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Abstract: In this article, we deal with the stochastic perturbation of degenerate parabolic partial differential
equations (PDEs). The particular emphasis is on analyzing the effects of a multiplicative Lévy noise on such
problems and on establishing a well-posedness theory by developing a suitable weak entropy solution frame-
work. The proof of the existence of a solution is based on the vanishing viscosity technique. The uniqueness
of the solution is settled by interpreting Kruzhkov’s doubling technique in the presence of a noise.
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1 Introduction

Stochastic partial differential equations (SPDEs) often result from the efforts to model complex physical phe-
nomena where uncertainty/randomness is inherent. A brief survey of relevant literature reveals the use of
SPDEs in a wide variety of studies in areas that include physics, biology, engineering and finance. As exam-
ples we mention the studies of neural dynamics, the spread of infectious disease (a tracer or a passive pop-
ulation in a flow subject to possibly random external forces), Navier—Stokes-type flow under random forces,
ferromagnetism under random influences (stochastic Landau-Lifschitz—Gilbert equation) and the modeling
of forward rate curve in finance. A popular way to account for the randomness has been to add some noise to
the deterministic models and, most often, the noise is assumed to be Gaussian/Brownian. However, the data
collected through surveys/experiments often exhibit properties such as heavy-tailedness, which can not be
adequately explained by a Brownian noise. This inadequacy has lately prompted a lot of interest in models
with Lévy-type noise, which necessitates the development of a well-rounded mathematical theory for SPDEs
driven by such type of noise. In this article, we embark on the well-posedness study of a class of nonlinear
and degenerate parabolic SPDEs with a Lévy noise.

Let (Q, P, F, {Ft}¢0) be a filtered probability space satisfying the usual hypothesis, i.e., {F¢}¢0 is a right-
continuous filtration such that Fy contains all the P-null subsets of (Q, ¥). In addition, let (E, &, m) be
a o-finite measure space and let N(dt, dz) be a Poisson random measure on (E, &) with intensity measure
m(dz) with respect to the same stochastic basis. The existence and construction of such a general notion of
Poisson random measure with a given intensity measure are detailed in [19]. We are interested in the Cauchy
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problem for a nonlinear degenerate parabolic stochastic PDE of the following type:

du(t, x) - Ag(u(t, x)) dt - divy f(u(t, x)) dt = j n(x, u(t,x); z) N(dz, dt),  (t,x) € IIr, (1.1)
E

with the initial condition
u(0,x) = up(x), xeRY,

whereIl7 = [0, T) x R4 with T > 0 fixed, u(t, x) is the unknown random scalar-valued function, F : R — R%is
a given flux function and N(dz, dt) = N(dz, dt) — m(dz) dtis the compensated Poisson random measure. Fur-
thermore, (x, u, z) — n(x, u; z) is a real-valued function defined on the domain R? x R x E, and ¢ : R — Ris
a given non-decreasing Lipschitz continuous function. The stochastic integral on the right-hand side of (1.1)
is defined in the Lévy-Itd sense.

Remark 1.1. Since ¢ is a real-valued non-decreasing and Lipschitz continuous function, we know that the
set A = {r e R: ¢'(r) = 0} is not empty in general and hence the problem is called degenerate. Furthermore,
A is not negligible either and the problem is strongly degenerate in the sense of [9].

Remark 1.2. The analysis of this paper remains valid if the noise in the right-hand side of (1.1) is of jump-
diffusion type. In other words, the same analysis holds if we add the term o(x, u) dW; in the right-hand side
of (1.1), where W; denotes a cylindrical Brownian motion. Moreover, we will carry out our analysis under the
structural assumption that E = O x R*, where O is a subset of the Euclidean space. The measure m on E is
defined as the product measure A x p, where A is a Radon measure on O and y is a so-called Lévy measure
on R*. In such a case, the noise in the right-hand side would be called an impulsive white noise with the
jump position intensity A and the jump size intensity u. We refer to [19] for more on Lévy sheet and related
impulsive white noises.

Remark 1.3. In so far as the techniques are concerned, one anticipates to follow closely the methodology
used in analyzing a version of (1.1) with a Brownian noise in [3]. However, there will be additional difficulties
specific to the discontinuous character of the Lévy noise. Note that the solution of problem (1.1) is interpreted
in the entropy sense as in [3, 9]. The entropy inequalities will have an [t6—Lévy correction term, and they will
have non-localities resulting from the jump nature of the noise term in the right-hand side of (1.1). This non-
locality tends to derail the stability analysis, and proving the uniqueness becomes a trickier affair. We are able
to manage this added difficulty here and establish the uniqueness, but under a slightly restrictive assumption
(iv) on the jump vector 7 (see Section 2.1).

Equation (1.1) becomes a multi-dimensional deterministic degenerate parabolic-hyperbolic equation if
n = 0. It is well-documented in the literature that the solution has to be interpreted in the weak sense and
one needs an entropy formulation to prove the well-posedness of the problem. We refer to [1, 4, 9, 11,
12, 20] and the references therein for more on the entropy solution theory for deterministic degenerate
parabolic-hyperbolic equations.

1.1 Studies on degenerate parabolic-hyperbolic equations with a Brownian noise

The study of stochastic degenerate parabolic-hyperbolic equations has so far been limited to mainly equa-
tions with a Brownian noise. In particular, hyperbolic conservation laws with a Brownian noise are examples
of such problems that have attracted the attention of many. The first documented development in this
direction is [17], where Holden and Risebro established a result of existence of a path-wise weak solution
(possibly non-unique) for one-dimensional balance laws via the splitting method. In a separate development,
Khanin, Mazel and Sinai [15] published their celebrated work that described some statistical properties of
Burgers equations with a noise. Kim [18] extended the Kruzhkov entropy formulation and established the
well-posedness of the Cauchy problem for one-dimensional balance laws driven by an additive Brownian
noise. The multi-dimensional analogue on bounded domains was studied by Vallet and Wittbold [21]. They
established a result of well-posedness of the entropy solution with the theory of Young measures.
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This approach is not applicable to the multiplicative noise case. This case was studied by many authors
[2, 10, 14, 16]. In [16], Feng and Nualart found a way to recover the necessary information in the form
of the strong entropy condition from the parabolic regularization, and they established a result of unique-
ness of the strong entropy solution in the L?-framework for the multi-dimensional case, but the existence of
a solution was established only in the one-dimensional case. We also add here that Feng and Nualart [16]
used an entropy formulation which is strong in time but weak in space, which in our view may give rise
to problems when the solutions are not shown to have continuous sample paths. We refer to [7], where
a few technical questions are raised on the strong in time formulation and remedial measures have been
proposed. In [14], Debussche and Vovelle obtained the existence of a solution via a kinetic formulation,
and Chen, Ding and Karlsen [10] used the BV solution framework. Bauzet, Vallet and Wittbold [2] estab-
lished a result of well-posedness via the Young measure approach. The well-posedness of the problem to
a multi-dimensional degenerate parabolic-hyperbolic stochastic problem has been studied by Debussche,
Hofmanova and Vovelle [13] and Bauzet, Vallet and Wittbold [3]. The former adapted the notion of kinetic
formulation and developed a well-posedness theory, while the latter revisited [1, 9, 11] and established the
well-posedness of the entropy solution via the Young measure theory.

