
Adv. Nonlinear Anal. 2018; 7(4): 469–483

Research Article

Zhong Tan, Yanzhen Wang* and Shuhong Chen

Partial regularity up to the boundary for
solutions of subquadratic elliptic systems
https://doi.org/10.1515/anona-2016-0054
Received March 10, 2016; revised August 21, 2016; accepted September 11, 2016

Abstract: In this paper,we are concernedwith thenonlinear elliptic systems indivergence formunder control-
lable growth condition. We prove that the weak solution u is locally Hölder continuous besides a singular set
by using the directmethod and classical Morrey-type estimates. Here the Hausdorff dimension of the singular
set is less than n − p. This result not only holds in the interior, but also holds up to the boundary.
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1 Introduction
In this paper, we are concernedwith partial regularity up to the boundary for weak solutions u ∈ W1,p(Ω,ℝn)
of a general inhomogeneous system of subquadratic elliptic equations in divergence form:

{
−div a( ⋅ , u, Du) = b( ⋅ , u, Du) in Ω,

u = g on ∂Ω,
(1.1)

where Ω ⊂ ℝN is a bounded domain, n ≥ 2, N ≥ 2, and the boundary values g ∈ C1(Ω̄,ℝN). The coefficient a
mapsΩ × ℝN × ℝnN intoℝnN , the inhomogeneity bwhichmaps Ω × ℝN × ℝnN intoℝN is a Carathéodorymap,
thatmeans it is continuouswith respect to (u, z) andmeasurable with respect to x. We need to impose certain
conditions as boundedness, differentiability, growth, continuity, and uniformly strong ellipticity conditions
on a in the following:

{{{{
{{{{
{

|a(x, u, z)| + |Dza(x, u, z)|(μ2 + |z|2)
1
2 ≤ (μ2 + |z|2)

p−1
2 ,

Dza(x, u, z)λ ⋅ λ ≥ ν(μ2 + |z|2)
p−2
2 |λ2|,

|a(x, u, z) − a(x̄, ū, z)| ≤ L(μ2 + |z|2)
p−1
2 ω(|x − x̄| + |u − ū|),

(1.2)

where the map z 󳨃→ a( ⋅ , ⋅ , z) is a vector field of class

C0(ℝnN ,ℝnN) ∩ C1(ℝnN \ 0,ℝnN),

λ ∈ ℝnN , and ω : ℝ+ → ℝ+ is a monotone nondecreasing concave function bounded by 1 (without loss of
generality), continuous at 0with limρ→0 ω(ρ) = 0. The parameter μ ∈ [0, 1]. If μ ̸= 0, it means that the system

Zhong Tan, School of Mathematical Science and Fujian Provincial Key Laboratory on Mathematical Modeling and High
Performance Scientific Computing, Xiamen University, Xiamen, Fujian, 361005, P. R. China, e-mail: ztan85@163.com
*Corresponding author: Yanzhen Wang, School of Mathematical Sciences, Xiamen University, Xiamen, Fujian, 361005,
P. R. China, e-mail: wangyanzhen825@163.com
Shuhong Chen, School of Mathematics and Statistics, Minnan Normal University, Zhangzhou, Fujian, 363000, P. R. China,
e-mail: shiny0320@163.com



470 | Z. Tan, Y. Z. Wang and S. H. Chen, Partial regularity

is non-degenerate; when μ = 0 the system is degenerate, and the parameter 1 < p < 2. The third inequality
of condition (1.2) means that the coefficients a(x, u, z) are continuous with respect to (x, u). Moreover, we
also need to impose the controllable growth condition on the inhomogeneity b:

|b(x, u, z)| ≤ L(μ2 + |z|p(1−
1
p∗ ) + |u|p∗−1), p∗ =

{
{
{

Np
N−p , N ̸= p,
any constant, N = p,

(1.3)

where (x, u, z) ∈ Ω̄ × ℝN × ℝnN .
The regularity for solutions of partial differential equations is a difficult problem. Many authors have

studied it such as [1, 2, 18]. There are some previous partial regularity results for elliptic systems. First we
can pay attention to some articles that, for dimension n and with the mild continuity assumption to the
coefficients such as [13–16] and [17, 24, 27, 31], tell us the regularity results for quasilinear systems, and
[12] tells us about the partial regularity for subquadratic growthproblems in the interior. For relatedproblems
of dimension reduction of the singular set SingDu(Ω) under additional assumptions on ω( ⋅ ) see Mingione
[28, 29]. For the dimension reduction up to the boundary see Duzaar, Grotowski and Kronz [20]. Further-
more, [19, 22, 26, 30] give some results about the general form of the coefficients for n ≥ 3. It is well known
that we cannot expect full Hölder continuity. In contrast, due to the global higher integrability of the weak
solution and the Sobolev embedding theorem, we see that full Hölder regularity up to the boundary holds
true provided that p is close to n.

For the setting of low dimension various results have been proved such as [21, 32]. In [8], Campanato
obtained local Hölder continuity of the weak solution on the regular set in the interior of Ω under a con-
trollable growth assumption, and that paper also gave the Hausdorff dimension of the singular set up to the
boundary. He further achieved similar results for systems of higher order in [9].Moreover, Campanato [10, 11]
presented globalMorrey-estimates for theweak solution of systemswith coefficients not depending explicitly
on u, and Arkhipova [3, 4] proved a partial regularity result up to the boundary for non-degenerate systems
in the superquadratic case. An example under a natural growth condition for higher order Morrey-type and
Hölder estimates can be found in [33]. In [6], Beck considersweak solutions of second order nonlinear elliptic
systems in divergence form under standard subquadratic growth conditions with boundary data of class C1.
Our work here depends on this article.

In this paper, we are concerned with the regularity in the subquadratic case. We prove that the weak
solution u to the nonlinear system (1.1) is locally Hölder continuous on Regu(Ω̄) for some Hölder exponent
θ > 0 under the assumption that the inhomogeneity obeys a controllable growth condition. Moreover, we
show that the Hausdorff dimension of singular sets is strictly less than n − p; the same result as in [6].

