {Ω5ri (yi)}i is a finite overlap and Ωri (yi) ⊂ Ωs2R(x0), we further obtain

|E(Aλ)| ≤ cε
λ { ∫

Ωs2R(x0)∩Fu(λ/4)

|∇u(x)|
τq(x)
q− dx + ∫

Ωs2R(x0)∩FM1(μ)(δλ/4)

1
δ [
M1(μ)(x)

1
p−1 ]

τq(x)
q− dx}.

We are now ready to give the proof of Theorem 1.4.

Proof of Theorem 1.4. By a standard approximation, we may assume that

∫
Ω

|∇u|q(x) dx < ∞.

We first observe that

∫
Ωs1R(x0)

|∇u|q(x) dx = ∫
Ωs1R(x0)

[|∇u|
τq(x)
q− ]

q−
τ dx

≤ cpA
q−
τ

∞

∫
0

λ
q−
τ −1|E(Aλ)| dλ

≤ cp
A0Λδ

∫
0

⋅ ⋅ ⋅ + cp
∞

∫
A0Λδ

⋅ ⋅ ⋅ =: E(s1, R) + F(s1, R), (3.19)



530 | T.A. Bui, W1,p( ⋅ ) regularity estimates for quasilinear equations

where A = 3(1 + c1 + c2) and

A0 = (
8 × 106
s2 − s1
)
n
.

For the first term E(s1, R), we have

E(s1, R) ≤ cpA
q−
τ (A0Λδ)

q−
τ |Ωs1R(x0)|

≤ cp(A0A)
q−
τ |Ωs1R(x0)|[ −∫

Ω2R(x0)

{|∇u(x)|
τq(x)
q− +

1
δ [
M1(μ)(x)

1
p−1 ]

τq(x)
q− } dx + 1δ ]

q−
τ
. (3.20)

From (3.7), we have −∫
Ω2R(x0)

|∇u(x)|
τq(x)
q− ≤ −∫

Ω2R(x0)

[|∇u(x)|q1 + 1] dx ≲ 1 + |Ω|
|Ω2R(x0)|

. (3.21)

On the other hand, we have−∫
Ω2R(x0)

[M1(μ)(x)
1

p−1 ]
τq(x)
q− dx ≤ −∫

Ω2R(x0)

[M1(μ)(x)
q(x)
p−1 + 1] dx ≤ 1 + |Ω|

|Ω2R(x0)|
. (3.22)

We now insert (3.21) and (3.22) into (3.20) to obtain that

E(s1, R) ≤ cp(A0A)
q−
τ |Ωs1R(x0)|[

1 + |Ω|
|Ω2R(x0)|

+
1 + |Ω|

δ|Ω2R(x0)|
]

q−
τ

≤
C

(s2 − s1)nq2/τ
|Ωs1R(x0)|[

1 + |Ω|
|Ω2R(x0)|

+
1 + |Ω|

δ|Ω2R(x0)|
]

q2
τ

≤
C

(s2 − s1)nq2/τ
|Ω2R(x0)|[

1 + |Ω|
|ΩR(x0)|

+
1 + |Ω|

δ|ΩR(x0)|
]

q2
τ .

For the second term, using Proposition 3.3, we have

F(s1, R) ≤ cpεA
q−
τ

∞

∫
0

λ
q−
τ −2 ∫

Ωs2R(x0)∩Fu(λ/4)

|∇u|
τq(x)
q− dx dλ

+
cpεA

q−
τ

δ

∞

∫
0

λ
q−
τ −2 ∫

Ωs2R(x0)∩FM1(μ)(δλ/4)

[M1(μ)(x)
1

p−1 ]
τq(x)
q− dx dλ,

which together with the Fubini theorem implies that

F(s1, R) ≤ cpεA
q−
τ ∫
Ωs2R(x0)