1.2 Relevant studies on problems with a Lévy noise

Over the last decade, there have been many contributions on the larger area of stochastic partial differential
equations that are driven by a Lévy noise. A worthy reference on this subject is [19]. However, very little is
available on the specific problem of degenerate parabolic problems with a Lévy noise such as (1.1). This
article marks an important step in our quest to develop a comprehensive theory of stochastic degenerate
parabolic equations that are driven by jump-diffusions. The relevant results in this context are made available
recently and they are on conservation laws that are perturbed by a Lévy noise. In recent articles, Biswas,
Karlsen and Majee [5] and Biswas, Koley and Majee [6] established the well-posedness of the entropy solution
for multi-dimensional conservation laws with a Poisson noise via the Young measure approach. In [6], Biswas
et al. developed a continuous dependence theory on nonlinearities within the BV solution setting.

Stochastic degenerate parabolic-hyperbolic equations are one of the most important classes of nonlinear
stochastic PDEs. Nonlinearity and degeneracy are two main features on these equations and yield several
striking phenomena. Therefore, this requires new mathematical ideas, approaches, and theories. It is well
known that due to the presence of nonlinear flux terms, solutions to (1.1) are not smooth even for smooth
initial data ug(x). Therefore, a solution must be interpreted in the weak sense. Before introducing the con-
cept of weak solutions, we first recall the notion of predictable o-field. By a predictable o-field on [0, T] x Q,
denoted by P7, we mean the o-field generated by the sets of the form {0} x A and (s, t] x B for any A € Jy,
B e F5,0 < s, t < T. The notion of a stochastic weak solution is defined as follows.

Definition 1.4 (Stochastic weak solution). We say that an L2(R%)-valued {J : t > O}-predictable stochastic
process u(t) = u(t, x) is a weak solution to problem (1.1) provided the following conditions are satisfied:

(i) ueL?(QxTIr)and ¢p(u) € L2((0, T) x Q; HL(RY)).

(ii) It holds

t
%[u - J J n(x, u(s, -); 2) N(dz, ds) | € L?((0, T) x Q; H"1(R%))
0 E

in the sense of distribution.
(iii) For almost every t € [0, T] and P-a.s., the following variational formulation holds:

0= <% [u - j bj n(x, u(s, -); z) N(dz, ds)], v> Vo (u(t, x)) + flu(t, x))}.Vv dx

+ J{
HY(R4),H' (RY)
R4

for any v € HY(RY).



812 —— |.H.Biswas, A.K. Majee and G. Vallet, Degenerate parabolic PDE with Lévy noise DE GRUYTER

However, it is well known that weak solutions may be discontinuous and are not uniquely determined by
their initial data. Consequently, an admissibility criterion for the so-called entropy solution (see Section 2 for
the definition of an entropy solution) must be imposed to single out the physically correct solution.

1.3 Goal of the study and outline of the paper

The case of a strongly degenerate stochastic problem driven by a Brownian noise is studied by Bauzet et al. [3].
In this article, drawing primary motivation from [3, 5, 9], we propose to establish a result of well-posedness
of the entropy solution to a degenerate Cauchy problem (1.1) by using the vanishing viscosity method along
with few a priori bounds.

The rest of the paper is organized as follows: We state the assumptions, details of the technical framework
and the main results in Section 2. Section 3 is devoted to prove the existence of a weak solution for the viscous
problem via an implicit time discretization scheme and to derive some a priori estimates for the sequence of
viscous solutions. In Section 4, we establish first the uniqueness of the limit of the viscous solutions when
the viscosity parameter goes to zero via the Young measure theory, and then we establish the existence of an
entropy solution. The uniqueness of the entropy solution is presented in Section 5.

2 Technical framework and statements of the main results

Here and in the sequel, we denote by N,f,(O, T, L2(R%)) the space of predictable L2(R%)-valued processes u
such that
IE[ J [ul? dtdx] < +00.
M7

Moreover, we use the letter C to denote various generic constants. There are situations where the constant
may change from line to line, but the notation is kept unchanged so long as it does not impact the primary
implication. We denote by ¢y and ¢y the Lipschitz constants of ¢ and f, respectively. Also, we use (-, -) to
denote the pairing between H!(R9) and H™1(R%).

2.1 Entropy inequalities

We begin this subsection with a formal derivation of the entropy inequalities a la Kruzhkov. Remember that
we need to replace the traditional chain rule for deterministic calculus by the It6—-Lévy chain rule.

Definition 2.1 (Entropy flux triple). A triplet (B, {,v) is called an entropy flux triple if § € C%(R) is Lipschitz
continuous and >0, { = ({1, {2, ..., {4) : R+ RY is a vector-valued function and v : R — R is a scalar-
valued function such that

' =p'f'(r) and V'(r)=B'(NP'(r).
An entropy flux triple (B, {, v) is called convex if 8" (s) > 0.
For a small positive number £ > 0, assume that the parabolic perturbation

du(t, x) — Ag(u(t, x)) dt = divy f(u(t, x)) dt + J n(x, u(t, x); z) N(dz, dt) + eAu(t, x) dt, (t,x) € It
E

of (1.1) has a unique weak solution u(t, x). Note that this weak solution u, is in LZ((0, T) x Q; HY(RY)).
Moreover, for the time being, we assume that it satisfies the initial condition in the sense of (A.2). This enables
one to derive a weak version of the It6—Lévy formula for the solutions to (1.1) as detailed in Theorem A.1 in
Appendix A.
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Let (8, ¢, v) be an entropy flux triple. Given a non-negative test function ¢ € C%’Z([O, 00) x RY), we apply
the generalized version of the It6—-Lévy formula (cf. Appendix A) to have, for almost every T > 0,

j Blue(T, x))(T, x) dx - j Bue (0, X))(0, x) dx

R4 R4

= I Bug(t, x))oap(t, x) dx dt — J Vip(t, x) - {(ue(t, x)) dx dt

HT l_[T

+ J n(x, ug(t, x); 2)B' (ue(t, x) + On(x, ue(t, x); 2))(t, x) d N(dz, dt) dx
E

Il
|

3

(1 - 0% (x, ue(t, x); 2)B" (ue(t, x) + On(x, us(t, x); 2))(t, x) d6 m(dz) dx dt

s L E—

eVxp(t, x).VuBue(t, x)) + €B" (ue(t, X))|Vyue(t, )I*1(t, x)) dx dt

e P
~

— | @' (uelt, x)B" (ue(t, x))IVue(t, )1 P(t, x) dx dt + J v(ug(t, x))A(t, x) dx dt.
T Ir

=

Let G be the associated Kirchhoff function of ¢, given by

G(x) = I \ @' () dr.
0

A simple calculation shows that
IVG(ue(t, )I* = ¢’ (ue(t, ) Vue(t, X))

Since f and i are non-negative functions, we obtain

0< j Bus(0, (0, x) dx + I{ﬂ(ug(t, X))Oa(t, x) — Vip(t, x) - {(ue(t, %)} dx dt

R4 Iy
- j B (e (€, X)IVG e (t, X)) 2(t, x) dx dt + J V(ue(t, X)AY(t, x) dx dt + O(e)
Jigs Ir
1
+ J I N0, ug(t, x); 2)B' (ue(t, x) + 0n(x, ue(t, x); 2))(t, x) d0 N(dz, dt) dx
Tr E 0
1
+ J I(l — 0% (x, ue(t, x); 2)B" (ue(t, x) + On(x, uc(t, x); 2))(t, x) d m(dz) dx dt.
My E 0

Clearly, the above inequality is stable under the limit € — 0 if the family {u,},»o has Lfoc-type stability.
Just as the deterministic equations, the above inequality provides us with the entropy condition. We now

formally define the entropy solution.