Notations. We use

Bρ(y) = {x ∈ ℝn : |x − y| < ρ} and B+ρ (y) = {x ∈ ℝn : xn > 0, |x − y| < ρ}

to denote a ball and the intersection of a ball with the upper half-space ℝn−1 × ℝn, respectively. Here the
center point y ∈ ℝn and y ∈ ℝn−1 × ℝ+0, respectively, the radius ρ > 0. Furthermore, we write

Γρ(y) = {x ∈ ℝn : xn = 0, |x − y| < ρ} for y ∈ ℝn−1 × 0.

When y = 0, we write Bρ := Bρ(0), B := B1, B+ρ := B+ρ (0), B+ = B+1, Γρ := Γρ(0), and Γ := Γ1. We use

W1,p
Γ (B
+
ρ ,ℝn) := {u ∈ W1,p(B+ρ ,ℝn) : u = 0 on Γ√ρ2−(y)2n (x

1
0)}

to denote theW1,p-functions defined on a half-ball B+ρ (y)which vanish on the flat part of the boundary, where
yn < ρ is satisfied and where y󸀠 := (y1, . . . , yn−1, 0) denotes the projection of y onto ℝn−1 × 0. Sometimes, it
will be convenient to treat the tangential derivative D󸀠(u) = (D1u, . . . , Dn−iu) and the normal derivative Dnu
of a function u ∈ W1,p

Γ (B
+
ρ ,ℝn) separately. For a given set X ⊂ ℝn we write Ln(X) = |X| and dimH(X) for its

n-dimensional Lebesgue-measure and its Hausdorff dimension, respectively. Furthermore, if f ∈ L1(X,ℝn)
and 0 < |X| < ∞, we denote the average of f by (f)X = −∫X f dx.
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We now state our main theorem.

Theorem 1.1. Let Ω ⊂ ℝn be a bounded domain and let g ∈ C1(Ω̄,ℝN). Let u ∈ W1,p(Ω,ℝN), with p ∈ (1, 2),
be a weak solution of (1.1) with coefficients a : Ω × ℝN × ℝnN → ℝnN satisfying assumptions (1.2), and inho-
mogeneity b : Ω × ℝN × ℝnN → ℝN obeying the controllable growth condition (1.3). Then there exists δ1 > 0,
depending only on n, N, p, Lν , ‖u‖Lp , ‖Du‖Lp , ‖Dg‖L∞ for n ∈ [2, p + 2 + δ1], such that there holds

dimH(Ω̄ \ Regu(Ω̄)) < n − p and u ∈ C0,θloc (Regu(Ω̄),ℝ
N)

for all θ ∈ (0, min{1 − n−2−δ1
p , 1}). Moreover, the singular set Singu(Ω̄) of u is contained in

Σ := {x0 ∈ Ω̄ : lim inf
R↘0

Rp−n ∫
BR(x0∩Ω)

(1 + |Du|p) dx > 0}.

Here the number δ arises from the application of Gehring’s lemma on higher integrability (see Lemma 2.4 for an
explicit possible choice of the higher integrability exponent). Therefore, the condition n ∈ [2, p + 2 + δ1)mostly
means n ∈ [2, 3) unless p is close to 2 or δ1 happens to be large.

2 Preliminaries
In this section, we will give the definitions of Morrey and Campanato spaces and some known conclusions
which will be used later.

Definition 2.1. Let Ω ⊂ ℝN be a bounded open set and let 1 ≤ p < ∞. By Lp,λ(Ω,ℝN), λ ≥ 0, we denote the
Campanato space of all functions u ∈ Lp,λ(Ω,ℝN) such that

‖u‖p
Lp,λ(Ω,ℝN ) := sup

y∈Ω, 0<ρ≤diamΩ
ρ−λ ∫

Bρ(y)∩Ω

|u − (u)Bρ(y)∩Ω|
p dx < ∞.

The local variant Lp,λ
loc (Ω,ℝ

N) can be defined in the usual way, saying that u ∈ Lp,λ
loc (Ω,ℝ

N) if and only if
u ∈ Lp,λ(Ω󸀠,ℝN) for every Ω󸀠 ⋐ Ω.

Definition 2.2. Let Ω ⊂ ℝN be a bounded open set and let 1 ≤ p < ∞. By Lp,λ(Ω,ℝN), λ ≥ 0, we denote the
Morrey space of all functions u ∈ Lp,λ(Ω,ℝN) such that

‖u‖pLp,λ(Ω,ℝN ) := sup
y∈Ω, 0<ρ≤diamΩ

ρ−λ ∫
Bρ(y)∩Ω

|u|p dx < ∞.

The local variant Lp,λloc (Ω,ℝ
N) can be defined in the usual way, saying that u ∈ Lp,λloc (Ω,ℝ

N) if and only if
u ∈ Lp,λ(Ω󸀠,ℝN) for every Ω󸀠 ⋐ Ω.

To handle the subquadratic case the V-function is very useful. For ξ ∈ ℝk, k ∈ ℕ, μ ∈ [0, 1], and p > 1 it is
defined by

Vμ(ξ) = (μ2 + |ξ|2)
p−2
4 ξ,

which is a locally bi-Lipschitz bijection onℝk.
When we deal with the Vμ-function, we will need some technical lemmas.

Lemma 2.3. Let ξ, η be vectors in ℝk, μ ∈ [0, 1] and q > 1. Then there exist constants C1(q), C2(q) ≥ 1 not
depending on μ such that

C−11 (μ + |ξ| + |η|)
q ≤

1

∫
0

(μ + |ξ + tη|)q dt ≤ C2(μ + |ξ| + |η|)q .
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A proof of the latter statement can be found in [3, Lemma 2.1], and for the case μ = 1 in [7]. The next lemma
collects some basic inequalities.

