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Abstract: We are concerned with the existence of ground states and qualitative properties of solutions
for a class of nonlocal Schrödinger equations. We consider the case in which the nonlinearity exhibits
critical growth in the sense of the Hardy–Littlewood–Sobolev inequality, in the range of the so-called
upper-critical exponent. Qualitative behavior and concentration phenomena of solutions are also stud-
ied. Our approach turns out to be robust, as we do not require the nonlinearity to enjoy monotonicity nor
Ambrosetti–Rabinowitz-type conditions, still using variational methods.
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1 Introduction and main results
This paper deals with the following class of nonlinear and nonlocal Schrödinger equations:

− ε2∆v + V(x)v = ε−α(Iα ∗ F(v))f(v), v > 0, x ∈ ℝN , (1.1)

where ε > 0 is the dimensionalized Planck constant, N ≥ 3, α ∈ (0, N), F is the primitive function of f , Iα is
the Riesz potential defined for every x ∈ ℝN \ {0} by

Iα(x) :=
Aα
|x|N−α

, where Aα =
Γ(12 (N − α))

Γ( α2 )π
N
2 2α

, Γ is the Gamma function,

and the external potential V satisfies:
(V1) V ∈ C(ℝN ,ℝ) and infx∈ℝN V(x) > 0.
When ε = 1, V(x) = a > 0, equation (1.1) reduces to the following nonlocal elliptic equation:

− ∆u + au = (Iα ∗ F(u))f(u), u > 0, x ∈ ℝN , (1.2)

which is variational, in the sense that solutions of (1.2) turn out to be critical points of the energy functional

La(u) =
1
2 ∫
ℝN

|∇u|2 + au2 − (Iα ∗ F(u))F(u), u ∈ H1(ℝN).
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In particular, in the relevant physical case of dimension N = 3, α = 2 and F(s) = s22 , (1.2) turns into the so-
called Choquard equation

− ∆u + au = (I2 ∗ u2)u, x ∈ ℝ3, (1.3)

which goes back to the seminal work of Fröhlich [24] and Pekar [50], modeling the quantum Polaron and
then used by Choquard [35] to study steady states of the one component plasma approximation in the
Hartree–Fock theory [38]. Equation (1.3) appears also in quantumgravity in the formof Schrödinger–Newton
systems [51–53] inwhich a single particle ismoving in its owngravitational field (self-gravitatingmatter), see
also [30]. Lieb in [35] proved the existence and uniqueness of positive solutions to (1.3) by using rearrange-
ments techniques. Multiplicity results for (1.3) were then obtained by Lions [39, 40] bymeans of a variational
approach. A class of solutions which turn out to be of great interest in Physics as well as Mathematics are
minimal energy solutions, which were predicted by Pekar to have a stochastic characterization in terms of
Brownian motion, a conjecture proved just thirty years later by Donsker and Varadhan [21, 22]. We refer
to [47] and references therein for an extensive survey on the topic.

Set ε = 1, V ≡ 1 and F(u) = |u|
p

p in (1.3):

− ∆u + u = (Iα ∗ |u|p)|u|p−2u, x ∈ ℝN . (1.4)

Formally, as α → 0, equation (1.4) yields

− ∆u + u = |u|2p−2u, x ∈ ℝN , (1.5)

which is a prototype in semilinear equations and in particular it is well known since thework of Gidas, Ni and
Nirenberg [28] that positive solutions with finite energy are radially symmetric, unique and non-degenerate
(in the sense that the kernel of the linearized operator at the solution u is generated by ∇u), see [28, 49]. In
contrast with the local problem (1.5),moving planesmethods are somehowdifficult to be used and is difficult
to be used and the classification of positive solutions to (1.4) (even for p = 2) has remained open for a long
time. By using a suitable version of the moving planes method developed by Chen, Li and Ou [15], Ma and
Zhao [42] gave a breakthrough to this open problemby considering equivalent Bessel–Riesz integral systems.
By requiring some involved assumptions on α, p and N, they proved that positive solutions of (1.4) are, up to
translations, radially symmetric and unique. In [44], Moroz and Van Schaftingen established the existence
of ground state solutions to (1.4) in the optimal range

N + α
N
< p < N + α

N − 2 . (1.6)

The endpoints in the above range of p are extremal values for the Hardy–Littlewood–Sobolev inequality [36]
and sometimes called lower and upper H-L-S critical exponents. From the PDE point of view, a Pohozaev-type
identity prevents the existence of finite energy solutions. In the upper critical case, as in the local Sobolev
case, the appearance of a group invariance which yields explicit extremal functions to the H-L-S inequality
is responsible for the lack of compactness. The lack of compactness can not be recovered by the presence of
an external potential. In the lower critical case, equivalent variational characterizations of the ground state
level still allow the H-L-S extremal functions to preventing compactness: this casts the problem within the
class of Brezis–Nirenberg-type problems [8].

Recently, in [45] the more general Choquard equation (1.2) has been studied by requiring Berestycki–
Lions-type conditions, and establishing the existence of ground state solutions in the subcritical case (1.6).

The first purpose of the present work is to investigate the existence of ground state solutions to (1.2)
involving the upper H-L-S critical exponent. In presence of lower H-L-S critical exponent, a suitable external
potential may lower down the groundstate to the compact region. This turns out to be a Lions-type problem
and it is considered in a companion paper [26] as it involves quite different techniques.

Definition 1.1. A function u is said to be a ground state solution of (1.2) if u is a solution of (1.2) with the
least action energy among all nontrivial solutions of (1.2). Namely,

La(u) = inf{La(v) : v ∈ H1(ℝN) is a solution to (1.2)}.
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Throughout this paper we assume f ∈ C(ℝ+,ℝ) which satisfies:
(F1) limt→0+

f(t)
t = 0,

(F2) limt→+∞ f(t)t−
α+2
N−2 = 1,

(F3) there exist μ > 0 and q ∈ (2, N+αN−2 ) such that

f(t) ≥ t
2+α
N−2 + μtq−1, t > 0.

Our first main result in this paper is the following:

Theorem 1.1. Assume α ∈ ((N − 4)+, N), q > max{1 + α
N−2 ,

N+α
2(N−2) } and (F1)–(F3). Then, for any a > 0, (1.2)

admits a ground state solution.

Let us point out that assumption (F3) plays a crucial role. Indeed, under the lonely assumptions (F1)
and (F2), equation (1.2) has no solutions for any nontrivial external potential V bymeans of a Pohozaev-type
identity (Lemma 3.2, Section 2). This fact rules out any perturbative argument and casts the problem into
a Brezis–Nirenberg-type.

The second purpose of this paper is to investigate the profile of positive solutions to (1.1) as ε → 0.
Indeed, in quantum physics one expects that as the Planck constant ε → 0, the dynamic is governed by
the external potential V and an interesting class of solutions show up which develop a spike shape around
critical points of V. From the physical point of view, these solutions are known as semiclassical states, as
they describe the transition from quantummechanics to classical mechanics. For the detailed physical back-
ground, we refer to [49] and references therein. By a Lyapunov–Schmidt reduction approach, based on the
non-degeneracy condition, in [23, 49] the authors obtained the existence of solutions to the semilinear sin-
gularly perturbed Schrödinger equation

− ε2∆u + V(x)u = f(u), (1.7)

which exhibit a single peak ormulti peaks concentrating, as ε → 0, around any given non-degenerate critical
points of V. However, so far, the non-degeneracy condition holds for only a very restricted class of f . In the
last decade, a lot of efforts have been devoted to relax or remove the non-degeneracy condition in this family
of singularly perturbed problems. By using a variational approach, Rabinowitz [54] obtained the existence
of positive solutions to (1.7) for small ε > 0 with the following global potential well condition:

lim inf
|x|→∞

V(x) > inf
ℝN
V(x).

Subsequently, by a penalization approach, del Pino and Felmer [18] weakened the above global potential
well condition to the local condition
(V2) there exists a bounded domain O ⊂ ℝN such that

0 < m ≡ inf
x∈O

V(x) < min
x∈∂O

V(x)

and proved the existence of a single-peak solution to (1.7). In [18, 54], the non-degeneracy condition is not
required. Some related results can be found in [3, 17, 19, 20, 59] and the references therein. In [10] Byeon
and Jeanjean introduced a newpenalization approach and constructed a spike layered solution of (1.7) under
(V2) and the almost optimal Berestycki-Lions conditions [6], see also [9, 11, 12] and [65, 68].

The second main result of this paper is the following:

Theorem 1.2. Assume (V1)–(V2) in addition to the assumptions of Theorem1.1and letM ≡ {x ∈O : V(x) = m}.
Then, for small ε > 0, (1.1) admits a positive solution vε, which satisfies:
(i) There exists a local maximum point xε of vε such that

lim
ε→0

dist(xε ,M) = 0,

and wε(x) ≡ vε(εx + xε) converges (up to a subsequence) uniformly to a ground state solution of the limit
equation

−∆u + mu = (Iα ∗ F(u))f(u), u > 0, u ∈ H1(ℝN).

(ii) vε(x) ≤ C exp(− cε |x − xε|) for some c, C > 0.
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Wemention that related results under stronger assumptions have been recently obtained in [5]. For the con-
venience of the reader let us better contextualize our result within the existing literature on the singularly
perturbed problem (1.1).

In [60],Wei andWinter considered thenonlocal equation, equivalent to the Schrödinger–Newton system,

− ε2∆v + V(x)v = ε−2(I2 ∗ v2)v, x ∈ ℝ3, (1.8)

and by using a Lyapunov–Schmidt reduction method under assumption (V1), proved the existence of multi-
bump solutions concentrating around local minima, local maxima or non-degenerate critical points of V.
When the potential is allowed to vanish somewhere, thus avoiding (V1), the problem becomes much more
difficult. In [56], Secchi considered (1.8) with a positive decaying potential and by means of a perturbative
approach, proved the existence and concentration of bound states near localminima (ormaxima) points of V
as ε → 0. Recently, by a nonlocal penalization technique, Moroz and Van Schaftingen [46] obtained a family
of single spike solutions for the Choquard equation

−ε2∆v + V(x)v = ε−α(Iα ∗ |v|p)|v|p−2v, x ∈ ℝN ,

around the local minimum of V as ε → 0. In [46] the assumption on the decay of V and the range for p ≥ 2
are optimal. More recently, using the penalization argument introduced in [10], Yang, Zhang and Zhang [64]
investigated the existence and concentration of solutions to (1.1) under the local potential well condition
(V2) and mild assumptions on f . In particular, the Ambrosetti–Rabinowitz condition and the monotonic-
ity of f(t)

t are not required. For related results see [4, 7, 16, 43, 48, 56, 58, 63]. All the previous results
are subcritical in the sense of the Hardy–Littlewood–Sobolev inequality. In [2], the authors considered the
ground state solutions of the Choquard equation (1.1) inℝ2. By variational methods, the authors proved the
existence and concentration of ground states to (1.1) involving critical exponential growth in the sense of the
Pohozaev–Trudinger–Moser inequality. A natural open problem which has not been settled before is to
establish concentration phenomena for (1.1) in the critical growth regime. Here we give a positive answer to
this open problem in Theorem 1.2.

Overview. We conclude this section by giving the outline of the paper and pointing out major difficulties. In
Section 2 we prove some preliminary results which require some efforts to extend a few well-known results
in the local setting, to the nonlocal framework. Section 3 is devoted to proving Theorem 1.1. Here, with-
out theAmbrosetti–Rabinowitz condition, to obtain the boundedness of the Palais–Smale sequence becomes
a delicate issue. To overcome this difficulty, a possible strategy is to look for a constraint minimization prob-
lem. This goes back to Berestycki–Lions [6], in which the authors established the existence of ground state
solutions to the scalar mean field equation −∆u = g(u), u ∈ H1(ℝN). By using a similar strategy, Zhang and
Zou [67] extended the result in [6] to the critical case. Precisely, in [6, 67], the existence of ground state
solutions is reduced to looking at the constraint minimization problem

inf{12 ∫
ℝN

|∇u|2 : ∫
ℝN

G(u) = 1, u ∈ H1(ℝN)}

and eventually to get rid of the Lagrange multiplier thanks to some appropriate scaling. However, this
approach fails for the nonlocal problem (1.2), since ∫ℝN |∇u|

2, ∫ℝN |u|
2 and ∫ℝN (Iα ∗ F(u))F(u) scale differ-

ently in space and hence one has no hope to remove the Lagrange multiplier. The existence of ground state
solutions to the nonlocal problem (1.2), in the subcritical case, has been done byMoroz and Van Schaftingen
in [45], where they constructed a bounded Palais–Smale sequence satisfying asymptotically the Pohozaev
identity and obtained a ground state solution by virtue of a concentration-compactness-type argument and
a scaling technique introduced by Jeanjean [31]. Here, to avoid a Ambrosetti–Rabinowitz-type condition, we
use the Struwemonotonicity trick, in the abstract form due to [32], to get a bounded Palais–Smale sequence.
Clearly, due to the presence of a critical H-L-S term, the Palais–Smale condition fails. By a decomposition
technique, we recover compactness and obtain the existence of ground state solutions to (1.2). In Section 4,
we first prove some qualitative properties of the set of ground states such as compactness, regularity, sym-
metry and positivity. Then we use a truncation argument as key ingredient to prove Theorem 1.2. In [64], the
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authors considered problem (1.1) in the subcritical case and established concentration phenomena. Here,
the presence of critical growth prevents to use directly the argument in [64]. We overcome this difficulty by
penalizing the problemwhich is relaxed to a subcritical case. The penalized problem admits a family of spike
shaped solutions which develop a concentrating behavior around the local minima of V. Finally, the analysis
carried out in Section 3 enables us to prove the convergence of the penalized solution to a solution of the
original problem which preserves the same qualitative properties of the penalized problem.