Definition 2.2 (Stochastic entropy solution). A stochastic process u € N2,(0, T, L2(R?)) is called a stochastic
entropy solution of (1.1) if the following conditions hold:
(i) ForeachT > 0,

G(u) € L?((0, T) x Q; HY(RY)) and  sup E[Ju(t)]?] < co.
0<t<T
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(ii) Given a non-negative test function i € Cg’z([O, 00) x RY) and a convex entropy flux triple (8, {, v), the
following inequality holds:

J {Bu(t, x))osp(t, x) + v(u(t, x)AP(t, x) — Vip(t, x) - {(u(t, x))} dx dt

Iz
1
J J J n(x, u(t, x); 2)B' (u(t, x) + On(x, u(t, x); z))P(t, x) d9 N(dz, dt) dx
EO
1
/]

J J (1 - 0)n%(x, u(t, x); 2)B" (u(t, x) + On(x, u(t, x); 2))P(t, x) dd m(dz) dx dt

> Jﬁ"(u(t, X)|IVG(u(t, x))|P(t, x) dx dt — Jﬁ(uo(x))l,b(o,x) dx, P-as. (2.1)

Ir R4

Remark 2.3. We point out that, by a classical separability argument, it is possible to choose a subset of Q of
P-full measure such that (2.1) holds on that subset for every admissible entropy triplet and test function.

The primary aim of this paper is to establish a result of existence and uniqueness of an entropy solution for
the Cauchy problem (1.1) in accordance with Definition 2.2, and we do so under the following assumptions:
(i) ¢ : R — Ris a non-decreasing Lipschitz continuous function with ¢(0) = 0. Moreover, if 17 is not a con-
stant function with respect to the space variable x, then t +— ~/@’(f) has a modulus of continuity wg such
that
w0y ()
12/3
() f= (1, fa,...,f1): R — R%is a Lipschitz continuous function with f;(0) = 0 forall 1 < k < d.
(iii) The space E is of the form O x R*, and the Borel measure m on E has the form A x u, where A is a Radon
measure on O and y is a so-called one-dimensional Lévy measure.
(iv) There exist positive constants K > 0, A* € (0, 1) and h1(z) € L?>(E, m) with 0 < h1(z) < 1 such that

—0 asr—0.

In(x,u;z) =y, v;z)| < A" lu—v| + K|x — y|)h1(z) forallx,y e R, u,veR, z<cE.
(v) There exist a non-negative function g € L(RY) N L2(RY) and hy(z) € L2(E, m) such that for all
(x,u,z) € RYx R x E
one has
In(x, u; 2)| < g(X)(1 + [ul)ha(2).

The above definition does not say anything explicitly about the way the entropy solution satisfies the
initial condition. However, the initial condition is satisfied in a certain weak sense. Here we state the lemma
whose proof follows the same line of argument as the one of [5, Lemma 2.3].

Lemma 2.4. Any entropy solution u(t, -) of (1.1) satisfies the initial condition in the following sense: for every
non-negative test function \ € CZ(]Rd) such that supp(y) =

1

11m ]E[E J Jlu(t, X) —up(@)|P(x)dxdt| =
0K

Next, we describe a special class of entropy functions that plays an important role in the sequel. Let f : R - R
be a C* and Lipschitz continuous function satisfying

BO)=0, B(-n=pr), B'=0

and
=-1 ifr<-1,
B'(r){e(-1,1] iflrl<1,

=+1 ifr>1.
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For any 9 > 0O, define 89 : R — R by
r
Bs(r) = 9(5).
Then

M
I-M9<ps(r)<Irl and IB5()] < ~5 Lyico,

where
My = sup|r| - B(r)|, M> =sup|B"(r)l.

|rl<1 |r|<1

By simply dropping 9, for f = S we define

¢P(a, b) =

S e

B'(o - b)¢'(0) d(0), Fi(a, b) = Jﬁ’(o - b)f(0) d(0),
b

Fy(a, b) = sign(a - b)(fr(a) - fx(b)), F(a,b) = (Fi(a, b), F2(a, b), ..., Fg(a,b)).

We conclude this section by stating the main results of this paper.

Theorem 2.5 (Existence). Let assumptions (i)—(v) be true and that the L2(R%)-valued Fo-measurable random
variable ug satisfies E[ll“oll%] < 00. Then there exists an entropy solution of (1.1) in the sense of Definition 2.2.

Theorem 2.6 (Uniqueness). Letassumptions (i)—(v) be true and that the L2 (R%)-valued Fo-measurable random
variable ug satisfies IE[||u0||§] < 00. Then the entropy solution of (1.1) is unique.

Remark 2.7. In addition, if ug is in LP(R?) for p € [2, c0), then it can be concluded that
u e L0, T, LP(Q x RY)).
Furthermore, if up € L* and there is M > 0 such that n(x, u; z) = O for |u| > M and

My = sup |n(x,u;z)| < oo,
X,|ulsM,z

then |u(t, x)| < max{M + M1, |[uolloo} for almost every (t, x, w) € II7 x Q. We sketch a justification of this claim
in Section 4.

3 Existence of a weak solution to the viscous problem

Just as in the case of the deterministic problem, here we also study the problem regularized by adding a small
diffusion operator and derive some a priori bounds. Due to the nonlinear function ¢ and related degeneracy,
one cannot expect a classical solution and instead seeks a weak solution.

3.1 Existence of a weak solution to the viscous problem

For a small parameter € > 0, we consider the viscous approximation of (1.1) as

du(t, x) — Agp(u(t, x)) dt

= divy flu(t, x)) dt + J n(x, u(t, x); z) N(dz, dt) + eAu(t, x)dt, t>0, x € RY. (3.1)
E
In this subsection, we establish the existence of a weak solution for problem (3.1). To do this, we use an

implicit time discretization scheme. Let At = % for some positive integer N > 1. Further, set t, = nAt for
n=0,1,2,...,N.
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Define

N =L%(Q; H'(RY), Np= {the Fnar measurable elements of N},
H =L2(Q; L2 (RY)), Hy,= {the Fna¢ measurable elements of }.

Proposition 3.1. Assume that At is small. For any given u, € H,, there exists a unique un.1 € Npy1 with
¢ (Uns1) € Npy1 such that P-a.s. for any v € H'(RY) the following variational formula holds:
tni1
J'((unﬂ —Up)V + At{VP(uns1) + EVunst + flun1)} - Vv) dx = J J j n(x, up; 2)vN(dz, ds)dx.  (3.2)
R4 Re th E
Before proving this proposition, we first state a key deterministic lemma, related to the weak solution of
parabolic equations. We have the following lemma, a proof of which can be found in [8, p. 19].