Lemma 2.4. Let ξ , η be vectors inℝk, μ ∈ [0, 1] and p ∈ [1, 2]. Then there exist constants C1(k, p), C2(p) such
that the following inequalities hold true:

C−11 |ξ − η|(μ
2 + |ξ|2 + |η|2)

p−2
4 ≤ |Vμ(ξ) − Vμ(η)| ≤ C1|ξ − η|(μ2 + |ξ|2 + |η|2)

p−2
4 ,

(μ2 + |ξ|2)
p
2 ≤ C2 + C2(μ2 + |ξ|2 + |η|2)

p−2
4 |ξ − η|2,

(μ2 + |ξ|2)
p−2
2 |ξ||η| ≤ ε(μ2 + |η|2)

p−2
2 |ξ|2 + ε1−p(μ2 + |η|2)

p
2 for ε ∈ (0, 1).

The first inequality is proved in [3, Lemma 2.2], while the other inequalities can be easily obtained.

Lemma 2.5 (Sobolev–Poincaré [26]). Let p < n, let p∗ = np
n−p and let Br(z) ⊂ ℝn. Then there exists a constant

C = C(n, N, p) such that for every u ∈ W1,p(Br(z),ℝn) we have

( ∫
Br(z)

|u − (u)Br(z)|
p∗ dx)

1/p∗

≤ C( ∫
Br(z)+
|Du|p dx)

1/p
,

and such that for every u ∈ W1,p
Γ (Br(z)+,ℝn) with 0 ≤ zn ≤ 3

4 r we have

( ∫
Br(z)+
|u|p∗ dx)

1/p∗

≤ C( ∫
Br(z)+
|Du|p dx)

1/p
.

Lemma 2.6 (Gehring’s Lemma [20]). Suppose A to be a closed subset of Ω̄. Consider two nonnegative functions
g, f ∈ L1(Ω) and p with 1 < p < ∞ such that there holds−∫

Br/2∩Ω

gp dx ≤ bp[( −∫
Br/2∩Ω

g dx)
p
+ −∫

Br/2∩Ω

f p dx]

for almost all z ∈ Ω \ A with Bz
r ∩ A = 0 for some constant b. Then there exist constants

C = C(n, p, q, b, kΩ) and δ = δ(n, p, b, kΩ)

such that

(−∫
BΩ

g̃q dx)
1
q
≤ C[(−∫

BΩ

gp dx)
1
p
+ (−∫

BΩ

f q dx)
1
q
]

for all q ∈ [p, p + δ), where
̃g(x) =

Ln(Bd(x,A)(x) ∩ Ω)
Ln(Ω) ,

kΩ is a positive constant such that |Bρ(x0) ∩ Ω| ≥ kΩρn for all points x0 ∈ Ω̄, and every radius ρ ≤ diam(Ω).

Lemma 2.7 ([5, Corollary 4.6]). Let v ∈ W(1,p)Γ (B
+
R(x0)) be a weak solution of div a0(Dv) = 0 under assump-

tions (1.2). Then there exists a constant C = C(n, N, p, Lν ) independent of v such that for every B
+
ρ (y) ⊂ B+R(x0)

with center y ∈ B+R(x0) ∪ ΓR(x0) and radius 0 < ρ < R − |x0 − y| there holds

∫

B+
τρ(y)

(μp + |Dv|p) dx ≤ τρ ∫
B+
ρ (y)

(μp + |Dv|p) dx for all τ ∈ (0, 1].

Further, we have
∫

B+
ρ (x0)

(μp + |Dv|p) dx ≤ C( ρR )
γ0
∫

B+
R(x0)

(μp + |Dv|p) dx.

Here γ0 = min {2 + ε, n} for some ε = ε(n, N, p, Lν ) > 0.
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3 Caccioppoli inequality
In this section, we consider the problem on an upper half-ball, i.e., we consider weak solutions

u ∈ W1,p(B+,ℝN) ∩ L∞(B+,ℝN)

of the system

{
−div a( ⋅ , u, Du) = b( ⋅ , u, Du) in B+,

u = g on Γ.
(3.1)

Next, we will prove the following Caccioppoli inequality.

Theorem 3.1. Let u ∈ g +W1,p
Γ (B
+,ℝN), g ∈ C1(B+ ∪ Γ,ℝN), be aweak solution of (3.1), where the coefficients

a( ⋅ , ⋅ , ⋅ ) satisfy the first and second inequalities of (1.2) with μ ∈ [0, 1]. Let the inhomogeneity b( ⋅ , ⋅ , ⋅ ) obey
the controllable growth condition (1.3). Then there holds−∫

B+
r/2

(1 + |Du|p) dx ≤ C −∫
B+
r

(1 +
󵄨󵄨󵄨󵄨󵄨󵄨
u − g
r
󵄨󵄨󵄨󵄨󵄨󵄨
p
) dx (3.2)

for all z ∈ B+ ∪ Γ and 0 < r < 1 − |z| with zn ≤ 3
4 r, and−∫

B+
r/2

(1 + |Du|p) dx ≤ C −∫
B+
r

(1 +
󵄨󵄨󵄨󵄨󵄨󵄨
u − (u)B3r/4 (z)

r
󵄨󵄨󵄨󵄨󵄨󵄨
p
) dx (3.3)

for all z ∈ B+ ∪ Γ and 0 < r < 1 − |z| with zn > 3
4 r. Here C depends only on n, N, p, Lν , ‖u‖Lp , ‖Du‖Lp , ‖Dg‖L∞ .

Proof. In order to prove inequality (3.2) close to the boundary, we choose a standard cut-off function
η ∈ C∞0 (Br , [0, 1]) satisfying η ≡ 1 on B r

2
(z) and |∇η| ≤ 4

r . We first note that

φ = (u − g)η2 ∈ W1,p
0 (B
+,ℝN).