2 Preliminaries
In this section, we are concerned with the existence of ground state solutions to (1.2). Let a > 0 and denote
the least energy of (1.2) by

Ea = inf{La(u) : L󸀠a(u) = 0 in H−1(ℝN), u ∈ H1(ℝN) \ {0}}.

In what follows, let H1(ℝN) be endowed with the norm

‖u‖ = ( ∫
ℝN

|∇u|2 + a|u|2)
1
2

, u ∈ H1(ℝN).

Before proving Theorem 1.1, we prove first some preliminary results. First of all, let us recall the following
Hardy–Littlewood–Sobolev inequality which will be frequently used throughout the paper.

Lemma 2.1 ([37, Theorem 4.3]). Let s, r > 1 and 0 < α < N with 1
s +

1
r = 1 +

α
N , f ∈ L

s(ℝN) and g ∈ Lr(ℝN).
Then there exists a positive constant C(s, N, α) (independent of f, g) such that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

ℝN

∫

ℝN

f(x)|x − y|α−Ng(y)dxdy
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ C(s, N, α)‖f‖s‖g‖r .

In particular, if s = r = 2N
N+α , the best possible constant is given by

Cα := π
N−α
2

Γ( α2 )
Γ(N+α2 )
[
Γ(N2 )
Γ(N) ]

− αN
.

Remark 2.1. As a consequence of the Hardy–Littlewood–Sobolev inequality, for any v ∈ Ls(ℝN), s ∈ (1, Nα ),
Iα ∗ v ∈ LNs/(N−αs)(ℝN). Moreover, Iα ∈ L(Ls(ℝN), LNs/(N−αs)(ℝN)) and

‖Iα ∗ v‖ Ns
N−αs
≤ C(s, N, α)‖v‖s .

2.1 Brezis–Lieb lemma

In this subsection, we prove a nonlocal version of the Brezis–Lieb lemma.

Lemma 2.2 (Brezis–Lieb Lemma). Assume α ∈ (0, N) and there exists a constant C > 0 such that

|f(t)| ≤ C(|t|
α
N + |t|

α+2
N−2 ), s ∈ ℝ.

Let {un} ⊂ H1(ℝN) be such that un → u weakly in H1(ℝN) and a.e. inℝN as n →∞. Then

∫

ℝN

(Iα ∗ F(un))F(un) = ∫
ℝN

(Iα ∗ F(un − u))F(un − u) + ∫
ℝN

(Iα ∗ F(u))F(u) + on(1),

where on(1) → 0 as n →∞.

In order to prove Lemma 2.2, we recall the following lemma, which states that pointwise convergence of
a bounded sequence implies weak convergence.
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Lemma 2.3 ([62, Theorem 4.2.7]). Let Ω ⊆ ℝN be a domain and let {un} be bounded in Lq(Ω) for some q > 1.
If un → u a.e. in Ω as n →∞, then un → u weakly in Lq(Ω) as n →∞

Proof of Lemma 2.2. Observe that

∫

ℝN

(Iα ∗ F(un))F(un) − (Iα ∗ F(un − u))F(un − u) − (Iα ∗ F(u))F(u)

= ∫

ℝN

(Iα ∗ [F(un) + F(un − u)])[F(un) − F(un − u)] − (Iα ∗ F(u))F(u)

and there exists C > 0 such that

|F(s)| ≤ C(|s|
N+α
N + |s|

N+α
N−2 ) for all s ∈ ℝ,

which implies F(u) ∈ L2N/(N+α)(ℝN). For any δ > 0 sufficiently small, by the Hardy–Littlewood–Sobolev
inequality there exists K1 > 0 such that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
Ω1

(Iα ∗ F(u))F(u)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤
δ
6 , Ω1 := {x ∈ ℝN : |u(x)| ≥ K1}.

Again by the Hardy–Littlewood–Sobolev inequality we have
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
Ω1

(Iα ∗ [F(un) + F(un − u)])[F(un) − F(un − u)]
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ C( ∫
ℝN

|F(un) + F(un − u)|
2N
N+α)

N+α
2N

( ∫
Ω1

|F(un) − F(un − u)|
2N
N+α)

N+α
2N

≤ C(N, α)( ∫
Ω1

|F(un) − F(un − u)|
2N
N+α)

N+α
2N

,

where we have used the fact that {un} is bounded in H1(ℝN). It is easy to see there exists c > 0 such that

|F(un) − F(un − u)|
2N
N+α ≤ c(|un|

2α
N+α |u|

2N
N+α + |un|

2+α
N−2

2N
N+α |u|

2N
N+α + |u|2 + |u|

2N
N−2 ).

Then, by Hölder’s inequality,

∫
Ω1

|un|
2α
N+α |u|

2N
N+α ≤ ( ∫

Ω1

|un|2)
α

N+α

( ∫
Ω1

|u|2)
N
N+α

and

∫
Ω1

|un|
2+α
N−2

2N
N+α |u|

2N
N+α ≤ ( ∫

Ω1

|un|
2N
N−2)

2+α
N+α

( ∫
Ω1

|u|
2N
N−2)

N−2
N+α

.

So for δ given above and K1 fixed but large enough, we get for any n,
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
Ω1

(Iα ∗ [F(un) + F(un − u)])[F(un) − F(un − u)]
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤
δ
6 .

Similarly, let Ω2 := {x ∈ ℝN : |x| ≥ R} \ Ω1 with R > 0 large enough, we have
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
Ω2

(Iα ∗ F(u))F(u)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤
δ
6

and for any n,
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
Ω2

(Iα ∗ [F(un) + F(un − u)])[F(un) − F(un − u)]
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤
δ
6 .
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For K2 > K1, let Ω3(n) := {x ∈ ℝN : |un(x)| ≥ K2} \ (Ω1 ∪ Ω2). If Ω3(n) ̸= 0, then we know that |u(x)| < K1 and
|x| < R for any x ∈ Ω3(n). By noting that un → u a.e. in Ω as n →∞, it follows from the Severini-Egoroff
theorem that un converges to u in measure in BR(0), which implies that |Ω3(n)| → 0 as n →∞. Similarly we
have, for n large enough,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

Ω3(n)

(Iα ∗ F(u))F(u)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤
δ
6

and 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

Ω3(n)

(Iα ∗ [F(un) + F(un − u)])[F(un) − F(un − u)]
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤
δ
6 .

Finally, let us estimate

∫
Ω4(n)

(Iα ∗ [F(un) + F(un − u)])[F(un) − F(un − u)] − (Iα ∗ F(u))F(u),

where Ω4(n) = ℝN \ (Ω1 ∪ Ω2 ∪ Ω3(n)). Obviously, Ω4(n) ⊂ BR(0). By Lebesgue’s dominated convergence
theorem we have

lim
n→∞
∫

Ω4(n)

|F(un − u)|
2N
N+α = 0, and lim

n→∞
∫

Ω4(n)

|F(un) − F(u)|
2N
N+α = 0,

which implies by the Hardy–Littlewood–Sobolev inequality
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

Ω4(n)

(Iα ∗ [F(un) + F(un − u)])F(un − u)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ C(N, α)( ∫

Ω4(n)

|F(un − u)|
2N
N+α)

N+α
2N

→ 0

as n →∞, and
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

Ω4(n)

(Iα ∗ [F(un) + F(un − u)])[F(un) − F(u)]
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ C(N, α)( ∫

Ω4(n)

|F(un) − F(u)|
2N
N+α)

N+α
2N

→ 0

as n →∞. Now let Hn = F(un) + F(un − u) − F(u); we have

lim
n→∞
∫

Ω4(n)

(Iα ∗ [F(un) + F(un − u)])[F(un) − F(un − u)] − (Iα ∗ F(u))F(u) = lim
n→∞
∫

Ω4(n)

(Iα ∗ Hn)F(u).

Noting thatHn is bounded in L2N/(N+α)(ℝN) andHn → 0 a. e. inℝN as n →∞, by Lemma 2.3,Hn → 0weakly
in L2N/(N+α)(ℝN) as n →∞. By Remark 2.1, Iα ∗ Hn → 0 weakly in L2N/(N−α)(ℝN) as n →∞, which yields

lim
n→∞
∫

Ω4(n)

(Iα ∗ Hn)F(u) = 0.

Thus,

lim sup
n→∞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

ℝN

(Iα ∗ F(un))F(un) − (Iα ∗ F(un − u))F(un − u) − (Iα ∗ F(u))F(u)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ δ

and the arbitrary choice of δ concludes the proof.

2.2 Splitting lemma

Next we prove a splitting property for the nonlocal energy.

Lemma 2.4 (Splitting Lemma). Assume α ∈ ((N−4)+, N), (F1)–(F2)and let {un} ⊂ H1(ℝN)be such that un → u
weakly in H1(ℝN) and a.e. inℝN as n →∞. Then, up to a subsequence if necessary,

∫

ℝN

([Iα ∗ F(un)]f(un) − [Iα ∗ F(un − u)]f(un − u) − [Iα ∗ F(u)]f(u))ϕ = on(1)‖ϕ‖,

where on(1) → 0 uniformly as n →∞ for any ϕ ∈ C∞0 (ℝN).
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In order to prove Lemma 2.4, we need first to prove Lemma 2.5 and Lemma 2.6 below.

Lemma 2.5. Let Ω ⊂ ℝN be a domain and let {un} ⊂ H1(Ω) be such that un → u weakly in H1(Ω) and a.e. in Ω
as n →∞. Then the following hold:
(i) For any 1 < q ≤ r ≤ 2N

N−2 and r > 2,

lim
n→∞
∫
Ω

󵄨󵄨󵄨󵄨|un|
q−1un − |un − u|q−1(un − u) − |u|q−1u󵄨󵄨󵄨󵄨

r
q = 0.

(ii) Assume h ∈ C(ℝ,ℝ) and h(t) = o(t) as t → 0, |h(t)| ≤ c(1 + |t|q) for any t ∈ ℝ, where q ∈ (1, N+2N−2 ]. The
following hold:
(1) For any r ∈ [q + 1, 2N

N−2 ],
lim
n→∞
∫
Ω

󵄨󵄨󵄨󵄨H(un) − H(un − u) − H(u)
󵄨󵄨󵄨󵄨

r
q+1 = 0.

where H(t) = ∫t0 h(s)ds,
(2) If we further assume that Ω = ℝN , α ∈ ((N − 4)+, N) and lim|t|→∞ h(t)|t|−

α+2
N−2 = 0, then

∫

ℝN

|h(un) − h(un − u) − h(u)|
2N
N+α |ϕ|

2N
N+α = on(1)‖ϕ‖

2N
N+α ,

where on(1) → 0 uniformly for any ϕ ∈ C∞0 (ℝN) as n →∞.

Proof. The proofs of (i) and (1) are similar to [66, Lemma 2.5]. We only give the proof of (2) which is inspired
by [1] and [68, Lemma 4.7].