Lemma 3.2. Assume that At is small and X € L?(R?). Then, for a fixed parameter € > 0, the following holds:
(i) There exists a unique u € H*(R?) with ¢(u) € H'(R?) such that, for any v € H'(R?),

J (uv + At{Vp(u) + eVu + f(w)} - Vv) dx = J Xv dx.
R4 R4

(ii) There exists a constant C = C(At) > O such that the following a priori estimate holds:
Bl gy + 1D gy + ENVUIZ o) < CUXIZ, - (3.3)
(iii) The map © : X € L>(R?) — (u, ¢p(u)) € H (RY)? is continuous.

Proof of Proposition 3.1. Let u, € Ny. Take
tn+l
X=up+ J In(x, un; 2) N(dz, ds).
tn E

Then, by assumption (v), we obtain
E[1X1, o)) < NitnlZ + CAL(IZ12: g + T1tnlZe)-

This shows that X e L?(R?) almost surely. Therefore, one can use Lemma 3.2 and conclude that for almost
surely all w € Q there exists a unique u(w) satisfying the variational equality (3.2). Moreover, by construction
X € Hyy1. Thus, due to the continuity of © for the F,.41)a¢r measurability and to the a priori estimate (3.3),
we conclude that u € Ny,1 with ¢(u) € Ny,,1. We denote this solution u by u,;1. Hence the assertion of the
proposition follows. O

3.1.1 A priori estimate

Note that I]Rd f(v)-Vvdx = 0 for any v € D(RY), and hence it holds true for any v € H'(R?) by a density
argument. We choose the test function v = uy, in (3.2) to have

J’ (Un+1 — Un)Unsq dX + At J’ (1),(un+l)|vun+1|2 dx + eAt J’ |Vun+1|2 dx
R R4 Rd
tni1
= J J Jn(x, Un; 2) N(dz, ds)uns1 dx
R4 tn E
tns1
< | [ | e s 2 Wz, ds) dx+ S hunns =l
R tn E
1 thi1 )
+ 5z J( J Jr[(x, Un;z) N(dz, ds)) d forsomea > 0.
Rd th E
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Since
j|v¢(u)|2 dx = JIqﬁ'(u)Vulz dx < ¢y J o' (W)Vul? dx,
R4 R4 R4
we see that Al
2 ! 2
o, VoI5 < AnEU &' (w)|Vul dx]. (3.4)
IRd

In view of assumption (v), inequality (3.4), the It6—-Lévy isometry and the fact that for any a, b € R one has
(a-b)a=1(a’+(a-b)> - b*), we obtain

1 At
_[||un+1"§( + luns1 - un"sz - ||un||§(] + _||V¢(un+1)"§c + 8At||vun+1"§(
2 Cp
a ,  CAt 2
< S luner = unllze + S—-(1 + lunllse)-

Since a > 0 is arbitrary, one can choose a > 0 so that

-1 -1 -1
2 " Y, E L v 2 A L v 2
lunl3e + 3 Nuer = wllse + — Y IVPuea)li5 + At 3 1Vukeal
k=0 ¢ k=0 k=0
n-1
< Cy + CoAt z ||uk||§{ for some constants Cq, C; > O. (3.5)
k=0

Thanks to the discrete Gronwall lemma, we can deduce from (3.5) that
5 n-1 5 At n-1 5 n-1 ,
Nnl3e + D Murer = uidlde + — D IVPur)IF, + €At Y IVugsallf; < C (3.6)
k=0 ¢ k=0 k=0
For fixed At = &, we define

U — Uk-1

N N
w0 = Y wigenackan(), 80 = Y [T

k=1 k=1

(¢ = (= DAL + w1 | g nankan (0
with u?{(t) = ug for t < 0. Similarly, we define

N
- By - By
B = Y [ZE T e - (k- DA + Bica |1t kan (0),

& At
where
nei (k+1)At nAt
B = Z J J n(x, ux; z) N(dz, ds) = J J n(x, ut(s — At); z) N(dz, ds).
k=0 ¢ E 0 E

A straightforward calculation shows that

At At
[u™llroo, ;900 = max  Jugllae, & zoo, 1390 = max  [lugllac,
k=1,2,...,N k=0,1,...,N

N-1
~At)2 2
80720, 1y0) < A Y Ttieen = Uil
k=0

"uAf _

Since ¢ is a Lipschitz continuous function with ¢(0) = 0, in view of the above definitions and the a priori
estimate (3.6), we have the following proposition.

Proposition 3.3. Assume that At is small. Then u® and ™ are bounded sequences in L®(0, T; 3), ¢p(u’t) and
Veul! are bounded sequences in L%(0, T; N), and ||u®t — ﬂ“ll%z(o roo) < CAL.
Moreover, utt — ub(. — At) —» 0in L2(Q x II7).
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Next, we want to find some upper bounds for BA(¢). Regarding this, we have the following proposition.

Proposition 3.4. B2 is a bounded sequence in L?(Q x Il7) and

”BN(.) _ j I 006 (s - A 2) N(dz, ds)| < CAt.

L2(QxRY)
0E

Proof. First, we prove the boundedness of BA{(¢). By using the definition of B2{(¢), assumption (v) and the
boundedness of u2f in L®(0, T; ), we obtain

N
pAL)2 2
1B 120,20, 12mey < B D IBKNE

k_
ket 2
At - 5 N )
<At > ]R[ J Jn(x,u (s - At); 2) N(dz, ds) dxl ]
N kAt
<caty E| J 200(1 + [u(s - A0 dx ds |
k=0 R o

< C(1 + Ul g0, 7:2(axRaY))

< +00.
Thus, B2 is a bounded sequence in L%(Q x IT7).

To prove the second part of the proposition, we see that for any ¢ € [nAt, (n + 1)At),

BM(t) - J n(x, ubt(s - At); z) N(dz, ds)

Cl——~
o]

(n+1)At
_ t-nAt

¢
m j n(x, ub(s - At); z) N(dz, ds) - J J n(x, ut(s — At); z) N(dz, ds)
A

nAt E n
(n+1)At t

I n(x, un; z) N(dz, ds) - I J n(x, un; z) N(dz, ds).

nAt E nAt E

tE

B t — nAt
At

Therefore, in view of (3.6) and assumption (v), we have

|B“(t) “n(x ub(s — At); 2) N(dz, ds)"

0B 2(QxIRY)
At (n+1)At t )
:IE”lt Ar; I Jn(x, un; z) N(dz, ds) - J jq(x, un; z) N(dz, ds)‘ dx]
R4 nAt E nAt E
(n+1)At t
<2 J IE[(t_Ar;At)Z J an(x, Un; z) m(dz) ds + J an(x, Un; z) m(dz) ds]dx
Rd nht E nt E
<C(1+ ||un||§c)[# +(t-nAt)

< CAt.