Then φ can be taken as a test function in the weak sense of (3.1). Hence, we have−∫
B+
r (z)

b( ⋅ , u, Du) ⋅ φ dx = −∫
B+
r (z)

a( ⋅ , u, Du) ⋅ Dφ dx

= −∫
B+
r (z)

a( ⋅ , u, Du) ⋅ [(Du − Dg)η2 + 2(u − g) ⊗ ∇ηη] dx.

Therefore, one has−∫
B+
r (z)

[a( ⋅ , u, Du) − a( ⋅ , u, 0)] ⋅ Duη2 dx

= − −∫
B+
r (z)

a( ⋅ , u, 0) ⋅ Duη2 dx − −∫
B+
r (z)

2a( ⋅ , u, Du)(u − g) ⊗ ∇ηη dx

+ −∫
B+
r (z)

a( ⋅ , u, Du) ⋅ Dgη2 dx + −∫
B+
r (z)

b( ⋅ , u, Du) ⋅ (u − g)η2 dx

= I1 + I2 + I3 + I4. (3.4)

We use the first inequality of (1.2) and Young’s inequality (for a positive ε to be determined later) to obtain

I1 ≤ Lμp−1 −∫
B+
r (z)

|Du|η2 dx ≤ ε −∫
B+
r (z)

|Du|pη2 dx + ε
1

1−p L
p

p−1 μp . (3.5)
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It follows from the first inequality of (1.2), Young’s inequality and p
p−1 ≥ 2 that

I2 ≤ 2L −∫
B+
r (z)

(μ2 + |Du|2)
p−1
2 |u − g||∇η|η dx

≤ 8L −∫
B+
r (z)

(μ2 + |Du|2)
p−1
2
󵄨󵄨󵄨󵄨󵄨󵄨
u − g
r
󵄨󵄨󵄨󵄨󵄨󵄨η dx

≤ ε −∫
B+
r (z)

(μp + |Du|p)η2 dx + 8pε1−pLp −∫
B+
r (z)

󵄨󵄨󵄨󵄨󵄨󵄨
u − g
r
󵄨󵄨󵄨󵄨󵄨󵄨
p
dx, (3.6)

I3 ≤ L −∫
B+
r (z)

(μ2 + |Du|2)
p−1
2 Dgη2 dx

≤ ε −∫
B+
r (z)

(μp + |Du|p)η2 dx + ε1−pLp −∫
B+
r (z)

|Dg|p dx. (3.7)

By (1.3), Young’s inequality and Sobolev’s inequality, we have

∫

B+
r (z)

b( ⋅ , u, Du) ⋅ (u − g)η2 dx ≤ L ∫
B+
r (z)

L(μ2 + |Du|p(1−
1
p∗ ) + |u|p∗−1)

≤ ε ∫
B+
r (z)

(μp + |Du|p)η2 dx + ε1−p∗Lp∗ ∫
B+
r (z)

|u − g|p∗ dx

+ ε∫|u − g|p∗η2 dx + ε
1

1−p∗ L
p∗

p∗−1 ∫

B+
r (z)

|u|p∗ dx

≤ ε ∫
B+
r (z)

(μp + |Du|p)η2 dx + ε1−p∗Lp∗( ∫
B+
r (z)

|Du − Dg|p dx)
p∗
p

+ ε( ∫
B+
r (z)

|Du − Dg|p dx)
p∗
p
+ ε

1
1−p∗ L

p∗
p∗−1 ( ∫

B+
r (z)

|u|p dx + ∫
B+
r (z)

|Du|p dx)
p∗
p

≤ ε ∫
B+
r (z)

(μp + |Du|p)η2 dx + ε1−p∗Lp∗ |Du|p
∗

Lp + ε
1−p∗Lp∗( ∫

B+
r (z)

|Dg|p dx)
p∗
p

+ ε‖Du‖p
∗

Lp + ε( ∫
B+
r (z)

|Dg|p dx)
p∗
p
+ ε

1
1−p∗ L

p∗
p∗−1 (‖u‖p

∗

Lp + ‖Du‖
p∗
Lp ).

Then we can infer that

I4 = −∫
B+
r (z)

b( ⋅ , u, Du) ⋅ (u − g)η2 dx

≤ ε −∫
B+
r (z)

(μp + |Du|p)η2 dx

+ ε1−p∗Lp∗‖Du‖p
∗

Lp −∫
B+
r (z)

1 dx + ε1−p∗Lp∗( −∫
B+
r (z)

|Dg|p dx)
p∗
p

+ ε‖Du‖p
∗

Lp −∫
B+
r (z)

1 dx + ε( −∫
B+
r (z)

|Dg|p dx)
p∗
p

+ ε
1

1−p∗ L
p∗

p∗−1 (‖u‖p
∗

Lp −∫
B+
r (z)

1 dx + ‖Du‖p
∗

Lp −∫
B+
r (z)

1 dx). (3.8)
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By setting ε ≤ ν
8 , estimates (3.4)–(3.8) imply that

ν−1 −∫
B+
r (z)

(a( ⋅ , u, Du) − a( ⋅ , u, 0)) ⋅ Duη2 dx ≤ 12 −∫
B+
r (z)

(μp + |Du|p)η2 dx

+ C(N, p, Lν ) −∫
B+
r (z)

(μp + ‖u‖p
∗

Lp + ‖Du‖
p∗
Lp +
󵄨󵄨󵄨󵄨󵄨󵄨
u − g
r
󵄨󵄨󵄨󵄨󵄨󵄨
p
) dx

+ C(N, p, Lν )( −∫
B+
r (z)

|Dg|p dx)
p∗
p
. (3.9)

On the other hand, we use the second inequality of (1.2) to obtain−∫
B+
r (z)

(a( ⋅ , u, Du) − a( ⋅ , u, 0)) ⋅ Duη2 dx = −∫
B+
r (z) ∫

1
0

Dza( ⋅ , u, Du)Du ⋅ Duη2 dt dx

≥ −∫
B+
r (z) ∫

1
0

ν(μ2 + t2|Du|2)
p−2
2 |Du|2η2 dt dx

≥ ν −∫
B+
r (z)

|Vμ(Du)|2η2 dx. (3.10)

By virtue of μp + |Du|p ≤ 2(μp + |Vμ(Du)|2) and inequalities (3.9) and (3.10), we have−∫
B+
r (z)

(μp + |Du|p)η2 dx ≤ 2 −∫
B+
r (z)

(μp + |Vμ(Du)|2)η2

≤ 2 −∫
B+
r (z)

(μp + ν−1) −∫
B+
r (z)

(a( ⋅ , u, Du) − a( ⋅ , u, 0)) ⋅ Duη2 dx

≤
1
2 −∫

B+
r (z)

(μp + ‖u‖p
∗

Lp + ‖Du‖
p∗
Lp +
󵄨󵄨󵄨󵄨󵄨󵄨
u − g
r
󵄨󵄨󵄨󵄨󵄨󵄨
p
) dx.