In the following, let C denote a positive constant (independent of ε, k) which may change from line
to line. For any fixed ε ∈ (0, 1), there exists s0 = s0(ε) ∈ (0, 1) such that |h(t)| ≤ ε|t| for |t| ≤ 2s0. Choose
s1 = s1(ε) > 2 such that

|h(t)| ≤ ε|t|
2+α
N−2

for |t| ≥ s1 − 1. From the continuity of h, there exists δ = δ(ε) ∈ (0, s0) such that |h(t1) − h(t2)| ≤ s0ε for
|t1 − t2| ≤ δ, |t1|, |t2| ≤ s1 + 1. Moreover, there exists c(ε) > 0 such that

|h(t)| ≤ c(ε)|t| + ε|t|
2+α
N−2

for t ∈ ℝ. Noting that α ∈ ((N − 4)+, N), we have 2 < 4N
N+α <

2N
N−2 . Then there exists R = R(ε) > 0 such that

∫

ℝN\B(0,R)

|h(u)ϕ|
2N
N+α ≤ C ∫

ℝN\B(0,R)

(|u|
2N
N+α + ε|u|

2+α
N−2

2N
N+α)|ϕ|

2N
N+α

≤ C( ∫
ℝN\B(0,R)

|u|
4N
N+α)

1
2

( ∫

ℝN

|ϕ|
4N
N+α)

1
2

+ Cε( ∫
ℝN\B(0,R)

|u|
2N
N−2)

2+α
N+α

( ∫

ℝN

|ϕ|
2N
N−2)

N−2
N+α

≤ Cε‖ϕ‖
2N
N+α . (2.1)

Setting An := {x ∈ ℝN \ B(0, R) : |un(x)| ≤ s0}; then

∫
An∩{|u|≤δ}

|h(un) − h(un − u)|
2N
N+α |ϕ|

2N
N+α ≤ Cε ∫

ℝN

(|un|
2N
N+α + |un − u|

2N
N+α )|ϕ|

2N
N+α ≤ Cε‖ϕ‖

2N
N+α .

Let Bn := {x ∈ ℝN \ B(0, R) : |un(x)| ≥ s1}. Then

∫
Bn∩{|u|≤δ}

|h(un) − h(un − u)|
2N
N+α |ϕ|

2N
N+α ≤ Cε ∫

ℝN

(|un|
2+α
N−2

2N
N+α + |un − u|

2+α
N−2

2N
N+α )|ϕ|

2N
N+α ≤ Cε‖ϕ‖

2N
N+α .
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Setting Cn := {x ∈ ℝN \ B(0, R) : s0 ≤ |un(x)| ≤ s1}; then |Cn| < ∞ and

∫
Cn∩{|u|≤δ}

|h(un) − h(un − u)|
2N
N+α |ϕ|

2N
N+α ≤ (s0ε)

2N
N+α ∫

Cn∩{|u|≤δ}

|ϕ|
2N
N+α ≤ (s0ε)

2N
N+α |Cn|

1
2( ∫

ℝN

|ϕ|
4N
N+α)

1
2

≤ ε
2N
N+α( ∫

Cn

|un|
4N
N+α)

1
2

( ∫

ℝN

|ϕ|
4N
N+α)

1
2

≤ Cε‖ϕ‖
2N
N+α .

Thus, (ℝN \ B(0, R)) ∩ {|u| ≤ δ} = An ∪ Bn ∪ Cn and

∫

(ℝN\B(0,R))∩{|u|≤δ}

|h(un) − h(un − u)|
2N
N+α |ϕ|

2N
N+α ≤ Cε‖ϕ‖

2N
N+α for all n.

Clearly, for ε given above, there exists c(ε) > 0 such that

|h(un) − h(un − u)|
2N
N+α ≤ ε(|un|

2+α
N−2

2N
N+α + |un − u|

2+α
N−2

2N
N+α ) + c(ε)(|un|

2N
N+α + |un − u|

2N
N+α )

and

∫

(ℝN\B(0,R))∩{|u|≥δ}

|h(un) − h(un − u)|
2N
N+α |ϕ|

2N
N+α

≤ ∫

(ℝN\B(0,R))∩{|u|≥δ}

ε(|un|
2+α
N−2

2N
N+α + |un − u|

2+α
N−2

2N
N+α )|ϕ|

2N
N+α + c(ε)(|un|

2N
N+α + |un − u|

2N
N+α )|ϕ|

2N
N+α

≤ Cε‖ϕ‖
2N
N+α + c(ε) ∫

(ℝN\B(0,R))∩{|u|≥δ}

(|un|
2N
N+α + |un − u|

2N
N+α )|ϕ|

2N
N+α .

Noting that 0 < α + 4 − N < N + α and |(ℝN \ B(0, R)) ∩ {|u| ≥ δ}| → 0 as R →∞, there exists R = R(ε) large
enough, such that

∫

(ℝN\B(0,R))∩{|u|≥δ}

c(ε)(|un|
2N
N+α + |un − u|

2N
N+α )|ϕ|

2N
N+α

≤ c(ε)[( ∫
ℝN

|un|
2N
N−2)

N−2
N+α

+ ( ∫

ℝN

|un − u|
2N
N−2)

N−2
N+α

]( ∫

ℝN

|ϕ|
2N
N−2)

N−2
N+α

|(ℝN \ B(0, R)) ∩ {|u| ≥ δ}|
α+4−N
N+α

≤ ε‖ϕ‖
2N
N+α .

Then, for any n,
∫

(ℝN\B(0,R))∩{|u|≥δ}

|h(un) − h(un − u)|
2N
N+α |ϕ|

2N
N+α ≤ Cε‖ϕ‖

2N
N+α .

Thus, by (2.1), for any n,

∫

ℝN\B(0,R)

|h(un) − h(u) − h(un − u)|
2N
N+α |ϕ|

2N
N+α ≤ Cε‖ϕ‖

2N
N+α . (2.2)

Finally, for ε > 0 given above, there exists C(ε) > 0 such that

|h(t)|
2N
N+α ≤ C(ε)|t|

2N
N+α + ε|t|

2N
N+α

2+α
N−2 , t ∈ ℝ. (2.3)

Recalling that un → u weakly in H1(ℝN), up to a subsequence, un → u strongly in L4N/(N+α)(B(0, R)) and
there exists ω ∈ L4N/(N+α)(B(0, R)) such that |un(x)|, |u(x)| ≤ |ω(x)| a.e. x ∈ B(0, R). Then we easily get for n
large enough,

∫
B(0,R)

|h(un − u)|
2N
N+α |ϕ|

2N
N+α ≤ ∫

B(0,R)

(C(ε)|un − u|
2N
N+α + ε|un − u|

2N
N+α

2+α
N−2 )|ϕ|

2N
N+α ≤ Cε‖ϕ‖

2N
N+α . (2.4)
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Moreover, let Dn := {x ∈ B(0, R) : |un(x) − u(x)| ≥ 1}, then by (2.3),

∫
Dn

|h(un) − h(u)|
2N
N+α |ϕ|

2N
N+α ≤ ∫

Dn

[C(ε)(|u|
2N
N+α + |un|

2N
N+α ) + ε(|un|

2N
N+α

2+α
N−2 + |u|

2N
N+α

2+α
N−2 )]|ϕ|

2N
N+α

≤ Cε‖ϕ‖
2N
N+α + 2C(ε) ∫

Dn

|ω|
2N
N+α |ϕ|

2N
N+α

≤ Cε‖ϕ‖
2N
N+α + 2C(ε)( ∫

Dn

|ω|
4N
N+α)

1
2

( ∫

ℝN

|ϕ|
4N
N+α)

1
2

.

By un → u a.e. x ∈ B(0, R), we get |Dn| → 0 as n →∞. Hence,

∫
Dn

|h(un) − h(u)|
2N
N+α |ϕ|

2N
N+α ≤ Cε‖ϕ‖

2N
N+α for n large. (2.5)

On the other hand, for ε given above, there exists c(ε) > 0 such that

|h(un) − h(u)|
2N
N+α ≤ ε(|un|

2+α
N−2

2N
N+α + |un|

2+α
N−2

2N
N+α ) + c(ε)(|un|

2N
N+α + |un|

2N
N+α ).

Noting that |{|u| ≥ L}| → 0 as L →∞, similarly as above, there exists L = L(ε) > 0 such that for all n,

∫
(B(0,R)\Dn)∩{|u|≥L}

|h(un) − h(u)|
2N
N+α |ϕ|

2N
N+α ≤ Cε‖ϕ‖

2N
N+α .

By the Lebesgue dominated convergence theorem,

∫
(B(0,R)\Dn)∩{|u|≤L}

|h(un) − h(u)|
2N
N+α |ϕ|

2N
N+α = on(1)‖ϕ‖

2N
N+α ,

where on(1) → 0 as n →∞ uniformly in ϕ. Then by (2.5),

∫
B(0,R)

|h(un) − h(u)|
2N
N+α |ϕ|

2N
N+α ≤ Cε‖ϕ‖

2N
N+α for n large.

Then, by (2.4) and for n large,

∫
B(0,R)

|h(un) − h(u) − h(un − u)|
2N
N+α |ϕ|

2N
N+α ≤ Cε‖ϕ‖

2N
N+α for n sufficiently large.

Finally, combining the previous estimate with (2.2), we conclude the proof.

Lemma 2.6. Let α ∈ (0, N), s ∈ (1, Nα ) and let {gn} ∈ L
1(ℝN) ∩ Ls(ℝN) be bounded and such that, up to a sub-

sequence, for any bounded domain Ω ⊂ ℝN , gn → 0 strongly in Ls(Ω) as n →∞. Then, up to a subsequence if
necessary, (Iα ∗ gn)(x) → 0 a.e. inℝN as n →∞.

Proof. Let us prove that for any fixed positive k ∈ ℕ, passing to a subsequence if necessary, (Iα ∗ gn)(x) → 0
a.e. in Bk(0) as n →∞. Let k ∈ ℕ+ be fixed and for any δ > 0, there exists K = K(δ) > k such that

Aα ∫
ℝN\BK(x)

|gn(y)|
|x − y|N−α

dy ≤ δ for any x ∈ ℝN , n ∈ ℕ+.

Obviously, BK(x) ⊂ B2K(0) for any x ∈ BK(0). Noting that gnχB2K(0) ∈ Ls(ℝN), by Remark 2.1,

‖Iα ∗ (|gn|χB2K(0))‖L Ns
N−αs (ℝN )

≤ C‖gn‖Ls(B2K(0)),

where the constant C depends only onN, α. It follows that, up to a subsequence, Iα∗(|gn|χB2K(0)) → 0 strongly
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in LNs/(N−αs)(ℝN) and a.e. in Bk(0) as n →∞. Then, for almost every x ∈ Bk(0), one has

lim sup
n→∞
|(Iα ∗ gn)(x)| ≤ Aα lim sup

n→∞
( ∫
BK(x)

|gn(y)|
|x − y|N−α

dy + ∫
ℝN\BK(x)

|gn(y)|
|x − y|N−α

dy)

≤ δ + Aα lim sup
n→∞

∫
BK(x)

|gn(y)|
|x − y|N−α

dy

≤ δ + Aα lim sup
n→∞

∫
B2K(0)

|gn(y)|
|x − y|N−α

dy

= δ + lim sup
n→∞
[Iα ∗ (|gn|χB2K (0))](x) = δ.

Since δ is arbitrary, the proof is completed.

Now we are set to prove Lemma 2.4.

Proof of Lemma 2.4. Set

f1(t) = f(t) − |t|
4+α−N
N−2 t and F1(t) =

t

∫
0

f1(s)ds, t ∈ ℝ.

Observe that for any ϕ ∈ C∞0 (ℝN),

∫

ℝN

[Iα ∗ F(un)]f(un)ϕ = ∫
ℝN

[Iα ∗ F(un)]f1(un)ϕ + ∫
ℝN

[Iα ∗ F(un)]|un|
4+α−N
N−2 unϕ.