4|∇u|
τq(x)
q−

∫
0

λ
q−
τ −2|∇u|

τq(x)
q− dλ dx

+
cpεA

q−
τ

δ ∫
Ωs2R(x0)

4
δ [M1(μ)(x)

1
p−1 ]

τq(x)
q−

∫
0

λ
q−
τ −2[M1(μ)(x)

1
p−1 ]

τq(x)
q− dλ dx

≤ cpεA
q−
τ ∫
Ωs2R(x0)

|∇u|q(x) dx +
cpεA

q−
τ

δ
q−
τ

∫
Ωs2R(x0)

M1(μ)(x)
q(x)
p−1 dx

≤ cpεA
q−
τ ∫
Ωs2R(x0)

|∇u|q(x) dx +
cpεA

q−
τ

δ
q2
τ

≤ c3ε ∫
Ωs2R(x0)

|∇u|q(x) dx + c3ε
δ

q2
τ
.
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We now insert the estimates of E(s1, R) and F(s1, R) into (3.19) to get that

∫
Ωs1R(x0)

|∇u|q(x) dx ≤ c
(s2 − s1)nq2/τ

|Ω2R(x0)|[
1 + |Ω|
|ΩR(x0)|

+
1 + |Ω|

δ|ΩR(x0)|
]

q2
τ + c3ε ∫

Ωs2R(x0)

|∇u|q(x) dx + c3ε
δ

q2
τ
.

We recall the following auxiliary lemma in [23, Lemma 4.3].

Lemma 3.4. Let f be a bounded nonnegative function on [a1, a2] with 0 < a1 < a2. Assume that for any
a1 ≤ x1 ≤ x2 ≤ a2 we have

f(x1) ≤ θ1f(x2) +
A1

(x2 − x1)θ2
+ A2,

where A1, A2 > 0, 0 < θ1 < 1 and θ2 > 0. Then there exists c = c(θ1, θ2) so that

f(x1) ≤ c[
A1

(x2 − x1)θ2
+ A2].

We now apply this lemma for a1 = 1, a2 = 2 and

f(s) = ∫
ΩsR(x0)

|∇u|q(x) dx

to conclude that

∫
Ωs1R(x0)

|∇u|q(x) dx ≲ c
(s2 − s1)nq2/τ

|Ω2R(x0)|[
1 + |Ω|
|ΩR(x0)|

+
1 + |Ω|

δ|ΩR(x0)|
]

q2
τ +

c3ε
δ

q2
τ

≲
c

(s2 − s1)nq2/τ
|Ω2R(x0)|[

1 + |Ω|
|ΩR(x0)|

+
1 + |Ω|

δ|ΩR(x0)|
]

q2
τ +

c3ε
δ

q2
τ
,

provided c3ε < 1.
We now insert s1 = 1 and s2 = 2 into the above expression to obtain that

∫
ΩR(x0)

|∇u|q(x) dx ≲ |ΩR(x0)|[
1 + |Ω|
|ΩR(x0)|

]
q2
τ + 1. (3.23)

We now fix 0 < R < min{R0, Rγ , 1/10}. Then there exist x1, . . . , xN ∈ Ω so that

Ω =
N
⋃
k=1

ΩR(xk).

Hence, from (3.23) we obtain

∫
Ω

|∇u|q(x) dx ≤
N
∑
k=1
∫

ΩR(xk)

|∇u|q(x) dx

≲
N
∑
k=1
[|ΩR(xk)|(

1 + |Ω|
|ΩR(xk)|

)
q2
τ + 1]

≲
N
∑
k=1
[R−n(

q2
τ −1)(1 + |Ω|)

q2
τ (

BR(xk)
ΩR(xk)
)

q2
τ −1 + 1],

which along with (3.1) implies that

∫
Ω

|∇u|q(x) dx ≲
N
∑
k=1
[R−n(

q2
τ −1)(1 + |Ω|)

q2
τ 4n(

q2
τ −1) + 1] ≲ 1.
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