This completes the proof. O
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3.1.2 Convergence of u2!(t, x)

Thanks to Proposition 3.3 and the Lipschitz property of f and ¢, there exist u, ¢, and f,, such that (up to
a subsequence)
ubt —* y  in L0, T; L*(Q x RY)),

W~y inL%((0, T) x Q; H'(RY)) (for a fixed positive €),
Pt — ¢y inL2((0, T) x Q; H(RY)),
Fhy — f, inL?(0, T)x Q x RY).

(3.7)

Next, we want to identify the weak limits ¢, and f,. Note that, for any v € H(R?), we can rewrite (3.2)
in terms of u®, &2t and B! as

J (%(a“ = BY)(tyv + (VoA () + eVut (D) + fut(£)} - Vv ) dx = 0. (3.8)
IRd
Lemma 3.5. {u}isa Cauchy sequence in L2(Q x IIr).
Proof. Consider two positive integers N and M and denote At = % and As = 1\% Then, for any v € H LR,
from (3.8) one gets

J (%[(ﬂm - BAY(t) - (@S - BES)(0)]v + {V(qb(u“(t)) — pus(t)))

IRd
+ VM) - uS () + (fu(6) - ()} - V) dx = 0. (3.9)
Let w = (&R — BA)(¢t) — (@125 — BAS)(¢). Set v = (I - A)~'w in (3.9); then one has
%%“V(”"ﬁum * J(¢(““<f>> =~ i (e))w dx - j(qb(u“(t)) — (1) dx
R4 R4
.y J(u“ —uMwdx-—¢ J Wt — by dx + J (fuhh) = fu)) - vvdx = 0. (3.10)
R4 R4 R4
Note that w = (12 — udS) — (BAt — BAS) — (ult — 1Aty + (uhs — 1129),
Therefore,
[ @ en - pasonwax

R4

= J (P (1)) - s ()Wt - u) dx - J (P (b)) - pus(0))(BA - BY) dx

]Rd ]Rd
_ J’((p(uAt(t)) _ ¢(uAS(t))){(uAt _ aA[) + (ﬂAS _ uAS)} dx
]Rd
> [ (@ut(0) - g (o))t - u) dx - — [ @uto) - =)y ax
IRd C¢ IRd
— C7¢ J{(BAt _ BAS) + (uAt _ ﬂAt) + (ﬂAS _ uAS)}Z dx
IRd
> > [ @) - pusonw - ut) ax
]Rd
_ % J{(BA{ _ BAS) + (uAt _ ﬂAf) + (ﬂAS _ uAS)}Z dx
]Rd
> —%"’ J{(BN - BY) + (- i) + (@ - uP)} dx  (by (D). (3.11)

R4
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Similarly, we also have

€ J(um ubHwdx > = 5 J(u —ub$)2 dx - ; J{(BN — B+ - @) + @ - ub)PP dx. (3.12)

R4 R4 R4

Combining (3.10), (3.11) and (3.12), we obtain

0 £
S WOy + 5 [ @ -2 dx

]Rd
< (C¢2+ €) J'{(Bm  BS) 1 b — @)+ @ - ud)) dx
]Rd
€ j(u“ —ubSyvdx - J(F(u“) — F(u™))-Vvdx + j(qb(um(t)) — PP (t)))v dx
R4 R4 R4
< @ J{(BN ~ B b (A - 0 4 (@0 - uh))2 dx sk B J|W|2 dx
R4 ]Rd
€ Asy2 B« 2 (cp)® +(cg)? At Asy2
+2aJ(u -u )dx+<Z+£§>jv dx+TJ(u —u~®)*dx
R4 R4 R

for some a and 3 > 0. Since a, 8 > O are arbitrary, there exist some positive constants C1, C, and C3 such that

t t
E[VO ] = Cr | OV, ] dr + Ca [ LI w1, g dr
0 0

t
< 5 [t B, gy + I = By + [ BLBY - B¥H ol drf. (3.13)
0

In view of Proposition 3.3, we notice that
It = G0 e,y + 14 = 80 g,y < C(AL+ As). (3.14)

In addition,

r
5 5 5 5 2
E[IB(r) - B¥ (1)} pay] < 3||B“(r) - J j n(x, u(o - At); z) N(dz, do)
o R L2(QxRY)

+3|lBA5(r) ijrl(xu (0 - As); z) N(dz, da)" -

r

2
’ BNJ J (n0x, u™(0 - At); 2) - n(x, u**(0 - As); 2)) N(dz, do)
L2(QxRA)

0E

r
<C(At+As)+C J E[[lub (o - At) - uS(0 - As)||§2(md)] do,
0

where we have used Proposition 3.4 and assumption (v). Thus, we get

t tr
j E[|IBA - B2 ||§2(]Rd)] dr < C(At+As) + C I J E[|lub (o - At) — ubS(0 - As)||§2(]Rd)] dodr. (3.15)
0 00
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We combine (3.14) and (3.15) in (3.13) and have

t t
BV o] = C1 | VO ) dr + Co [ LI - w12,
0 0

r

t
<C(At+As)+C j j E[[u*(0 - At) - uP(0 - As)|1?, ()] dodr  (by Proposition 3.3)
00

~

t
< C(At+As)+C J J E[u® = u ||}, a)] do dr.
00
Hence, an application of Gronwall’s lemma yields
t
EIVOR gy + [ B — w1 ] dr < COE+ 29
0

This implies that

It =12, g, < C(AE+As)eCT,

ie., {ut}isa Cauchy sequence in L?(Q x II7). O

We are now in position to identify the weak limits ¢, and f,. We have shown that u*! — u and that u?! is
a Cauchy sequence in L?(Q x IT7). Thanks to the Lipschitz continuity of ¢ and f, one can easily conclude that
$u = p(u) and fy, = f(u).

In view of the variational formula (3.8), one needs to show the boundedness of
O At mAt
—@M-B
ot )

in L2(Q x (0, T); H"1(RY)) and then identify its weak limit. To this end, we have the following lemma.

Lemma 3.6. The sequence {2 (it — BA)(0)} is bounded in L?(Q x (0, T); H"}(RY)), and

%(a“ _ By %(u - J J n(x, us 2) N(dz, ds)) in L2(Q x (0, T); H(R)),
0 E

where u is given by (3.7).

Proof. To prove the lemma, letI' = Q x [0, T] x E, § = Pr x L(E) and ¢ = P ® ¢; ® m, where Pt represents the
predictable o-algebra on Q x [0, T] and £(E) represents the Lebesgue o- algebra on E.

The space L?((T, G, ¢); R) represents then the space of the square integrable predictable integrands for the
It6-Lévy integral with respect to the compensated compound Poisson random measure N(dz, dt). Moreover,
the Ito—Lévy integral defines a linear operator from L2((T, G, ¢); R) to L%((Q, F7); R) and it preserves the norm
(see, for example, [19]).