Step 1. We claim

∫

ℝN

[Iα ∗ F(un)]|un|
4+α−N
N−2 unϕ = ∫

ℝN

[Iα ∗ F(un − u)]|un − u|
4+α−N
N−2 (un − u)ϕ

+ ∫

ℝN

[Iα ∗ F(u)]|u|
4+α−N
N−2 uϕ + on(1)‖ϕ‖,

where on(1) → 0 uniformly for any ϕ ∈ C∞0 (ℝN) as n →∞. Noting that α > N − 4, by Lemma 2.5 (ii) (1) with
h(t) = f(t), q = 2+α

N−2 , r =
2N
N−2 ,

lim
n→∞
∫

ℝN

󵄨󵄨󵄨󵄨F(un) − F(un − u) − F(u)
󵄨󵄨󵄨󵄨
2N
N+α = 0. (2.6)

Then for vn = |un|
4+α−N
N−2 un, as well as vn = |un − u|

4+α−N
N−2 (un − u) and also vn = |u|

4+α−N
N−2 u, there exists C > 0 such

that

∫

ℝN

|vnϕ|
2N
N+α ≤ ( ∫

ℝN

|vn|
2N
2+α)

2+α
N+α

( ∫

ℝN

|ϕ|
2N
N−2)

N−2
N+α

≤ C( ∫
ℝN

|ϕ|
2N
N−2)

N−2
N+α

,

from which it follows
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

ℝN

[Iα ∗ (F(un) − F(un − u) − F(u))]vnϕ
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ C( ∫
ℝN

󵄨󵄨󵄨󵄨F(un) − F(un − u) − F(u))
󵄨󵄨󵄨󵄨
2N
N+α)

N+α
2N

( ∫

ℝN

|vnϕ|
2N
N+α)

N+α
2N

= on(1)( ∫
ℝN

|vnϕ|
2N
N+α)

N+α
2N

= on(1)‖ϕ‖,

where on(1) → 0 uniformly for any ϕ ∈ C∞0 (ℝN) as n →∞.
On the other hand, by virtue of (i) of Lemma 2.5 with q = 2+α

N−2 and r =
2N
N−2 ,

lim
n→∞
∫

ℝN

󵄨󵄨󵄨󵄨󵄨󵄨|un|
4+α−N
N−2 un − |un − u|

4+α−N
N−2 (un − u) − |u|

4+α−N
N−2 u
󵄨󵄨󵄨󵄨󵄨󵄨

2N
2+α = 0.
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For wn = F(un), as well as wn = F(un − u) and also wn = F(u), one easily gets {wn} bounded in L2N/(N+α)(ℝN).
By the Hardy–Littlewood–Sobolev inequality and Hölder’s inequality, there exists C > 0 such that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

ℝN

[Iα ∗ wn][|un|
4+α−N
N−2 un − |un − u|

4+α−N
N−2 (un − u) − |u|

4+α−N
N−2 u]ϕ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ C( ∫
ℝN

󵄨󵄨󵄨󵄨󵄨󵄨|un|
4+α−N
N−2 un − |un − u|

4+α−N
N−2 (un − u) − |u|

4+α−N
N−2 u
󵄨󵄨󵄨󵄨󵄨󵄨

2N
N+α |ϕ|

2N
N+α)

N+α
2N

≤ C( ∫
ℝN

󵄨󵄨󵄨󵄨󵄨󵄨|un|
4+α−N
N−2 un − |un − u|

4+α−N
N−2 (un − u) − |u|

4+α−N
N−2 u
󵄨󵄨󵄨󵄨󵄨󵄨

2N
2+α)

2+α
2N

( ∫

ℝN

|ϕ|
2N
N−2)

N−2
2N

= on(1)‖ϕ‖,

where on(1) → 0 uniformly for any ϕ ∈ C∞0 (ℝN) as n →∞. Then we get

∫

ℝN

[Iα ∗ F(un)]|un|
4+α−N
N−2 unϕ = ∫

ℝN

[Iα ∗ F(un − u)]|un − u|
4+α−N
N−2 (un − u)ϕ + ∫

ℝN

[Iα ∗ F(u)]|u|
4+α−N
N−2 uϕ

+ ∫

ℝN

[Iα ∗ F(un − u)]|u|
4+α−N
N−2 uϕ

+ ∫

ℝN

[Iα ∗ F(u)]|un − u|
4+α−N
N−2 (un − u)ϕ + on(1)‖ϕ‖,

where on(1) → 0 uniformly for any ϕ ∈ C∞0 (ℝN) as n →∞. Noting that F(u) ∈ L2N/(N+α)(ℝN), by Remark 2.1,
|Iα ∗ F(u)|

2N
N+2 ∈ L(N+2)/(N−α)(ℝN). By virtue of Lemma 2.3, |un − u|

2N(2+α)
(N−2)(N+2) → 0 weakly in L(N+2)/(2+α)(ℝN) as

n → 0. This yields
lim
n→∞
∫

ℝN

|Iα ∗ F(u)|
2N
N+2 |un − u|

2N(2+α)
(N−2)(N+2) = 0,

which implies that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

ℝN

[Iα ∗ F(u)]|un − u|
4+α−N
N−2 (un − u)ϕ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ ( ∫

ℝN

|Iα ∗ F(u)|
2N
N+2 |un − u|

2N(2+α)
(N−2)(N+2))

N+2
2N

( ∫

ℝN

|ϕ|
2N
N−2)

N−2
2N

= on(1)‖ϕ‖,

where on(1) → 0 uniformly for any ϕ ∈ C∞0 (ℝN) as n →∞.
At the same time, since α ∈ ((N − 4)+, N), for s ∈ (1, 2N

N+α ) ⊂ (1,
N
α ), by Rellich’s theorem, up to a subse-

quence, for any bounded domain Ω ⊂ ℝN , F(un − u) → 0 strongly in Ls(Ω) as n →∞. By Lemma 2.6, up to
a subsequence, Iα ∗ F(un − u) → 0 a.e. inℝN as n → 0. By Remark 2.1 we have

sup
n

󵄩󵄩󵄩󵄩󵄩󵄩|Iα ∗ F(un − u)|
2N
N+2
󵄩󵄩󵄩󵄩󵄩󵄩L(N+2)/(N−α)(ℝN )

≤ C sup
n
‖F(un − u)‖L2N/(N+α)(ℝN ) < ∞,

which yields, by Lemma 2.3, |Iα ∗ F(un − u)|
2N
N+2 → 0 weakly in L(N+2)/(N−α)(ℝN) as n →∞. Noting that

|u| 2+αN−2
2N
N+2 ∈ L(N+2)/(2+α)(ℝN),

lim
n→∞
∫

ℝN

|Iα ∗ F(un − u)|
2N
N+2 |u|

2+α
N−2

2N
N+2 = 0 (2.7)

and by Hölder’s inequality,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

ℝN

[Iα ∗ F(un − u)]|u|
4+α−N
N−2 uϕ
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ ( ∫

ℝN

|Iα ∗ F(un − u)|
2N
N+2 |u|

2+α
N−2

2N
N+2)

N+2
2N

( ∫

ℝN

|ϕ|
2N
N−2)

N−2
2N

= on(1)‖ϕ‖,

where on(1) → 0 uniformly for any ϕ ∈ C∞0 (ℝN) as n →∞. The claim is thus proved.
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Step 2. We claim

∫

ℝN

[Iα ∗ F(un)]f1(un)ϕ = ∫
ℝN

[Iα ∗ F(un − u)]f1(un − u)ϕ + ∫
ℝN

[Iα ∗ F(u)]f1(u)ϕ + on(1)‖ϕ‖, (2.8)

where on(1) → 0 uniformly for any ϕ ∈ C∞0 (ℝN) as n →∞. The following hold:

{{{{{{{{{{{
{{{{{{{{{{{
{

∫

ℝN

[Iα ∗ (F(un) − F(un − u) − F(u))]f1(un)ϕ = on(1)‖ϕ‖,

∫

ℝN

[Iα ∗ (F(un) − F(un − u) − F(u))]f1(un − u)ϕ = on(1)‖ϕ‖,

∫

ℝN

[Iα ∗ (F(un) − F(un − u) − F(u))]f1(u)ϕ = on(1)‖ϕ‖,

(2.9)

where on(1) → 0 uniformly for any ϕ ∈ C∞0 (ℝN) as n →∞. Let us only prove the first identity in (2.9),
the remaining ones being similar. Observe that there exists δ ∈ (0, 1) and C(δ) > 0 such that |f1(t)| ≤ |t| for
|t| ≤ δ and |f1(t)| ≤ C(δ)|t|

2+α
N−2 for |t| ≥ δ. Noting that α ∈ ((N − 4)+, N), we have 2 < 4N

N+α <
2N
N−2 . Then, for any

ϕ ∈ C∞0 (ℝN), there exists C > 0 (independent of ϕ, n) such that

∫

ℝN

|f1(un)ϕ|
2N
N+α = ∫

{x∈ℝN : |un(x)|≤δ}

|f1(un)ϕ|
2N
N+α + ∫

{x∈ℝN : |un(x)|≥δ}

|f1(un)ϕ|
2N
N+α

≤ ∫

{x∈ℝN : |un(x)|≤δ}

|unϕ|
2N
N+α + [C(δ)]

2N
N+α ∫

{x∈ℝN : |un(x)|≥δ}

|un|
2N(2+α)

(N−2)(N+α) |ϕ|
2N
N+α

≤ ( ∫

ℝN

|un|
4N
N+α)

1
2

( ∫

ℝN

|ϕ|
4N
N+α)

1
2

+ [C(δ)]
2N
N+α( ∫

ℝN

|un|
2N
N−2)

2+α
N+α

( ∫

ℝN

|ϕ|
2N
N−2)

N−2
N+α

≤ C‖ϕ‖
2N
N+α for all n ≥ 1.

Thus

( ∫

ℝN

|f1(un)ϕ|
2N
N+α)

N+α
2N

≤ C‖ϕ‖ uniformly for all ϕ ∈ C∞0 (ℝ
N), n = 1, 2, . . . .

Then by the Hardy–Littlewood–Sobolev inequality and (2.6),
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

ℝN

[Iα ∗ (F(un) − F(un − u) − F(u))]f1(un)ϕ
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ C( ∫
ℝN

󵄨󵄨󵄨󵄨F(un) − F(un − u) − F(u)
󵄨󵄨󵄨󵄨
2N
N+α)

N+α
2N

( ∫

ℝN

|f1(un)ϕ|
2N
N+α)

N+α
2N

= on(1)‖ϕ‖,

where on(1) → 0 uniformly for any ϕ ∈ C∞0 (ℝN) as n →∞. So (2.9) holds.
Similarly we prove

{{{{{{{{{{{
{{{{{{{{{{{
{

∫

ℝN

(Iα ∗ F(un))[f1(un) − f1(un − u) − f1(u)]ϕ = on(1)‖ϕ‖,

∫

ℝN

(Iα ∗ F(un − u))[f1(un) − f1(un − u) − f1(u)]ϕ = on(1)‖ϕ‖,

∫

ℝN

(Iα ∗ F(u))[f1(un) − f1(un − u) − f1(u)]ϕ = on(1)‖ϕ‖,

(2.10)
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where on(1) → 0 uniformly for anyϕ ∈ C∞0 (ℝN) as n →∞. By theHardy–Littlewood–Sobolev inequality and
(ii)2 of Lemma 2.5, there exists C > 0 such that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

ℝN

(Iα ∗ F(un))[f1(un) − f1(un − u) − f1(u)]ϕ
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ C( ∫
ℝN

|f1(un) − f1(un − u) − f1(u)|
2N
N+α |ϕ|

2N
N+α)

N+α
2N

= on(1)‖ϕ‖,

where on(1) → 0 uniformly for any ϕ ∈ C∞0 (ℝN) as n →∞. So the first identity of (2.10) holds and the
remaining can be proved in a similar fashion.

Combine (2.9) and (2.10) to have

∫

ℝN

[Iα ∗ F(un)]f1(un)ϕ = ∫
ℝN

[Iα ∗ F(un − u)]f1(un − u)ϕ + ∫
ℝN

[Iα ∗ F(u)]f1(u)ϕ

+ ∫

ℝN

[Iα ∗ F(un − u)]f1(u)ϕ + ∫
ℝN

[Iα ∗ F(u)]f1(un − u)ϕ + on(1)‖ϕ‖,

where on(1) → 0 uniformly for any ϕ ∈ C∞0 (ℝN) as n →∞. To conclude the proof of (2.8), it remains to prove

∫

ℝN

[Iα ∗ F(un − u)]f1(u)ϕ = on(1)‖ϕ‖

and
∫

ℝN

[Iα ∗ F(u)]f1(un − u)ϕ = on(1)‖ϕ‖, (2.11)

where on(1) → 0 uniformly for anyϕ ∈ C∞0 (ℝN) as n →∞. Notice that for any ε ∈ (0, 1), there exist δ ∈ (0, 1)
and Cε > 0 such that |f1(t)| ≤ ε|t| for |t| ≤ δ and |f1(t)| ≤ Cε|t|

2+α
N−2 for |t| ≥ δ. Then, for any ϕ ∈ C∞0 (ℝN), by the

Hardy–Littlewood–Sobolev inequality and Hölder’s inequality,
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

ℝN

[Iα ∗ F(un − u)]f1(u)ϕ
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ ε ∫

{x∈ℝN : |u(x)|≤δ}

|Iα ∗ F(un − u)||uϕ| + Cε ∫

{x∈ℝN : |u(x)|≥δ}

|Iα ∗ F(un − u)||u|
2+α
N−2 |ϕ|

≤ ε‖F(un − u)‖L2N/(N+α)(ℝN )( ∫

{x∈ℝN : |u(x)|≤δ}

|uϕ|
2N
N+α)

N+α
2N

+ Cε( ∫
ℝN

|Iα ∗ F(un − u)|
2N
N+2 |u|

2+α
N−2

2N
N+2)

N+2
2N

( ∫

ℝN

|ϕ|
2N
N−2)

N−2
2N

.