Then −∫
B+
r (z)

(μp + |Du|p)η2 dx ≤ C(N, p, Lν ) −∫
B+
r (z)

(μp + ‖u‖p
∗

Lp + ‖Du‖
p∗
Lp + |

u − g
r
|p + ‖Dg‖p

∗

L∞) dx. (3.11)

Setting μ = 1 in (3.11), we have−∫
B+
r (z)

(1 + |Du|p)η2 dx ≤ C(n, N, p, Lν , ‖u‖L
p , ‖Du‖Lp , ‖Dg‖L∞) −∫

B+
r (z)

(1 +
󵄨󵄨󵄨󵄨󵄨󵄨
u − g
r
󵄨󵄨󵄨󵄨󵄨󵄨
p
) dx.

Then we obtain the result (3.2) by using the fact η ≡ 1 on B r
2 (z).

Estimate (3.3) in the interior is achieved in the same way by using a standard cut-off function η with
support in the ball B 3r

4 (z) ⊂ B
+ and choosingφ = (u − (u)B 3r

4
)η2 as a test function instead ofφ = (u − g)η2.

4 Higher integrability

Theorem 4.1. Let u ∈ g +W(1,p)Γ (B
+, ℝN), g ∈ C1(B+ ∪ Γ,ℝN), be a weak solution of (3.1), where the coeffi-

cients a( ⋅ , ⋅ , ⋅ ) satisfy assumptions (1.2) with μ ∈ [0, 1]. Let the inhomogeneity b( ⋅ , ⋅ , ⋅ ) obey the controllable
growth condition (1.3). Then there exists an exponent q > p depending only on p, n, N, Lν , ‖Dg‖L∞ , ‖u‖Lp , ‖Du‖Lp
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such that u ∈ W(1,q)(B+ρ ,ℝN) for all ρ < 1. Furthermore, for y ∈ B+ ∩ Γ and 0 < ρ < 1 − |y| there holds

( −∫
B+
ρ/2(z)

(1 + |Du|)
p
q dx)

q
≤ C( −∫

B+
ρ/2(z)

(1 + |Du|p) dx),

with constants C = C(p, n, N, Lν , ‖Dg‖L
∞, ‖u‖Lp , ‖Du‖Lp ).

Proof. Applying Lemma 2.5 in the zero-boundary-data version to inequalities (3.2), for z ∈ B+ ∪ Γ and
0 < r < 1 − |z| with zn ≤ 3

4 r, we get−∫
B+
r\2

(1 + |Du|p) dx ≤ C −∫
B+
r

(1 +
󵄨󵄨󵄨󵄨󵄨󵄨
u − g
r
󵄨󵄨󵄨󵄨󵄨󵄨
p
) dx ≤ C[1 + (−∫

B+
r

|Du − Dg|
np
n+p dx)]

n+p
n
,

where C depends only on p, n, N, L
ν , ‖Dg‖L∞ , ‖u‖Lp , ‖Du‖Lp in the interior (for zn > 3

4 r). We first apply
Lemma 2.3 in the mean value version to (3.3), and then increase the domain of integration to B+r . Next, from
Lemma 2.6, we know that there exist a constant C and an exponent q > p depending on p, n, N, L

ν , ‖Dg‖L∞ ,
‖u‖Lp , ‖Du‖Lp such that

(1 + |Du|p)
n

n+p ∈ L
n+p
n

2
p (Bρ/2(y))

with the estimate

( −∫
B+
ρ/2(z)

(1 + |Du|)q dx)
p
q
≤ 2p( −∫

B+
ρ/2(z)

(1 + |Du|)
q
p dx)

p
q

≤ 2n(1+
p
q )+p( −∫

B+
ρ/2(z)

Ln(Bd(x,A)(x) ∩ B+ρ (y))
Ln(B+ρ (y))

(1 + |Du|)
q
p dx)

p
q

≤ C −∫
B+
ρ/2(z)

(1 + |Du|p) dx.

Hence, we have finished the proof of the desired higher integrability estimate.

5 Decay estimate for the solution
This section will give an appropriate decay estimate for the solution u of the original system (3.1) by compar-
ing u with the solution

v ∈ W(1,p)(B+R(x0),ℝ
N) ∩ L∞(B+,ℝN)

of the system

{
−div a0(Dv) = 0 in B+R(x0),

u = g on ∂B+R(x0),
(5.1)

where u = a0(z) = (x0, (u)B+
R(x0), z), x0 ∈ Γ and 2R < 1 − |x0|. Testing the latter system with u − g − v, we

obtain

0 = ∫
B+
R(x0)

a0(Dv) ⋅ (Du − Dg − Dv) dx

= ∫

B+
R(x0)

1

∫
0

Dza0(tDv)(Dv) ⋅ (Du − Dg − Dv) dt dx

= ∫

B+
R(x0)

a0(Dv) ⋅ (Du − Dg − Dv) dx.
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Using the first and second inequalities of (1.2), Young’s inequality, Lemma 2.3, and the second inequality of
Lemma 2.4, we have

ν ∫
B+
R(x0)

(μ2 + |Dv|2)
p−2
2 |Dv|2 dx ≤ C(p)ν ∫

B+
R(x0)

1

∫
0

(μ2 + |tDv|2)
p−2
2 |Dv|2 dt dx

≤ C(p) ∫
B+
R(x0)

1

∫
0

Dza0(tDv)Dv ⋅ Dv dt dx

= ∫

B+
R(x0)

1

∫
0

Dza0(tDv)D(u − g) ⋅ Dv dt dx

≤ ε ∫
B+
R(x0)

(μ2 + |Dv|2)
p−2
2 |Dv|2 dx + C(p)ε1−pLp ∫

B+
R(x0)

(μp + |Du − Dg|p) dx.