Thanks to Propositions 3.3 and 3.5, u®{(t — At) converges to u in L2(Q x II7). Therefore, in view of Propo-
sition 3.4, the Lipschitz property of n and the above discussion, we conclude that

B, j J N, u;2) N(dz, ds) in L2(Q x IT).
0 E

Again, note that

0, . - N (ux — ug_1) - (Bx — Bi_
E(uAt_BAt)(t) — Z ( k k 1) ( k k 1)1[(k—1)AtykAt)-

e At
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From (3.2), we see that for any v € H!(R?),

1 (n+1)At
Un+1 — Un LR
j(A—t_ Af J jn(x, Un; z) N(dz, ds))vdx
R4 nAt E
=- J Vo(unpr)-Vvdx — ¢ J Vupe1 - Vvdx - J F(unp,1) - Vvdx
R4 R4 R4

< {IVPuns1)llr2 ey + ElVUnsillzwrey + Crlunsa 2 ey VI ray

and hence

- (n+1)At _
wup  JeC#E e Ly Jpn0o uni2) Nz, d9)vdx

veH! (R)\{0} ||V"H1(IRd)

< IV uns)lrzway + ENIVUni1lizwey + cllunsillizray-

This implies that %(am — BAt)(¢t) is a bounded sequence in L2(Q x (0, T); H-1(RY)).
To prove the second part of the lemma, we recall that

BAM J I n(x,u;z) N(dz,ds) and @ —u
0E

in L2(Q x 7). In view of the first part of this lemma, one can conclude that, up to a subsequence,
0 At pAt 0 ( X 12 ~1/od
S - B &<u - J I n(x, u; 2) N(dz, ds)) in L2(Q x (0, T); H™ (RY)).

0E

This completes the proof.

3.1.3 Existence of a weak solution

As we have emphasized, our aim is to prove the existence of a weak solution to the viscous problem. For this,
it is required to pass to the limit as At — 0. To this end, let us choose a € L?>(0, T) and 8 € L(Q). Then, in

view of the variational formula (3.8), we obtain
J (%(aﬁf - B),v)apdtdp+ J Vul . VvaB dx dt dP
Qx(0,T) QxIIr

+ J Vo(ull) - Vvap dx dt dP + J fwlt) - vvap dx dtdP = 0.
QxIIy QxIlr

We make use of (3.7) and Lemmas 3.5 and 3.6 to pass to the limit as At — 0 in the above variational formu-

lation, and then arrive at

t
J <%<M_JJ”(X’”;Z)N(dz’ds))’v>“ﬂdfdp+€ J Vu - Vvap dx dt dP
Qx(0,T) 0 E QxIly

+ J {Vop(u) - Vv + f(u) - VvlaB dx dt dP = 0.
QxIIy

Since H'(R?) is a separable Hilbert space, the above formulation (3.16) yields almost surely in Q,

<%(u - jt J n(x, u; 2) N(dz, ds))’ V> + J(eVu +V(u) + f(u)) - Vvdx = 0
0

E R4

for almost every t € [0, T].

(3.16)
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This proves that u is a weak solution of (3.1). For every ¢ € H? (RY), it is easily seen that

El% f J(u(s,x) ~ uo())P(x) dx ds' <CAt if 8 <At.
0

R4

Therefore,

B
lim sup El% J J(u(s, X) — uo (X)) (x) dx dsl < CAt forvery 6 < At.
510

0 R4

Now, by letting At | 0, we have

B
léiﬁ)l% J J u(s, x)Y(x)dxds = J uo(x)y(x) dx P-almost surely.
0 R4 R4

3.2 A priori bounds for the viscous solutions

Note that for a fixed & > 0 there exists a weak solution, denoted as u, € H'(R?), which satisfies the following
variational formulation: P-almost surely in Q, and for almost every t € (0, T),

<% [ue - Jt J n(-, ue(s,-); z) N(dz, ds)], v> + J V(ug(t, x)) - Vvdx
0E &
+ J{f(ug(t, X)) + eVue(t, x)} - Vvdx = 0

R4

forany v € H'(RY). Let B(u) = u?. Applying the It6—-Lévy formula (cf. Theorem A.1) to A(u), one gets that for
any t >0,

¢
J uZ(t)dx +2 J J [+ @ (ue(s))]IVue|* ds + 2 j flug) - Vug dx
R 0 R

R4

¢
= Juﬁ(O)dx+2!EJ

R4

1
J (X, ue(s, x); 2)(ue + ON(x, ug; 2)) d dx N(dz, ds)
0

R4
t

2 .

+ J ]ZI]R[ n°(x, ug(s, x); z) dx m(dz) ds.

Note that fRd flug) - Vug dx = 0 as u, € HY(R?). Taking the expectation, we obtain

t t t
E[lus(O12] +ejE[||Vug||§] ds + le[uvc(ug(s))n%] ds < E[luc(0)13 + CEIgIZ, gy ] + CJIE[uug(s)u%] ds.
0 0 0

An application of Gronwall’s inequality yields

T

T
sup E[Jue(t)l] +sj1€[||\7ug(s)||§] ds +j1E[||VG(ug(s>)u§] ds < C.
- 0 0

The achieved result can be summarized by the following theorem.
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Theorem 3.7. Forany ¢ > 0, there exists a weak solution u. to problem (3.1). Moreover, it satisfies the following
estimate:

T T
sup E[luc(t)l3] + ¢ j E[IVue(s)I2] ds + j E[IVG(ue(s))I2] ds < C, (3.17)
- 0 (0]

where G is an associated Kirchhoff’s function of ¢, defined by G(x) = jg V@' (r)dr.

Remark 3.8. Let us remark that since any solution to (3.1) is an entropy solution, the solution u, in unique.

4 Existence of an entropy solution

In this section, we will establish the existence of an entropy solution. In view of the a priori estimates given
in (3.17), we can apply [5, Lemmas 4.2 and 4.3] (see also [2]) and show the existence of a Young measure-
valued limit process solution u(t, x, a), a € (0, 1) associated with the sequence {u.(t, x)}e>o-

The basic strategy in this case is to apply the Young measure technique and to adapt Kruzhkov’s dou-
bling variable method in the presence of a noise to viscous solutions with two different parameters, and then
to send the viscosity parameters to zero. One needs a version of the classical L! contraction principle (for
conservation laws) to get the uniqueness of the Young measure-valued limit and to show that the Young
measure-valued limit process is independent of the additional (dummy) variable. Hence, it will imply the
point-wise convergence of the sequence of viscous solutions.

4.1 Uniqueness of the Young measure-valued limit process

To do this, we follow the same line of argument as in [3] for the degenerate parabolic part and [5] for the
Lévy noise. For the convenience of the reader, we have chosen to provide detailed proofs of a few crucial
technical lemmas and the rest is referred to appropriate resources. Bauzet et al. [2] and Biswas et al. [5] used
the fact that Au, € L2(Q x II7). Note that, in this case, u, € H!(R9). Therefore, we need to regularize u, by
convolution. Let {14} be a sequence of mollifiers in R4. Since u, is a solution to problem (3.1), as shown in
the proof of Theorem A.1, u. * Ty is a solution to the problem

t t t
(e « 1) - [ Ag(ue) « m) ds = [ diviftue) » ) ds + | (10 wei 2) + 70 Nidz, ds)
0 0 0 E

t
+ J‘EA(u‘g * Te(t,x))ds ae.t>0, x e RY. (4.1)
0

Note that A(ug * 7,) € L2(Q x II7) for fixed £ > 0.
Let p and g be standard non-negative mollifiers on R and R?, respectively, such that supp(p) c [-1, 0]
and supp(p) = B1(0). We define

pao(r)=5—10p(5—r0) and Qs(x)=6—1d@(§),

where 6 and § are two positive constants. Given a non-negative test function i € C %’2([0, 00) x RY) and two

positive constants § and 8y, define

©5,5,(t, X, 8,y) = ps, (t = 5)as(x = y)P(s, y).