There exists c > 0 (independent of ϕ, δ, ε) such that

∫

{x∈ℝN : |u(x)|≤δ}

|uϕ|
2N
N+α ≤ c‖ϕ‖

2N
N+α .

Then by (2.7), there exists C̃ > 0 (independent of ϕ, ε) such that

lim sup
n→∞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

ℝN

[Iα ∗ F(un − u)]f1(u)ϕ
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ C̃ε‖ϕ‖.

It follows that
∫

ℝN

[Iα ∗ F(un − u)]f1(u)ϕ = on(1)‖ϕ‖,

where on(1) → 0 uniformly for any ϕ ∈ C∞0 (ℝN) as n →∞. Similarly, (2.11) can be proved and the proof of
Lemma 2.4 is complete.
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3 Ground state solutions: Proof of Theorem 1.1
Since we are looking for positive ground state solutions to (1.2), we may assume that f is odd in ℝN . In this
section, a key tool is a monotonicity trick, originally due to Struwe [57] and which here we borrow in the
abstract form due to Jeanjean and Toland [32, 34].

For λ ∈ [12 , 1], we consider the following family of functionals:

Iλ(u) =
1
2 ∫
ℝN

|∇u|2 + au2 − λ2 ∫
ℝN

(Iα ∗ F(u))F(u), u ∈ H1(ℝN).

Obviously, if f satisfies the assumptions of Theorem 1.1, for λ ∈ [12 , 1], Iλ ∈ C
1(H1(ℝN),ℝ) and every critical

point of Iλ is a weak solution of

− ∆u + au = λ(Iα ∗ F(u))f(u), u ∈ H1(ℝN). (3.1)

The existence of critical points to Iλ is a consequence of the following abstract result

Theorem A (see [32]). Let X be a Banach space equipped with a norm ‖ ⋅ ‖X , let J ⊂ ℝ+ be an interval and let
a family of C1-functionals {Iλ}λ∈J be given on X of the form

Iλ(u) = A(u) − λB(u), u ∈ X.

Assume that B(u) ≥ 0 for any u ∈ X, at least one between A and B is coercive on X and there exist two points
v1, v2 ∈ X such that for any λ ∈ J,

cλ := inf
γ∈Γ

max
t∈[0,1]

Iλ(γ(t)) > max{Iλ(v1), Iλ(v2)},

where Γ := {γ ∈ C([0, 1], X) : γ(0) = v1, γ(1) = v2}. Then, for almost every λ ∈ J, the C1-functional Iλ admits
a bounded Palais–Smale sequence at level cλ. Moreover, cλ is left-continuous with respect to λ ∈ [12 , 1].

In the following, set X = H1(ℝN) and

A(u) = 12 ∫
ℝN

|∇u|2 + au2, B(u) = 12 ∫
ℝN

(Iα ∗ F(u))F(u).

Obviously, A(u) → +∞ as ‖u‖ → ∞. Thanks to (F3), B(u) ≥ 0 for any u ∈ H1(ℝN). Moreover, by (F1)–(F2),
for any ε > 0, there exists Cε > 0 such that F(t) ≤ ε|t|(N+α)/N + Cε|t|(N+α)/(N−2) for any t ∈ ℝ. Then, as in [45],
there exists δ > 0 such that

∫

ℝN

(Iα ∗ F(u))F(u) ≤
1
2 ‖u‖

2 if ‖u‖ ≤ δ,

and therefore for any u ∈ H1(ℝN) and λ ∈ J,

Iλ(u) ≥
1
4 ∫
ℝN

|∇u|2 + au2 > 0 if 0 < ‖u‖ ≤ δ. (3.2)

On the other hand, for fixed 0 ̸= u0 ∈ H1(ℝN) and for any λ ∈ J, t > 0, by (F3),

Iλ(λu0) ≤
t2

2 ∫
ℝN

|∇u0|2 + a|u0|2 −
t 2N+2αN−2

4 (
N − 2
N + α)

2
∫

ℝN

(Iα ∗ |u0|
N+α
N−2 )|u0|

N+α
N−2

and Iλ(tu0) → −∞ as t →∞. Then there exists t0 > 0 (independent of λ) such that Iλ(t0u0) < 0, λ ∈ J and
‖t0u0‖ > δ. Let

cλ := inf
γ∈Γ

max
t∈[0,1]

Iλ(γ(t)),

where Γ := {γ ∈ C([0, 1], X) : γ(0) = 0, γ(1) = t0u0}.
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Remark 3.1. Here we remark that cλ is independent of u0. In fact, let

dλ := inf
γ∈Γ1

max
t∈[0,1]

Iλ(γ(t)),

where Γ1 := {γ ∈ C([0, 1], X) : γ(0) = 0, Iλ(γ(1)) < 0}. Clearly, dλ ≤ cλ. On the other hand, for any γ ∈ Γ1, it
follows from (3.2) that ‖γ(1)‖ > δ. Due to thepath connectedness ofH1(ℝN), there exists γ̃ ∈ C([0, 1], H1(ℝN))
such that γ̃(t) = γ(2t) if t ∈ [0, 12 ], ‖γ̃(t)‖ > δ if t ∈ [

1
2 , 1] and γ̃(1) = t0u0. Then γ̃ ∈ Γ and

max
t∈[0,1]

Iλ(γ̃(t)) = max
t∈[0,1]

Iλ(γ(t)),

which implies that cλ ≤ dλ and so dλ = cλ for any λ ∈ J.

By (3.2), cλ > δ
2

4 for any λ ∈ J. Then, as a consequence of Theorem A, we have:

Lemma 3.1. Assume (F1)–(F3). Then, for almost every λ ∈ J = [12 , 1], problem (3.1) possesses a bounded
Palais–Smale sequence at the level cλ. Namely, there exists {un} ⊂ H1(ℝN) such that
(i) {un} is bounded in H1(ℝN),
(ii) Iλ(un) → cλ and I󸀠λ(un) → 0 in H−1(ℝN) as n →∞.

Next, in the spirit of [33, 41], we establish a decomposition of such a Palais–Smale sequence {un}, which will
play a crucial role in proving the existence of ground states to (1.2). However, some extra difficulties with
respect to the local case are carried over by the presence the nonlocal as well as critical H-L-S nonlinearity.

Proposition 3.1. With the same assumptions in Theorem 1.2, let λ ∈ [12 , 1] and {un} given by Lemma 3.1.
Assume un ⇀ uλ weakly in H1(ℝN) as n →∞. Then, up to a subsequence, there exist k ∈ ℕ+, {xjn}kj=1 ⊂ ℝ

N

and {vjλ}
k
j=1 ⊂ H

1(ℝN) such that:
(i) I󸀠λ(uλ) = 0 in H

−1(ℝN),
(ii) vjλ ̸= 0 and I

󸀠
λ(v

j
λ) = 0 in H

−1(ℝN), j = 1, 2, . . . , k,
(iii) cλ = Iλ(uλ) + ∑kj=1 Iλ(v

j
λ),

(iv) ‖un − uλ − ∑kj=1 v
j
λ( ⋅ − x

j
n)‖ → 0 as n →∞,

(v) |xjn| → ∞ and |xin − x
j
n| → ∞ as n →∞ for any i ̸= j.

Before proving Proposition 3.1, we need a few preliminary lemmas.

Lemma 3.2. Let λ ∈ [12 , 1] and let uλ be any nontrivial weak solution of (3.1). Then uλ satisfies the following
Pohozǎev identity:

N − 2
2 ∫
ℝN

|∇uλ|2 +
N
2 a ∫
ℝN

|uλ|2 =
N + α
2 λ ∫
ℝN

(Iα ∗ F(uλ))F(uλ). (3.3)

Moreover, there exist β, γ > 0 (independent of λ ∈ [12 , 1]) such that ‖uλ‖ ≥ β and Iλ(uλ) ≥ γ for any nontrivial
solution uλ, λ ∈ [12 , 1].

Proof. For the proof of the Pohozǎev-type identity (3.3) we refer to [45, Theorem 3]. Let λ ∈ [12 , 1] and let uλ
be any nontrivial weak solution to (3.1). Then

∫

ℝN

|∇uλ|2 + a|uλ|2 ≤ ∫
ℝN

(Iα ∗ F(uλ))f(uλ)uλ . (3.4)

Thanks to (F1)–(F2), for any ε > 0, there exists Cε > 0 such that F(t), tf(t) ≤ ε|t| N+αN + Cε|t|
N+α
N−2 for any t ∈ ℝ.

Moreover, as in [45], there exists β > 0 such that

∫

ℝN

(Iα ∗ F(u))f(u)u ≤
‖u‖2

2 if ‖u‖ ≤ β,

which yields by (3.4), ‖uλ‖ ≥ β. By Pohozǎev’s identity (3.3),

Iλ(uλ) =
2 + α

2(N + α) ∫
ℝN

|∇uλ|2 +
αa

2(N + α) ∫
ℝN

|uλ|2

and this concludes the proof.
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Let α ∈ (0, N). For any u ∈ D1,2(ℝN), combining the Hardy–Littlewood–Sobolev inequality with Sobolev’s
inequality, we have

∫

ℝN

(Iα ∗ |u|
N+α
N−2 )|u|

N+α
N−2 ≤ AαCα( ∫

ℝN

|u|
2N
N−2)

N+α
N

≤ AαCαS−
N+α
N−2( ∫

ℝN

|∇u|2)
N+α
N−2

,

where

S := inf
0 ̸=u∈D1,2(ℝN )

∫ℝN |∇u|
2

(∫ℝN |u|
2N
N−2 )

N−2
N
.

Then

Sα := inf
0 ̸=u∈D1,2(ℝN )

∫ℝN |∇u|
2

(∫ℝN (Iα ∗ |u|
N+α
N−2 )|u| N+αN−2 )

N−2
N+α
≥

S

(AαCα)
N−2
N+α

.

Minimizers for Sα are explicitly known from [37, Theorem 4.3] (see also [27, Lemma 1.2]). Actually,

Sα =
S

(AαCα)
N−2
N+α

and it is achieved by the instanton

U(x) = [N(N − 2)]
N−2
4

(1 + |x|2) N−22
.

Now, we use this information to prove an upper estimate for cλ.

Lemma 3.3. Let λ ∈ [12 , 1], α ∈ (0, N) and assume

q > max{1 + α
N − 2 ,

N + α
2(N − 2)}.

Then the following upper bound holds:

cλ <
2 + α

2(N + α)(
N + α
N − 2)

N−2
2+α
λ

2−N
2+α S

N+α
2+α
α .

Proof. Let φ ∈ C∞0 (ℝN) be a cut-off function with support B2 such that φ ≡ 1 on B1 and 0 ≤ φ ≤ 1 on B2,
where Br denotes the ball inℝN of center at origin and radius r. Given ε > 0, we set ψε(x) = φ(x)Uε(x), where

Uε(x) =
(N(N − 2)ε2)

N−2
4

(ε2 + |x|2)
N−2
2

.

By [8] (see also[61, Lemma 1.46]), we have the following estimates:

∫

ℝN

|∇ψε|2 = S
N
2 +
{
{
{

O(εN−2) if N ≥ 4,
K1ε + O(ε3) if N = 3,

∫

ℝN

|ψε|
2N
N−2 = S

N
2 + O(εN) if N ≥ 3,

∫

ℝN

|ψε|2 =
{{{
{{{
{

K2ε2 + O(εN−2) if N ≥ 5,
K2ε2| ln ε| + O(ε2) if N = 4,
K2ε + O(ε2) if N = 3,

where K1, K2 > 0. Then we get

∫

ℝN

|∇ψε|2 + a|ψε|2 = S
N
2 +
{{{
{{{
{

aK2ε2 + O(εN−2) if N ≥ 5,
aK2ε2| ln ε| + O(ε2) if N = 4,
(K1 + aK2)ε + O(ε2) if N = 3.