Choosing ε ≤ ν
2 , we have

∫

B+
R(x0)

|Dv|p dx ≤ C ∫
B+
R(x0)

(μp + |Du − Dg|p) dx ≤ C ∫
B+
R(x0)

(1 + |Du|p) dx. (5.2)

Note that

div(a0(Dv + Dg) − a0(Du)) = div(a0(Dv + Dg) − a0(Dv)) + div(a( ⋅ , u, Du) − a0(Du)) + b( ⋅ , u, Du).

By Young’s inequality, we deduce from the condition of the second inequality of (1.2) that

2
p−2
2 ν ∫

B+
R(x0)

(μ2 + |Du|2 + |Dv + Dg|2)
p−2
2 |Du − Dv − Dg|2 dx

≤ ν ∫
B+
R(x0)

1

∫
0

(μ2 + |Du + t(Dv + Dg − Du)|2)
p−2
2 |Du − Dv − Dg|2 dt dx

≤ ∫

B+
R(x0)

1

∫
0

Dza0(Du + t(Du − Dv − Dg))(Du − Dv − Dg) ⋅ (Du − Dv − Dg) dt dx

= ∫

B+
R(x0)

(a0(Dv + Dg) − a0(Du)) ⋅ (Du − Dv − Dg) dx

≤ ∫

B+
R(x0)

(a0(Dv + Dg) − a0(Dv)) ⋅ (Du − Dv − Dg) dx

+ ∫

B+
R(x0)

(a( ⋅ , u, Du) − a0(Du)) ⋅ (Du − Dv − Dg) dx

− ∫

B+
R(x0)

(b( ⋅ , u, Du) − a0(Du)) ⋅ (Du − Dv − Dg) dx

=: I1 + I2 + I3. (5.3)

First, we will estimate the first term I1. It follows from the first inequality of (1.2), Lemma 2.3, Young’s
inequality, p < 2, and (5.2) that

I1 ≤ cL ∫
B+
R(x0)

(μ2 + |Dv|2 + |Dg|2)
p−2
2 |Du − Dv − Dg||Dg| dx,

≤ cL(δ ∫
B+
R(x0)

(1 + |Du|p) dx + Rnδ1−p) (5.4)

for every δ ∈ (0, 1).
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For the second term, using the third inequality of (1.2), Hölder’s inequality, Young’s inequality, the
higher integrability estimate for 1 + |Du|p from the energy estimate (5.2), Jensen’s inequality and Poincaré’s
inequality, we have

I1 ≤ cL ∫
B+
R(x0)

ω(|x − x0| − |u − (u)B+
R(x0)|)(μ

2 + |Dv|2 + |Dg|2)
p−2
2 |Du − Dv − Dg| dx

≤ |B+R(x0)|L( −∫
B+
R(x0)

ω(R + |u − (u)B+
R
|) dx)

p−1
p

q−p
q

× ( −∫
B+
R(x0)

(μp + |Du|p)
q
p dx)

p−1
p

p
q
(3p−1 −∫

B+
R(x0)

(|Du|p + |Dg|pL∞ ) dx)
1
p

≤ |B+R(x0)|Lcω
β( −∫

B+
R(x0)

(R + |u − (u)B+
R
|) dx)

× ( −∫
B+
2R(x0)

(1 + |Du|p) dx)
p−1
p
( −∫
B+
R(x0)

(1 + |Du|p) dx)
1
p

≤ Lcωβ( ∫

B+
R(x0)

(Rp + |u − (u)B+
R
|p) dx)

1
p
∫

B+
2R(x0)

(1 + |Du|p) dx

≤ Lcωβ((Rp−n ∫

B+
R(x0)

(1 + |Du|p) dx)
1
p
) ∫

B+
2R(x0)

(1 + |Du|p) dx. (5.5)

Here
β := p − 1

p
q − p
q

(5.6)

and q > p denotes the (up-to-the-boundary) higher integrability exponent of the gradient Du from Theo-
rem 4.1 depending only on p, n, N, L

ν , ‖Dg‖L∞ , ‖u‖Lp , ‖Du‖Lp .
Finally, by the growth condition on b(x, u, Du), Hölder’s inequality, Poincaré’s inequality, Sobolev’s

inequality, and (5.2), we have

I3 ≤ L ∫
B+
R(z)

(μ2 + |Du|p(1−
1
p∗ ) + |u|p∗−1)|v + g − u| dx

≤ C(p, N)L ∫
B+
R(z)

(μ2 + (u)p
∗−1

z,R + |Du|
p(1− 1

p∗ ) + |u − (u)z,R|p
∗−1)|v + g − u| dx

≤ cL[δ ∫
B+
R(z)

(μ2 + (u)p
∗

z,R + |Du|
p + |u − (u)z,R|p

∗
) dx + δ1−p∗ ∫

B+
R(z)

|v + g − u|p∗ dx]

≤ cL[δ ∫
B+
R(x0)

(1 + |Du|p) dx + δ( ∫
B+
R(x0)

(1 + |Du|p) dx)
p∗
p
+ δ1−p∗( ∫

B+
R(x0)

(1 + |Du|p) dx)
p∗
p
].