Clearly ps,(t —s) # Oonly if s — 89 < t < s, and hence ¢s 5,(¢t, X; S, y) = 0 outside s — §p < t < s.
Let ug(t, x) be the weak solution to the viscous problem (3.1) with parameter 6 > 0 and initial condition
up(0, x) = vo(x). Moreover, let J be the standard symmetric non-negative mollifier on R with supportin [-1, 1]
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and Ji(r) = % J(}) for 1 > 0. We now simply write down the Itd-Lévy formula for ug(t, x) against the convex
entropy triple (B(- - k), FA(-, k), ¢P(-, k)), multiply by J;(u. * T(s, y) — k) for k € R and then integrate with
respect to s, y and k. Taking the expectation of the resulting expressions, we have

OIE[ J J JB"(ug(t, x) = K)|Vug(t, ) 1> @s.5,(t, X, 8, )]1(Ue * T(S, y) - k) dk dx dt dy ds]

My iy R
+1EH J J (ug(t, X) = k) VG ug(t, X)I*95,5,(t, X, 5, Y]i(Ue * Tic(s,y) = k) dkdxdtdyds]
My iy R
J Jﬂ(VO(X) K)s,5,(0, X, s, I1(Ug * T(S,y) — k) dkdxdyds]
IIr R4 R
+ ]EH J Jﬁ(ue(t, x) = k)Ot@s,5,(t, X, S, V)1(Ue * Tx(S,y) — k) dk dx dt dy ds]
My My R

j J JTJ J fi](x, ug(t, x); 2)B' (ug(t, x) + T(x, up(t, x); z) — k)
RO ERIO

X 06,6, (t, X, 8, y) dt dx N(dz, dt)]i(ue = T«(s, y) - k) dk dy dS]

o[ ]1]

II R4 R

(1 - 1)n*(x, ug(t, x); 2)B" (ug(t, x) + TN(x, ug(t, x); 2) - k)

O e

3

X ©5.6,(t, X, 8, V)1(te * Tx(5, ) — k) d dk dx m(dz) dt dy ds]

= jFﬁwe(t, X), KO3 (¢ ~ Y)(S, V)pay(t — (e * Tuls,y) — k) dkcdx dt dy di
R
+ ]E[ J dP(up(t, x), K)Dx0s(x — YIY(S, Y)ps, (t — S)]1(Ue * Tx(s, y) — k) dk dx dt dy ds]
R
- o j jﬁ’(ue(t, X) = OVt X) - Vi, (8 %, 5, Y1 (te = (s, y) - K) dedxdt dy ds
My R

i.e.,
10’1+I()’2S11 + L +I3+14+1I5+1g+17. (42)

We now apply the [t6-Lévy formula to (4.1) and obtain
e]E[J J’ Jﬁ"(u‘g * Ty = K)IV(ue * T2 @5.5,]1(ug(t, X) — k) dk dx dt dy ds]
I 07 R

+ ]E[ J J Jﬁu(ug * Ty — K)V(P(Ue) * Tx) - V(Ue * Ti)Ps,5,]1(Ua(t, X) — k) dk dx dt dy ds]

Iy I R
<E[ [ [ [ e « 10,9 - 0955t 0, )o(t, 0 - o dkdx dy d
IIr R4 R
+ IE[ J j Iﬁ(us « Tx(5, y) - K)dshs.s,J1(ue(t, X) — k) dk dy ds dx dt]
Ty Hr R

]E[J ijn[ J i(ﬂ(y’ Ue; 2) * TP (Ue T + O((Y, Ue; 2) * Tic) — k)

Ir 0 R? O

x 5.5, J1(ue(t, x) - k) A0 dy dk N(dz, ds) dx dt]
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(/)]

x ©5.5.J1(ug(t, x) - k) d0 dy dk m(dz) ds dx dt]

1
J(l —0)((y, ue; 2) * Tx)2B" (e * T + O(M(Y, Ug; 2) * Tx) — k)
0

R4

_E| I J Jﬁ'(ug * T — OV(@(ue) * Ti)Vy@s,5,J1(ue(t, x) — k) dk dx dt dy ds]
Tip Ty R
-E [ J J Jﬁ’(us # Ty — K)(F(ug) * T)Vy@s,5,J1(ug(t, x) — k) dk dx dt dy ds]

Iy 7 R

- ]E J JB"(us # Ty — k) (F(Ug) * Ti)Vy(Ue * Ti)Ps,5,J1(ua(t, x) — k) dk dx dt dy ds]
R

- sna[j j j Bt * T(5, )~ ROV, (e * T0) - Vy5,5,Ji(ua(t, 0 - K) de dy ds dx
I 17 R

i.e.,
Joi+Jop<Ti+o+]3+]s+]5+]6+]7 +]s. (4.3)

We now add (4.2) and (4.3) and look for the passage to the limit with respect to the different approximation
parameters. Note that Iy ; and Jo,; are both non-negative terms, they are the left-hand sides of inequali-
ties (4.2) and (4.3), respectively. Hence we can omit these terms. Let us consider the expressions I ; and Jo,>.
Recall that

oo = B[ | [ [ B"wot.) - 0IVG(ua(t, )P @o.5,(ue » (5, ) ~ k) dicdxdt dy ds]
7 Iy R
and
Joo = IE[J J JB”(“s * Ty — K)V(P(Ue) * Tx) - V(U * Ti)Ps,5,]1(ua(t, X) — k) dk dx dt dy ds].
My Iy R
By using the properties of Lebesgue points, convolutions and approximations by mollifications, one is able
to pass to the limit in Iy, and Jo,2, and conclude the following lemma.

Lemma 4.1. It holds that

lim lim 1im 10,2 = E[ | [ £ e(t, )~ ue(t, y)IVG(ua(t, 0Pyt vioatx ~y) dxde dy |

Iy R4

and

limlim lim Jo, = [ j j B (ue(s, y) — ug(s, x)Ve(ue(s, ¥)) - Vue(s, y) x Y(s, y)os(x - y) dx dy dS]-

1—0 k—0 §,—0
IIr R4

Lemma 4.2. It follows that

1 1u tya) u(t,x,y)
hmsuphmsup}lr%ln% lim (102+]0 2) 2 ZE[J j Jj J J B"(c-s mds)\/mda
— —0 K—
6—0 -0 b b atey) 2,
x divy Vx[1(t, y)os(x - )] dydadxdydt] (4.4)

Proof. In view of Lemma 4.1, we see that

lim lim hm (Io 2+Jo,2)
-0 k—0 §,

- IE[ j j B (et y) — alt, )1V, Ge(t VI + [V Glaat, 0IPYp(t, V)os(x - ) dx dy d .
IIr R4
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Let u(t,y, «) and i(t, x, y) be the Young measure-valued narrow limits associated with the sequences
{ue(t, ¥)leso and {ug(t, x)}g-0, respectively. With these at hand, one can use a similar argument as in
[3, Lemma 3.4] and arrive at the conclusion that (4.4) holds. O

We consider the terms (I1 + J1) originating from the initial conditions. Note that I; = 0 as supp ps, < [-60, 0).
Under a slight modification of the same line of arguments as in [5], we arrive at the following lemma.