(3.5)
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By direct computation, we know

( ∫

ℝN

|ψε|
2Nq
N+α)

N+α
N

= K3εN+α−(N−2)q + o(εN+α−(N−2)q),

and then by the Hardy–Littlewood–Sobolev inequality,

∫

ℝN

(Iα ∗ |ψε|
N+α
N−2 )|ψε|q ≤ Cα( ∫

ℝN

|ψε|
2N
N−2)

N+α
2N

( ∫

ℝN

|ψε|
2Nq
N+α)

N+α
2N

≤ K4ε
N+α−(N−2)q

2 + o(ε
N+α−(N−2)q

2 ), (3.6)

where K3, K4 > 0. Moreover, similar as in [25, 27], by direct computation, for some K5 > 0,

∫

ℝN

(Iα ∗ |ψε|
N+α
N−2 )|ψε|

N+α
N−2 ≥ (AαCα)

N
2 S

N+α
2
α − K5ε

N+α
2 + o(ε

N+α
2 ). (3.7)

We also have

∫

ℝN

(Iα ∗ |ψε|
N+α
N−2 )|ψε|q ≥ Aα( ∫

ℝN

∫

ℝN

U
N+α
N−2
ε (x)U

q
ε (y)

|x − y|N−α
dx dy − ∫

ℝN\B1

∫
B1

U
N+α
N−2
ε (x)U

q
ε (y)

|x − y|N−α
dx dy

− ∫
B1

∫

ℝN\B1

U
N+α
N−2
ε (x)U

q
ε (y)

|x − y|N−α
dx dy − ∫

ℝN\B1

∫

ℝN\B1

U
N+α
N−2
ε (x)U

q
ε (y)

|x − y|N−α
dx dy),

where for some K̃i > 0, i = 1, 2, 3, 4,

{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{{{
{

∫

ℝN

∫

ℝN

U
N+α
N−2
ε (x)U

q
ε (y)

|x − y|N−α
dx dy = K̃1ε

N+α−(N−2)q
2 ,

∫

ℝN\B1

∫
B1

U
N+α
N−2
ε (x)U

q
ε (y)

|x − y|N−α
dx dy ≤ K̃2εN+α−

N−2
2 q + o(εN+α−

N−2
2 q),

∫
B1

∫

ℝN\B1

U
N+α
N−2
ε (x)U

q
ε (y)

|x − y|N−α
dx dy ≤ K̃3ε

N−2
2 q + o(ε

N−2
2 q),

∫

ℝN\B1

∫

ℝN\B1

U
N+α
N−2
ε (x)U

q
ε (y)

|x − y|N−α
dx dy ≤ K̃4ε

N+α+(N−2)q
2 + o(ε

N+α+(N−2)q
2 ).

Thus for some K6 > 0, we have

∫

ℝN

(Iα ∗ |ψε|
N+α
N−2 )|ψε|q ≥ K6ε

N+α−(N−2)q
2 + o(ε

N+α−(N−2)q
2 ). (3.8)

Here, we used the fact that q > N+α
2(N−2) . Then for any t > 0,

Iλ(tψε) ≤
t2

2 ∫
ℝN

|∇ψε|2 + a|ψε|2 −
μλ
q
N − 2
N + α

tq+
N+α
N−2 ∫

ℝN

(Iα ∗ ψ
N+α
N−2
ε )ψ

q
ε

−
t
2(N+α)
N−2

2 (
N − 2
N + α)

2
λ ∫
ℝN

(Iα ∗ ψ
N+α
N−2
ε )ψ

N+α
N−2
ε =: gε(t).

One has gε(t) → −∞ as t → +∞ and gε(t) > 0 for t > 0 small. Following [55, Lemma 3.3], gε has a unique
critical point tε in (0, +∞), which is the maximum point of gε. From g󸀠ε(tε) = 0,

tε ∫
ℝN

|∇ψε|2 + a|ψε|2 − (q +
N + α
N − 2)

μλ
q
N − 2
N + α

tq+
N+α
N−2−1

ε ∫

ℝN

(Iα ∗ ψ
N+α
N−2
ε )ψ

q
ε

= t
2(N+α)
N−2 −1
ε

N − 2
N + α

λ ∫
ℝN

(Iα ∗ ψ
N+α
N−2
ε )ψ

N+α
N−2
ε . (3.9)
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Claim. There exist t0, t1 > 0 (both independent of ε) such that tε ∈ [t0, t1] for ε > 0 small.

Consider first the case, tε → 0 as ε → 0. Then by (3.5), (3.6) and (3.7), there exist c1, c2 > 0 (independent
of ε) such that for ε small,

c1tε ≤ c2ε
N+α−(N−2)q

2 tq+
N+α
N−2−1

ε + tq+
N+α
N−2−1

ε ≤ 2tq+
N+α
N−2−1

ε ,

where we used the fact that q < N+αN−2 : hence a contradiction and tε ≥ t0. By (3.9), one has

∫

ℝN

|∇ψε|2 + a|ψε|2 ≥ t
2(N+α)
N−2 −2
ε

N − 2
N + α

λ ∫
ℝN

(Iα ∗ ψ
N+α
N−2
ε )ψ

N+α
N−2
ε ,

which implies, combining (3.5) and (3.7), that tε ≤ t1 for some t1 > 0 and ε small.
By the Claim just proved and (3.8), we have for some K7 > 0,

μλ
q
N − 2
N + α

tq+
N+α
N−2

ε ∫

ℝN

(Iα ∗ ψ
N+α
N−2
ε )ψ

q
ε ≥ K7ε

N+α−(N−2)q
2 + o(ε

N+α−(N−2)q
2 )

and hence on the one hand the following:

max
t≥0

Iλ(tψε) = gε(tε) ≤
t2ε
2 ∫
ℝN

|∇ψε|2 + a|ψε|2 − K7ε
N+α−(N−2)q

2

−
t
2(N+α)
N−2
ε
2 (

N − 2
N + α)

2
λ ∫
ℝN

(Iα ∗ ψ
N+α
N−2
ε )ψ

N+α
N−2
ε + o(ε

N+α−(N−2)q
2 )

≤ max
t≥0
[
t2

2 ∫
ℝN

|∇ψε|2 + a|ψε|2 −
t
2(N+α)
N−2

2 (
N − 2
N + α)

2
λ ∫
ℝN

(Iα ∗ ψ
N+α
N−2
ε )ψ

N+α
N−2
ε ]

− K7ε
N+α−(N−2)q

2 + o(ε
N+α−(N−2)q

2 )

=
2 + α

2(N + α)(
N + α
N − 2)

N−2
2+α
λ

2−N
2+α
(∫ℝN |∇ψε|

2 + a|ψε|2)
N+α
2+α

(∫ℝN (Iα ∗ ψ
N+α
N−2
ε )ψ

N+α
N−2
ε )

N−2
2+α

− K7ε
N+α−(N−2)q

2 + o(ε
N+α−(N−2)q

2 ).

On the other hand, by (3.5) and (3.7), for some K8 > 0,

(∫ℝN |∇ψε|
2 + a|ψε|2)

N+α
2+α

(∫ℝN (Iα ∗ ψ
N+α
N−2
ε )ψ

N+α
N−2
ε )

N−2
2+α

≤ S
N+α
2+α
α +

{{{{
{{{{
{

K8εmin{2, N+α2 } + o(εmin{2, N+α2 }) if N ≥ 5,

K8ε2| ln ε| + o(ε2| ln ε|) if N = 4,

K8ε + o(ε) if N = 3.

Then, for some K9, K10 > 0,

max
t≥0

Iλ(tψε) ≤
2 + α

2(N + α)(
N + α
N − 2)

N−2
2+α
λ

2−N
2+α S

N+α
2+α
α +

{{{{
{{{{
{

K9εmin{2, N+α2 } − K10ε
N+α−(N−2)q

2 + o(ε
N+α−(N−2)q

2 ) if N ≥ 5,

K9ε2| ln ε| − K10ε
N+α−(N−2)q

2 + o(ε
N+α−(N−2)q

2 ) if N = 4,

K9ε − K10ε
N+α−(N−2)q

2 + o(ε
N+α−(N−2)q

2 ) if N = 3,

<
2 + α

2(N + α)(
N + α
N − 2)

N−2
2+α
λ

2−N
2+α S

N+α
2+α
α if ε > 0 is sufficiently small,

where we used the fact N + α − (N − 2)q < min{2, N+α2 }. Therefore, for any λ ∈ [
1
2 , 1] and ε > 0 small enough,

we get

cλ ≤ max
t≥0

Iλ(tψε) <
2 + α

2(N + α)(
N + α
N − 2)

N−2
2+α
λ

2−N
2+α S

N+α
2+α
α .
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Proof of Proposition 3.1. Let λ ∈ [12 , 1] and assume un ⇀ uλ weakly in H1(ℝN) and satisfy Iλ(un) → cλ and
I󸀠λ(un) → 0 in H−1(ℝN) as n →∞.

Step 1. We claim I󸀠λ(uλ) = 0 in H
−1(ℝN). As a consequence of Lemma 2.4, it is enough to show, up to a sub-

sequence, that for any fixed ϕ ∈ C∞0 (ℝN),

∫

ℝN

[Iα ∗ F(un − u)]f(un − u)ϕ → 0 as n →∞.

In fact, by (F1)–(F2), there exists C > 0 such that

|f(t)|
2N
N+α ≤ C(|t|

2N
N+α + |t|

2+α
N−2

2N
N+α ), t ∈ ℝ.

By virtue of theHardy–Littlewood–Sobolev inequality andRellich’s theorem, up to a subsequence, for some C
(independent of n) we have

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

ℝN

[Iα ∗ F(un − u)]f(un − u)ϕ
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ C( ∫
ℝN

|f(un − u)ϕ|
2N
N+α)

N+α
2N

→ 0 as n →∞.

Step 2. Set v1n := un − uλ; we claim
lim
n→∞

sup
z∈ℝN
∫

B1(z)

|v1n|2 > 0. (3.10)

Indeed, arguing by contradiction, if not, by Lions’ lemma [41, Lemma I.1], v1n → 0 strongly in Lt(ℝN) as
n →∞ for any t ∈ (2, 2N

N−2 ). Noting that ⟨I
󸀠
λ(un), v

1
n⟩ → 0 as n →∞ and ⟨I󸀠λ(uλ), v

1
n⟩ = 0 for any n, by virtue

of Lemma 2.2 and Lemma 2.4, we get

cλ = Iλ(uλ) + Iλ(v1n) + on(1), ‖v1n‖2 = λ ∫
ℝN

[Iα ∗ F(v1n)]f(v1n)v1n + on(1), (3.11)

where on(1) → 0 as n →∞. Next, we show that

lim
n→∞
∫

ℝN

[Iα ∗ F1(v1n)]F1(v1n) = 0,

where

f1(t) = f(t) − |t|
4+α−N
N−2 t, F1(t) =

t

∫
0

f1(s)ds, t ∈ ℝ.

Notice that 4N
N+α ∈ (2,

2N
N−2 ) and f1(t) = o(t) as |t| → 0, lim|t|→∞ |f1(t)||t|−

2+α
N−2 = 0. It is easy to see that

lim
n→∞
∫

ℝN

|F1(v1n)|
2N
N+α = 0,

which yields by the Hardy–Littlewood–Sobolev inequality that there exists some C > 0 (independent of n)
such that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

ℝN

[Iα ∗ F1(v1n)]F1(v1n)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ C( ∫
ℝN

|F1(v1n)|
2N
N+α)

N+α
2N

→ 0 as n →∞.

Similarly,

lim
n→∞
∫

ℝN

[Iα ∗ F1(v1n)]|v1n|
N+α
N−2 = 0,

lim
n→∞
∫

ℝN

[Iα ∗ F1(v1n)]f1(v1n)v1n = 0.
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Then by (3.11), we get

{{{{{{
{{{{{{
{

cλ = Iλ(uλ) +
1
2 ‖v

1
n‖

2 −
λ
2(

N − 2
N + α)

2
∫

ℝN

[Iα ∗ |v1n|
N+α
N−2 ]|v1n|

N+α
N−2 + on(1),

‖v1n‖2 = λ
N − 2
N + α ∫

ℝN

[Iα ∗ |v1n|
N+α
N−2 ]|v1n|

N+α
N−2 + on(1),

(3.12)

where on(1) → 0 as n →∞. Recalling that v1n ↛ 0 strongly in H1(ℝN) as n →∞, let

lim
n→∞
‖v1n‖2 = λ

N − 2
N + α

lim
n→∞
∫

ℝN

[Iα ∗ |v1n|
N+α
N−2 ]|v1n|

N+α
N−2 = b;

then b > 0. From

∫

ℝN

|∇v1n|2 ≥ Sα( ∫
ℝN

[Iα ∗ |v1n|
N+α
N−2 ]|v1n|

N+α
N−2)

N−2
N+α

,

we have

b ≥ (N + αN − 2)
N−2
2+α
λ

2−N
2+α S

N+α
2+α
α .

By Lemma 3.2 and (3.12),

cλ ≥
2 + α

2(N + α)(
N + α
N − 2)

N−2
2+α
λ

2−N
2+α S

N+α
2+α
α ,

which is a contradiction. Thus (3.10) holds true.