It follows from (5.3)–(5.7) that

∫

B+
R(x0)

(μ2 + |Du|2 + |Dv + Dg|2)
p−2
2 |Du − Dv − Dg|2 dx

≤ C[ωβ((Rp−n ∫

B+
R(x0)

(1 + |Du|p) dx)
1
p
) + δ( ∫

B+
R(x0)

(1 + |Du|p) dx)
p∗−p
p

+ δ1−p∗( ∫
B+
R(x0)

(1 + |Du|p) dx)
p∗−p
p
+ δ] ∫

B2R+(z)

(1 + |Du|p) dx + Rnδ1−p .
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From Lemma 2.7, one has

∫

B+
ρ (x0)

|Dv|p dx ≤ C( ρR )
γ0
∫

B+
R(x0)

|Dv|p dx. (5.7)

Note that

∫

B+
ρ (x0)

(1 + |Dg|p) dx ≤ C( ρR )
γ0
∫

B+
R(x0)

1 dx. (5.8)

It follows from Lemma 2.3 that

1 + |Du|p ≤ C[1 + |Dv + Dg|p + (μ2 + |Du|2 + |Dv + Dg|2)
p−2
2 |Du − Dv − Dg|2]. (5.9)

Then we deduce from (5.7)–(5.10) that

∫

B+
ρ (x0)

(1 + |Du|p) dx ≤ C( ρR )
γ0
∫

B+
ρ (x0)

(1 + |Du|p) dx

+ C[ωβ((Rp−n ∫

B+
R(x0)

(1 + |Du|p) dx)
1
p
) + δ( ∫

B+
R(x0)

(1 + |Du|p) dx)
p∗−p
p

+ δ1−p∗( ∫
B+
R(x0)

(1 + |Du|p) dx)
p∗−p
p
+ δ] ∫

B2R+(z)

(1 + |Du|p) dx + Rnδ1−p

≤ C[( ρR )
γ0
ωβ(((2R)p−n ∫

B+
R(x0)

(1 + |Du|p) dx)
1
p
) + δ( ∫

B+
R(x0)

(1 + |Du|p) dx)
p∗−p
p

+ δ1−p∗( ∫
B+
R(x0)

(1 + |Du|p) dx)
p∗−p
p
+ δ] × ∫

B2R+(x0)

(1 + |Du|p) dx + Rnδ1−p . (5.10)

Define the Excess function as
Φ(x0, r) := ∫

B+
r (x0)

(1 + |Du|p) dx.

Then (5.10) can be rewritten as follows:

Φ(x0, ρ) ≤ C[(
ρ
R )

γ0
ωβ(((2R)p−nΦ(x0, 2R))

1
p ) + δΦ(x0, ρ)

p∗−p
p + δ1−p∗Φ(x0, ρ)

p∗−p
p + δ]Φ(x0, 2R) + Rnδ1−p .

To conclude, we have the following lemma of decay estimate.

Lemma 5.1. Let β, γ0 be chosen as above in Lemma 2.5 and let δ ∈ (0, 1). Furthermore, let u ∈ g +W1,p
Γ ,

1 < p < 2, be a weak solution of system (5.1) under assumptions (1.2) and (1.3) with g ∈ C1(B+ ∪ Γ,ℝN).
If x0 ∈ Γ and R < 1 − |x0|, or if x0 ∈ B+ and R < min{1 − |x0|, (x0)n}, there holds

Φ(x0, ρ) ≤ C[(
ρ
R )

γ0
ωβ(((R)p−nΦ(x0, R))

1
p ) + δΦ(x0, ρ)

p∗−p
p + δ1−p∗Φ(x0, ρ)

p∗−p
p + δ]Φ(x0, R) + Rnδ1−p

for every ρ ∈ (0, R) and the constant C depends only on p, n, N, Lν , ‖Dg‖L∞ , ‖u‖Lp , ‖Du‖Lp .

6 Proof of Theorem 1.1
Now, we prove the partial regularity result of the system on the unit half-ball. Afterwards, we can use
a transformation which flattens the boundary locally, and a covering argument in a standard way to yield the
statement of Theorem 1.1.
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Theorem 6.1. Let u ∈ W1,p(Ω,ℝN), p ∈ (1, 2), be a weak solution of

{
−div a( ⋅ , u, Du) = b( ⋅ , u, Du) in B+,

u = g on Γ,

where we assume that the coefficients a : B+ × ℝN × ℝnN → ℝnN satisfy assumptions (1.2), the inhomogene-
ity b : B+ × ℝN × ℝnN → ℝN obeys the controllable growth condition (1.3) and g ∈ C1(B+ ∪ Γ,ℝN). Then there
exists δ2 > 0, depending only on n, N, p, L

ν , ‖u‖Lp , ‖Du‖Lp , and ‖Dg‖L∞ for n ∈ [2, p + 2 + δ2], such that there
holds

dimH(B+ ∪ Γ) \ Regu(B+ ∪ Γ) < n − p and u ∈ C0,θloc (Regu(B
+ ∪ Γ),ℝN)

for all θ ∈ (0, min{1 − n−2−δ2
p , 1}). Moreover, the singular set Singu(B+ ∪ Γ) of u is contained in

Σ := {x0 ∈ B+ ∪ Γ : lim inf
R↘0

Rp−n ∫
BR(x0)∪B+

(1 + |Du|p) dx > 0}.

Proof. Firstly, we give some denotions for some coefficients and constants that will be used later. Let q be
the higher integrability exponent depending only on p, n, L

ν , ‖Dg‖L∞ , ‖Du‖Lp , ‖Du‖Lp from Theorem 4.1, and
β = p−1

p
q−p
q . Let ε be the positive numbermentioned in the proof of Theorem3.1. If n = 2,we set ε = 2p(1 − γ),

γ ∈ (0, 1). If n ≥ 3, it stems from the application of Gehring’s Lemma (see Lemma2.6) and depends on n,N, p,
and L, ν. We set γ0 = min{2 + ε, n}. Choosing the constant ε0 < 1 in [24, Chapter III, Lemma 2.1] depends on
γ0, γ0 − ε

2 . We use γ0, γ0 − ε
2 , C instead of α, β, A which comes from Lemma 5.1. Furthermore, we set δ = ε0

4 .
Since ω( ⋅ ) is a modulus of continuity, we can find a positive number ς such that

ωβ(τ
1
p ) <

ε0
4 and (δ + δ1−p∗ )τ

p∗−p
p <

ε0
4 .