Step 3. By (3.10) and v1n ⇀ 0 weakly in H1(ℝN) as n →∞, there exists {z1n} ⊂ ℝN such that |z1n| → ∞ as
n →∞ and

lim
n→∞
∫

B1(z1n)

|v1n|2 > 0.

Let u1n = v1n( ⋅ + z1n). Then, up to a subsequence, u1n → v1λ weakly in H
1(ℝN) as n →∞ for some v1λ ̸= 0. By

Lemma 2.2 and Lemma 2.4, we have

Iλ(u1n) → cλ − Iλ(uλ), I󸀠λ(u
1
n) → 0 in H−1(ℝN) as n →∞.

Similarly as above, I󸀠λ(v
1
λ) = 0. Let v

2
n = u1n − v1λ . Then

un = uλ + v1λ( ⋅ − z
1
n) + v2n( ⋅ − z1n).

If v2n → 0, i.e. u1n → v1λ strongly in H
1(ℝN) as n →∞, then

cλ = Iλ(uλ) + Iλ(v1λ), ‖un − uλ − v1λ( ⋅ − z
1
n)‖ → 0 as n →∞,

and we are done. Otherwise, if v2n ↛ 0 strongly in H1(ℝN) as n →∞, similarly as above

lim
n→∞

sup
z∈ℝN
∫

B1(z)

|v2n|2 > 0.

Then there exists {z2n} ⊂ ℝN such that |z2n| → ∞ as n →∞ and

lim
n→∞
∫

B1(z2n)

|v2n|2 > 0.

Let u2n = v2n( ⋅ + z2n). Then, up to a subsequence, u2n ⇀ v2λ weakly in H
1(ℝN) as n →∞ for some v2λ ̸= 0. We

have I󸀠λ(v
2
λ) = 0 and

Iλ(u2n) → cλ − Iλ(uλ) − Iλ(v1λ), I󸀠λ(u
2
n) → 0 in H−1(ℝN) as n →∞.

Let v3n = u2n − v2λ . Then

un = uλ + v1λ( ⋅ − z
1
n) + v2λ( ⋅ − z

1
n − z2n) + v3n( ⋅ − z1n − z2n).
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If v3n → 0, i.e., u2n → v2λ strongly in H
1(ℝN) as n →∞, then

cλ = Iλ(uλ) + Iλ(v1λ) + Iλ(v
2
λ), ‖un − uλ − v1λ( ⋅ − z

1
n) − v2λ( ⋅ − z

1
n − z2n)‖ → 0 as n →∞,

and we are done. Otherwise, we can iterate the above procedure and by Lemma 3.2, we will end up in a finite
number k of steps. Namely, let xjn = ∑

j
i=1 z

i
n to have

cλ = Iλ(uλ) +
k
∑
j=1
Iλ(v

j
λ),

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
un − uλ −

k
∑
j=1
vjλ( ⋅ − x

j
n)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
→ 0 as n →∞.

Step 4. Clearly, |xjn − x
j−1
n | = |z

j
n| → ∞ as n →∞ for j = 2, 3, . . . , k. However, it is not clear that if {xjn}kj=1

repels each other as n →∞, i.e., |xjn − xin| → ∞ as n →∞ for any i, j = 1, 2, . . . , k and i ̸= j. Let us show
that after extracting a subsequence from {xjn} and redefining {v

j
λ} if necessary, properties (iii), (iv), (v) hold.

Let Λ1, Λ2 ⊂ {1, 2, . . . , k} and satisfy Λ1 ∪ Λ2 = {1, 2, . . . , k} and let {xjn}n be bounded if j ∈ Λ1, whereas
|xjn| → ∞ as n →∞ if j ∈ Λ2. Then, for any j ∈ Λ1 if Λ1 ̸= 0, there exists 0 ̸= vj ∈ H1(ℝN) such that, up to
a subsequence, vjλ( ⋅ − x

j
n) ⇀ vj weakly in H1(ℝN) as n →∞ and I󸀠λ(v

j) = 0 in H−1(ℝN). By Rellich’s theorem,
for any t ∈ [2, 2N

N−2 ), we have vjλ( ⋅ − x
j
n) → vj strongly in Lt(ℝN) as n →∞. Noting that I󸀠λ(v

j
λ( ⋅ − x

j
n)) = 0

in H−1(ℝN) and Iλ(v
j
λ( ⋅ − x

j
n)) ≤ cλ, similar to Step 2, we know that vjλ( ⋅ − x

j
n) → vj strongly in H1(ℝN) as

n →∞. Then, up to a subsequence, there exists ṽj ∈ H1(ℝN) such that ∑j∈Λ1
vjλ( ⋅ − x

j
n) → ṽj strongly in

H1(ℝN) as n →∞, which eventually implies
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
un − uλ − ∑

j∈Λ2

vjλ( ⋅ − x
j
n)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
→ 0 as n →∞.

Recalling that ‖un − uλ‖ ↛ 0 as n →∞, we have Λ2 ̸= 0. Let xin ∈ Λ2 and

Λi2 := {j ∈ Λ2 : |xin − x
j
n| stays bounded}.

Then similarly as above, up to a subsequence, for some ṽiλ ∈ H
1(ℝN), we have ∑j∈Λi2 v

j
λ( ⋅ + x

i
n − x

j
n) → ṽiλ

strongly in H1(ℝN) as n →∞. Then, as n →∞,
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
un − uλ − ṽiλ( ⋅ − x

i
n) − ∑

j∈(Λ2\Λi2)
vjλ( ⋅ − x

j
n)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
→ 0.

Without loss of generality, we may assume that ṽiλ ̸= 0. Noting that un( ⋅ + x
i
n) → ṽiλ a.e. inℝ

N as n →∞, we
get I󸀠λ(ṽ

i
λ) = 0 in H

−1(ℝN). Then we redefine viλ := ṽ
i
λ and as n →∞,

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
un − uλ − ∑

j∈(Λ2\Λi2)∪{i}
vjλ( ⋅ − x

j
n)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
→ 0.

By repeating the argument above atmost (k − 1) times and redefining {vjλ} if necessary,we endupwith Λ ⊂ Λ2
such that

{{{
{{{
{

|xjn| → ∞ and |xin − x
j
n| → ∞ as n →∞ for any i, j ∈ Λ and i ̸= j,

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
un − uλ − ∑

j∈Λ
vjλ( ⋅ − x

j
n)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
→ 0 as n →∞.

Finally, by Lemma 2.2 one has cλ = Iλ(uλ) + ∑j∈Λ Iλ(v
j
λ). The proof is now complete.

Proof of Theorem 1.1. As a consequence of Lemma 3.1, Proposition 3.1 and Lemma 3.2, one has that for
almost every λ ∈ J = [12 , 1], problem (3.1) admits a nontrivial solution uλ satisfying ‖uλ‖ ≥ β, γ ≤ Iλ(uλ) ≤ cλ,
where β, γ > 0 (independent of λ). Then there exist {λn} ⊂ [12 , 1] and {un} ⊂ H

1(ℝN) such that, as n →∞,

λn → 1, γ ≤ Iλn (un) ≤ cλn , I󸀠λn (un) = 0 in H−1(ℝN). (3.13)

By Pohozǎev’s identity (3.3) we have

Iλn (un) =
2 + α

2(N + α) ∫
ℝN

|∇un|2 +
αa

2(N + α) ∫
ℝN

|un|2
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and {un} is bounded in H1(ℝN). Notice that

La(u) = Iλ(u) +
1
2 (λ − 1) ∫

ℝN

(Iα ∗ F(u))F(u), u ∈ H1(ℝN).

Then by (3.13), up to a sequence, there exists c0 ∈ [γ, c1] such that

c0 := lim
n→∞

La(un) = lim
n→∞

Iλn (un) ≤ lim
n→∞

cλn = c1,

where we used the fact that cλ is continuous from the left at λ. Moreover, by (3.13), for any ϕ ∈ C∞0 (ℝN),

⟨L󸀠a(un), ϕ⟩ = (λn − 1) ∫
ℝN

[Iα ∗ F(un)]f(un)ϕ.

Similarly as above, there exists some C > 0 such that

( ∫

ℝN

|f(un)ϕ|
2N
N+α)

N+α
2N

≤ C‖ϕ‖ uniformly for all ϕ ∈ C∞0 (ℝ
N), n = 1, 2, . . . ,

and by the Hardy–Littlewood–Sobolev inequality

|⟨L󸀠a(un), ϕ⟩| = (1 − λn)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

ℝN

[Iα ∗ F(un)]f(un)ϕ
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ C(1 − λn)( ∫
ℝN

|F(un)|
2N
N+α)

N+α
2N

( ∫

ℝN

|f(un)ϕ|
2N
N+α)

N+α
2N

= on(1)‖ϕ‖,

where on(1) → 0 uniformly for any ϕ ∈ C∞0 (ℝN) as n →∞. Namely, L󸀠a(un) → 0 in H−1(ℝN) as n →∞.
Finally, we obtain

‖un‖ ≥ β, La(un) → c0 ≤ c1, L󸀠a(un) → 0 in H−1(ℝN) as n →∞.

If un → u0 strongly in H1(ℝN), then ‖u0‖ ≥ β, La(u0) = c0 ≤ c1 and L󸀠a(u0) = 0 in H−1(ℝN). Otherwise, as
a consequence of Proposition 3.1 with λ = 1, cλ = c0, uλ = u0, there exist k ∈ ℕ+ and {vj}kj=1 ⊂ H

1(ℝN) such
that vj ̸= 0, L󸀠a(vj) = 0 in H−1(ℝN) for all j and c0 = La(u0) + ∑

k
j=1 La(vj). So let

N := {u ∈ H1(ℝN \ {0}) : L󸀠a(u) = 0 in H−1(ℝN)}.

ThenN ̸= 0 and infu∈N La(u) = Ea ∈ [γ, c1].
We conclude the proof of Theorem 1.1 by showing that Ea is achieved. Clearly, there exists {vn} ⊂ N

such that as n →∞, La(vn) → Ea and L󸀠a(vn) = 0 in H−1(ℝN). Thus {vn} is bounded in H1(ℝN). Assume
that vn ⇀ v0 weakly in H1(ℝN) as n →∞. Then L󸀠a(v0) = 0 in H−1(ℝN). If vn → v0 strongly in H1(ℝN), then
La(v0) = Ea. Namely, v0 is a ground state solution of (1.2). Otherwise, there exist k ∈ ℕ+ and {vj}kj=1 ⊂ H

1(ℝN)
such that vj ̸= 0, L󸀠a(vj) = 0 in H−1(ℝN) for all j and Ea = La(v0) + ∑

k
j=1 La(vj). By the definition of Ea, v0 = 0,

k = 1 and La(v1) = Ea, which yields v1 as a ground state solution to (1.2). The proof is now complete.

4 Towards semiclassical states

4.1 Compactness of the set of ground state solutions

Denote the set of ground state solutions to (1.2) by

Na := {u ∈ H1(ℝN) : La(u) = Ea , L󸀠a(u) = 0 in H−1(ℝN)}.

Then by Theorem 1.1, Na ̸= 0 for any a > 0. Since La is invariant by translations, Na cannot be compact
in H1(ℝN). However, this turns out to be the only way to loose compactness as we have the following result.
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Proposition 4.1. For any a > 0, up to translations,Na is compact in H1(ℝN).

Proof. Let {un} ⊂ Na. Then La(un) = Ea and L󸀠a(un) = 0 in H−1(ℝN). Similarly as above {un} is bounded
in H1(ℝN). Assume that un ⇀ u0 weakly in H1(ℝN) as n →∞; then L󸀠a(u0) = 0 in H−1(ℝN). If un → u0
strongly in H1(ℝN), we are done. Otherwise, by virtue of Proposition 3.1, up to a subsequence, there exists
k ∈ ℕ+, {xjn}kj=1 ⊂ ℝ

N and {vj}kj=1 ⊂ H
1(ℝN) such that vj ̸= 0, L󸀠a(vj) = 0 in H−1(ℝN) for all j and

Ea = La(u0) +
k
∑
j=1
La(vj),

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
un − u0 −

k
∑
j=1
vjλ( ⋅ − x

j
n)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
→ 0 as n →∞,

which implies that u0 = 0, k = 1, v1 ∈ Na and ‖un( ⋅ + x1n) − v1λ‖ → 0 as n →∞.

4.2 Regularity, positivity and symmetry

Here we borrow some ideas from [4, 45] to establish boundedness, decay, positivity and symmetry of ground
state solutions to (1.2).

Proposition 4.2. Let a > 0. The following hold:
(i) 0 < inf{‖u‖∞ : u ∈ Na} ≤ sup{‖u‖∞ : u ∈ Na} < ∞.
(ii) For any u ∈ Na, u ∈ C

1,γ
loc (ℝ

N) for γ ∈ (0, 1).
(iii) For any u ∈ Na, u has constant sign and is radially symmetric about a point.
(iv) Ea coincides with the mountain pass value.
(v) There exist C, c > 0, independent of u ∈ Na, such that |Dα1u(x)| ≤ C exp(−c|x − x0|), x ∈ ℝN , for |α1| = 0, 1,

where |u(x0)| = maxx∈ℝN |u(x)|.

Proof. First, by Pohozaev’s inequality it follows thatNa is bounded in H1(ℝN).

Claim 1. For any p ∈ [2, Nα
2N
N−2 ), there exists Cp > 0 such that

‖u‖p ≤ Cp‖u‖2 for all u ∈ Na . (4.1)

In fact, for any fixed u ∈ Na, let H(u) = F(u)u and K(u) = f(u) in {x ∈ ℝN : u(x) ̸= 0}. Let R > 0 and ϕR ∈ C∞0 (ℝ)
be such that ϕR(t) ∈ [0, 1] for t ∈ ℝ, ϕR(t) = 1 for |t| ≤ R and ϕR(t) = 0 for |t| ≥ 2R. Set

H∗(u) = ϕR(u)H(u), H∗(u) = H(u) − H∗(u),
K∗(u) = ϕR(u)K(u), K∗(u) = K(u) − K∗(u).

By (F1)–(F2), there exists C > 0 (depending only on R) such that for any x ∈ ℝN ,

|H∗(u)| ≤ C|u|
α
N , |K∗(u)| ≤ C|u|

α
N ,

|H∗(u)| ≤ C|u|
α+2
N−2 , |K∗(u)| ≤ C|u|

α+2
N−2 .

Note that H∗(u), K∗(u) are uniformly bounded in L2N/α(ℝN) and so are H∗(u), K∗(u) in L2N/(α+2)(ℝN) for any
u ∈ Na. Thanks to the compactness ofNa, for any ε > 0 we can choose R depending only on ε such that

( ∫

ℝN

|H∗(u)|
2N
α+2 ∫

ℝN

|K∗(u)|
2N
α+2)

α+2
2N

≤ ε2 for all u ∈ Na .

Then repeating line by line the argument as in [45, Proposition 3.1], (4.1) follows.

Claim 2. The map Iα ∗ F(u) is uniformly bounded in L∞(ℝN) for all u ∈ Na.

By (F1)–(F2) and the very definition of Iα ∗ F(u), there exists C(α) (depending only N, α) such that for any
x ∈ ℝN and u ∈ Na,

(Iα ∗ |F(u)|)(x) ≤ C(α) ∫
ℝ2

(|u|2 + |u|
N+α
N−2 )dy + C(α) ∫

|x−y|≤1

|u|2 + |u| N+αN−2

|x − y|N−α
dy.
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Thanks to (4.1), for some c (independent of u) such that for any x ∈ ℝN ,

(Iα ∗ |F(u)|)(x) ≤ c + C(α) ∫
|x−y|≤1

|u|2 + |u| N+αN−2

|x − y|N−α
dy.

As in [64, Proposition 2.2], we can choose t ∈ (Nα ,
N
α

N
N−2 ) with 2t ∈ (2, Nα

2N
N−2 ) and s ∈ (Nα ,

N
α

2N
N+α ) with

s N+αN−2 ∈ (2,
N
α

2N
N−2 ), and there exist C1, C2 > 0 (independent of u) such that

∫
|x−y|≤1

|u|2 + |u| N+αN−2

|x − y|N−α
dy ≤ C1‖u‖22t + C2‖u‖

N+α
N−2
s N+αN−2

,

which combining with (4.1) implies the claim.
Now let ̄f (x, u) := (Iα ∗ F(u))(x)f(u). Thenby (F1)–(F2), for any u ∈ Na, u satisfies that for any δ > 0, there

exists Cδ > 0 (independent of u) such that

| ̄f (x, u)u| ≤ (δ|u|2 + Cδ|u|
N+α
N−2 ), x ∈ ℝN ,

and
−∆u + au = ̄f (x, u), u ∈ H1(ℝN).

Noting that N+αN−2 <
2N
N−2 , by means of a standard Moser iteration [29] (see also [14]),Na is uniformly bounded

in L∞(ℝN). Since | ̄f (x, u)| = o(1)|u| if ‖u‖∞ → 0 and Ea > 0, one also has inf{‖u‖∞ : u ∈ Na} > 0.
Since u ∈ L∞(ℝN) for any∈ Na, it follows from the elliptic regularity estimates (see [29]) that u ∈ C1,γloc (ℝ

N)
for some γ ∈ (0, 1). From the proof of Theorem 1.1, we know that Ea ≤ c1, where

c1 := inf
γ∈Γ

max
t∈[0,1]

La(γ(t)),

where Γ := {γ ∈ C([0, 1], X) : γ(0) = 0, La(γ(1)) < 0}. Following [45], for any u ∈ Na, there exists a path γ ∈ Γ
such that γ(12 ) = u and La(γ) achieves its maximum at 1

2 . Thereby, c1 = Ea. Namely, Ea is also a mountain
pass value. Moreover, for any u ∈ Na, u has a constant sign and is radially symmetric about some point. If u
is positive, then u is decreasing at r = |x − x0|, where x0 is the maximum point of u. Finally, by the radial
lemma, u(x) → 0 uniformly as |x − x0| → ∞ for u ∈ Na. By the comparison principle, there exist C, c > 0,
independent of u ∈ Na such that |Dα1u(x)| ≤ C exp(−c|x − x0|), x ∈ ℝN for |α1| = 0, 1.

4.3 Proof of Theorem 1.2

Let u(x) = v(εx), Vε(x) = V(εx) and consider the following problem:

− ∆u + Vε(x)u = (Iα ∗ F(u))f(u), x ∈ ℝN . (4.2)

Let Hε be the completion of C∞0 (ℝN) with respect to the norm

‖u‖ε = ( ∫
ℝN

(|∇u|2 + Vεu2))
1
2

.

For any set B ⊂ ℝN and ε > 0, we define Bε ≡ {x ∈ ℝN : εx ∈ B} and Bδ ≡ {x ∈ ℝN : dist(x, B) ≤ δ}. Since we
are looking for positive solutions of (1.1), from now on, we may assume that f(t) = 0 for t ≤ 0. For u ∈ Hε, let

Pε(u) =
1
2 ∫
ℝN

|∇u|2 + Vεu2 −
1
2 ∫
ℝN

(Iα ∗ F(u))F(u).

Fix an arbitrary ν > 0 and define

χε(x) =
{
{
{

0 if x ∈ Oε ,
ε−ν if x ∈ ℝN \ Oε ,
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as well as

Qε(u) = ( ∫
ℝN

χεu2 dx − 1)
2

+
.

Let Γε : Hε → ℝ be given by
Γε(u) = Pε(u) + Qε(u).

To find solutions of (4.2) which concentrate inside O as ε → 0, we look for critical points uε of Γε satisfying
Qε(uε) = 0. The functional Qε that was first introduced in [13] will act as a penalization to forcing the con-
centration phenomena inside O. In what follows, we seek the critical points of Γε in some neighborhood of
ground state solutions to (1.2) with a = m.

4.4 The truncated problem

Denote Sm by the set of positive ground state solutions of (1.2) with a = m satisfying u(0) = maxx∈ℝN u(x),
where m is given in Section 1.

Lemma 4.1. The set Sm is compact in H1(ℝN).

Proof. By Proposition 4.2, Sm ̸= 0. For any {un} ⊂ Sm, without loss of generality, we assume that un ⇀ u0
weakly in H1(ℝN) and a.e. in ℝN as n →∞. Let us first prove that u0 ̸= 0. Indeed, by (v) of Proposition 4.2,
there exist c, C > 0 (independent of n) such that |un(x)| ≤ C exp (−c|x|) for any x ∈ ℝN . By the Lebesgue dom-
inated convergence theorem, un → u0 strongly in Lp(ℝN) as n →∞ for any p ∈ [2, 2N

N−2 ]. So if u0 = 0, one
has un → 0 strongly in H1(ℝN) as n →∞, which contradicts the fact Em > 0. We claim un → u0 strongly in
H1(ℝN) as n →∞. Indeed, if not, byProposition3.1, there exist k ∈ ℕ+ and {vj}kj=1 ⊂ H

1(ℝN) such that vj ̸= 0,
L󸀠m(vj) = 0 in H−1(ℝN) for all j and Em = Lm(u0) + ∑

k
j=1 Lm(vj). Noting that Lm(u0) ≥ Em and Lm(vj) ≥ Em, we

get a contradiction. Finally, u0 ∈ Sm. Clearly, u0 ∈ Nm is positive and radially symmetric. Recalling that 0 is
the same maximum point un for any n, by the local elliptic estimate, 0 is also a maximum point of u0. The
proof is complete.

By Proposition 4.2, let κ > 0 be fixed and satisfy

sup
U∈Sm
‖U‖∞ < κ. (4.3)

For k > maxt∈[0,κ] f(t) fixed, let fk(t) := min{f(t), k} and consider the truncated problem

− ε2∆v + V(x)v = ε−α(Iα ∗ Fk(v))fk(v), v ∈ H1(ℝN), (4.4)

whose associated limit problem is

− ∆u + mu = (Iα ∗ Fk(u))fk(u), u ∈ H1(ℝN), (4.5)

where Fk(t) = ∫
t
0 fk(s)ds. Denote by S

k
m be the set of positive ground state solutions U of (4.5) satisfying

U(0) = maxx∈ℝN U(x). Then by [45, Theorem 2], Skm ̸= 0. As in Lemma 4.1, Skm is compact in H1(ℝN).

Lemma 4.2. We have Sm ⊂ Skm.

Proof. Denote by Ekm the least energy of (4.5). Notice that any u ∈ Sm is also a solution to (4.5). Then Ekm ≤ Em.
By [45], Ekm is a mountain pass value. Combining (iv) of Proposition 4.2 with the fact fk(t) ≤ f(t) for t > 0 and
fk(t) = f(t) = 0 for t ≤ 0, we have Ekm ≥ Em and so Ekm = Em, which yields Sm ⊂ Skm.

4.5 Proof of Theorem 1.2

In the following, we use the truncation approach to prove Theorem 1.2. First, we consider the truncated
problem (4.4). By Lemma 4.2, Sm is a compact subset of Skm. Inspired from [10] we show that (4.4) admits
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a nontrivial positive solution vε in someneighborhood of Sm for small ε. Thenwe show that there exists ε0 > 0
such that

‖vε‖∞ < κ for ε ∈ (0, ε0).

As a consequence, vε turns out to be a solution to the original problem (1.1).
For this purpose, set

δ = 1
10 min{dist(M, Oc)}.

Let β ∈ (0, δ) and consider a cut-off φ ∈ C∞0 (ℝN) such that 0 ≤ φ ≤ 1, φ(x) = 1 for |x| ≤ β and φ(x) = 0 for
|x| ≥ 2β. Set φε(y) = φ(εy), y ∈ ℝN , and for some x ∈ (M)β and U ∈ Sm, we define

Uxε (y) = φε(y −
x
ε )
U(y − xε )

and
Xε = {Uxε : x ∈ (M)β , Ui ∈ Sm}.

In the following, we show that (4.4) admits a solution in Xdε ⊂ Xε for ε, d > 0 small enough, where

Xdε = {u ∈ Hε : infv∈Xε
‖u − v‖ε ≤ d}.

In fact, since fk satisfies all the hypotheses of [64, Theorem 2.1], for ε, d > 0 small, (4.4) admits a positive
solution vε ∈ Xdε for which there exist U ∈ Sm and a maximum point xε of vε such that limε→0 dist(xε ,M) = 0
and vε(ε ⋅ +xε) → U( ⋅ + z0) in H1(ℝN) as ε → 0 for some z0 ∈ ℝN . We have

−∆wε + Vε(x +
xε
ε )

wε = (Iα ∗ Fk(wε))fk(wε), x ∈ ℝN ,

where wε( ⋅ ) = vε(ε ⋅ +xε). As in Proposition 4.2, Iα ∗ Fk(wε) is uniformly bounded in L∞(ℝN) for all ε.
Then, noting that 0 ≤ fk(wε(x)) ≤ k for all x ∈ ℝN , local elliptic estimates (see [29]) yield wε(0) → U(z0) as
ε → 0. It follows from (4.3) that ‖vε‖∞ = wε(0) < κ uniformly for small ε > 0. Therefore, for small ε > 0,
fk(vε(x)) ≡ f(vε(x)), x ∈ ℝN , and then vε is a positive solution to (1.1).
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