We now consider a point x0 ∈ B+1−δ \ Σ. Thismeans that the excess quantity Rp−n
0 Φ(x0, R) becomes very small

when R ↘ 0. Hence there exists a radius R0 > 0 such that

B+R0
(x0) ⋐ B1−σ , Rp−n

0 > δ + δ
1−p∗ , Rp−n

0 ∫

B+
R0
(x0)

(1 + |Du|p) dx = Rp−n
0 Φ(x0, R0) < τ.

Because the function z 󳨃→ Rp−n
0 Φ(z, R0) is continuous, for all z ∈ Br(x0) ∩ (B+ ∩ Γ) there exists a ball

Br(x0) such that

BR0 (z) ⋐ B1−δ and Rp−n
0 ∫

B+
R0
(z)

(1 + |Du|p) dx = Rp−n
0 Φ(z, R0) < τ.

Our next goal is to show the following Morrey-type estimates:

Φ(z, ρ) ≤ C[( ρR0
)
γ0−ε\2

Φ(z, R0) + ργ0−ε\2] (6.1)

for all balls B+ρ (z)with center z ∈ Br(x0) ∩ (B+ ∩ Γ) and a constant C which depends only on p, n, L
ν , ‖Dg‖L∞ ,

‖u‖Lp , ‖Du‖Lp . This leads us to achieving our goal that the gradient Du belongs to a Morrey space on
Br(x0) ∩ (B+ ∪ Γ). In order to prove (6.1), we need to distinguish several cases by combining the estimates at
the boundary and in the interior.

Case 1: z ∈ Γ, 0 < ρ ≤ R0. From the choices of δ, ε0, τ, R0 made above, considering Lemma 5.1 on the
boundary version, we have

Φ(z, ρ) ≤ C[( ρR0
)
γ0
+
3ε0
4 ]Φ(z, R0) + 4

p−1cRn
0ε

1−p
0

≤ C[( ρR0
)
γ0
+
3ε0
4 ]Φ(z, R0) + cR

γ0−ε/2
0

for all ρ ≤ R0, and the constant C has the dependencies stated above. Then we apply [23, Chapter III,
Lemma 2.1] to deduce inequality (6.1) for every such center z.
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Case 2: z ∈ B+, 0 < ρ ≤ R0 ≤ zn. There holds BR0 (z) ⊂ B+, hence we consider Lemma 5.1 on the interior
version. Then inequality (6.1) follows as in Case 1.

Case 3: z ∈ B+, 0 < zn < ρ ≤ R0. Without loss of generality, we may assume ρ ≤ R0
4 . Otherwise, (6.1) is triv-

ially satisfied. Then we have the following relationship:

B+ρ (z) ⊂ B+2ρ(z̃) ⊂ B
+
R0/2(z̃) ⊂ B

+
R0
(z),

where z̃ denotes theprojectionof z onRn−1 × 0.Weuse theboundary estimates inCase1and themonotonicity
to obtain

Φ(z, ρ) ≤ Φ(z̃, 2ρ) ≤ C[(4ρR0
)
γ0−ε/2

Φ(z̃, 12R0) + (2ρ)
γ0−ε/2]

≤ C[( ρR0
)
γ0−ε/2

Φ(z, R0) + ργ0−ε/2].

Case 4: z ∈ B+, 0 < ρ ≤ zn < R0. Without loss of generality, we assume zn < R0/4. Then we have

Bρ(z) ⊂ Bzn (z) ⊂ B+2zn (z
󸀠󸀠
) ⊂ B+R0/2(z

󸀠󸀠
) ⊂ B+R0
(z).

We use the interior estimates in Case 2 and the boundary estimates in Case 1 to find

Φ(z, ρ) ≤ C[( ρzn
)
γ0−ε/2

Φ(z, zn) + ργ0−ε/2]

≤ C[( ρzn
)
γ0−ε/2

Φ(z󸀠󸀠, 2zn) + ργ0−ε/2]

≤ C[( ρzn
)
γ0−ε/2

C[(4znR0
)
γ0−ε/2

Φ(z󸀠󸀠, 12R0) + (2zn)
γ0−ε/2] + ργ0−ε/2]

≤ C[( ρR0
)
γ0−ε/2

Φ(z, R0) + ργ0−ε/2].

Then we proved inequality (6.1) for all cases required. This tells us that

Du ∈ Lp,γ0−ε/2(Br(x0) ∩ (B+ ∩ Γ),ℝnN).

We set δ2 = ε
2 and observe that n < p + 2 + δ2 = p + 2 +

ε
2 . We recall that if n = 2, we have γ0 = 2; if n > 2, we

have γ0 = 2 + ε. This leads us to having γ0 − ε
2 ∈ (n − p, n]. According to the Campanato–Meyer embedding

theorem (see [25, Theorem 2.2]), we get the conclusion that

u ∈ C0,θ(Br(x0) ∩ (B+ ∩ Γ),ℝN) with θ = 1 − n − γ0 + ε/2
p

.

Since the higher integrability of Du has been shown in Theorem 4.1, we can improve the condition of x being
a regular point via

Rp−n ∫

B+
R(x)

(1 + |Du|p) dx ≤ C(Rq−n ∫

B+
R(x)

(1 + |Du|q) dx)
p
q

for R sufficiently small. As a consequence we get

B+ \ Σ ⊇ {x ∈ B+ ∩ Γ : lim inf
R→0

Rq−n ∫
BR(x)∩B+

(1 + |Du|q) dx = 0}.

By [25, Proposition 2.7], we know that the Hausdorff dimension of the singular set is less than n − p.
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