Lemma 4.3. It holds that

lim lim lim lim lim (7, + /1) = B j j Bo(vox) ~ uo(y)I0, Vos(x - y) dx dy |

60—0e—01-0x—06§,—0
R? R4

and
o dm [ [ Batvoto - w0, yiestx - ) dxdy] = B[ [ oo - uoColp0, ) dx]-
’ ' R4 R4 R4
We now turn our attention to (I + J»). Note that 9:ps,(t — s) = —-0sps,(t — s) and that f and J; are even func-
tions. A simple calculation gives
b Jo = B[ [ [ [ B « ma(s.) - 10063(5. 7)ps, (€ - S)es(x - ) x Jtuo(t, ) - k) dkdy ds dx ]
Hr 7 R
One can now pass to the limit in (I> + J,) and have the following conclusion.

Lemma 4.4. It holds that

lim lim lim lim lim (I; + J>,)
6—0e—0[—-0k—0 §,—0

-e[[ | [1 jlﬁ(u(s, Y, @)~ 165, x, Y)OsY(s, y)estx - ) dy dady dxds |
Iy rd 0 O
and
@ 5)% 0,0) J ]Jd j jﬁ(u(s, Y, @) = U(s, x, ¥))osp(s, y)os(x —y) dy da dy dx ds]

T 1
j j ju(s. ¥, @0 ~ (s, ¥, )I0s (s, y) dy dacdy ds
0 0

In regard to I¢ and J5, we have the following lemma.

O e, 1

(%

R

Lemma 4.5. It holds that

11

lim lim lim lim lim I = E p , @)\ ddddd]

é{lgglfl(‘)l Illl’(l)lKlIl(‘)lﬁiliI}) 6 Hj HM(P (@(s, x, y), u(s,y, )Axos(x = y)Y(s, y) dy da dx dy ds
T R

and

lim lim lim lim 1 —”JJ'B,,,”,,A , —ddddd].
eligg%lzlfg;}ﬁlsf,%h 1) 2¢(u(sya) (s, x, y)Ay[(s, y)os(x —y)] dy dadx dy ds
r R4 [0,1]

Proof. Let us consider the passage to the limits in I¢. To do this, we define
B1=E[ | [ [ ¢t 0. tses0c - (s, yIps, (€~ )ue  Tuls. y) - 1 dicdx de dy ds |
My O R

_ IE[ J J J dB(ug(s, x), K)Ax0s(x — Y)W(s, Y)i(ug * Tx(s,y) - k) dk dx dy ds].

IIr R4 R
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Note that, forall a, b, c € R,
IpP(a, b) - ¢ (c, b)| < Clc - al. (4.5)

By using (4.5), we have
By = B j j j 9P (uo(t, 1), e+ (5, Y) ~ KIx05(x = YIS, Y)psy ¢ ~ 5)11(K) e dx dt dy di |

IIr Ir R

_ ]E[ J J J dP(uo(s, X), ue * T4(s, y) — K)A0s(x — Y)P(s, y)i(k) dk dx dy ds]

IIr R4 R

- J j(qbﬁ(ue(t, X0, Ue * Tx(5, ¥) — k) — $B(ua(s, X), e * Tx(5,Y) — K))Ayo5(x - ¥)
Ty Hr R

x P(s, y)ps,(t — s)]i(k) dk dx dt dy ds]

k[ [ [ [ #Pwats. 00w« muts, ) - ot (1 - ijsou -s)dt)
0

IIr R4 R
x A0s(x — Y)Ji(k) dk dx dy ds].
Then

B4 < CE j j j|u9(t, %) — (S, X)|1Ax@5(x — Y)W(s, Y)pe, (t — $)i(k) dk dx dt dy ds | +O(6o)
r R4 R

S=

o

T T

< CE I H|ug(t X) = wa(s, Vs, (t — 5) dx dt ds| + 0(80)
S 80 0 Ks

1

T
< CE J lug(t + Bor, x) — u(t, )|p(=r) dx dtdr] +0(80),
720 0 K;

where K5 ¢ RY is a compact set depending on 1 and 8.

Note that
T

lim J Jlug(t + 601, x) — ug(t, x)|dxdt — 0
8010
0 Ks
almost surely for all r € [0, 1]. Therefore, by the dominated convergence theorem, we have

Jim 1o = B[ [ [ [ #Fuo(s. 0. 8esx = ybls, )i = Tuls, )~ ) dkdx dy s
Iy R4 R

Moreover, one can use the property of convolution to conclude

lim lim I = IE[J J ngﬁ(v(s,x), k) Axos(x — y)P(s, Y)]i(ues(s,y) — k) dk dx dy ds].

k—0 §,—0
IIr R4 R
Passage to the limit as | — 0: Let

By = B j j j B (uo(s, ), K)Axs(x ~ V(s Vi(ue(s, y) - k) dk dx dy dis |

II7 R4 R
_ ]E[ J J P (ua(s, x), uc(s, y)Aros(x — Y)(s, y) dx dy ds]
Iy R4
- ]E[ J J J(‘pﬁ(”"(s’ X), k) = dP(ug(s, %), ue(s, ¥)))Axos(x = Y)P(s, y)
IIr R4 R

x Ji(ue(s, y) — k) dk dx dy ds].



DE GRUYTER I. H. Biswas, A. K. Majee and G. Vallet, Degenerate parabolic PDE with Lévy noise =— 829

Note that forall a, b, c € R,
I¢p(a,b)—¢’8(ayc)| <C@+la-bDlb-cl. (4.6)

Therefore, by (4.6) we have

IB,] < CIEH j j(l (5, 1) ~ kDIue(5, ¥) — Kllx050x = Y)I(s, ¥) x i(ue(s, ) - K) dkc dx dy ds
IIr R4 R

< Cl{l + (sup sup E[[lug(t)l3])? + (sup sup 1E[||ug(t)||§])?} —0 asl—O0.
6>0 t>0 e>0 t>0

One can justify the passage to the limit as € — 0 and 6 — 0 in the sense of Young measures as in [2, 5]
and conclude

tim lim B[ [ [ ¢ (uo(s. ), ue(s. y)res(x -y, y) dx dy ds

Iy R4

= IE[HJ Il j j (;bﬁ(ﬂ(s, X, Y), u(s, y, 0))Axos(x — Y)Y(s,y) dy da dx dy ds].

This proves the first part of the lemma.
To prove the second part, let us recall that

Js = —]E[ I J JB'(us « T — V(D) * T)Vy 9.5, Ji(us(t, x) — k) dk dx dt dy ds].
InrIIr R

A classical property of Lebesgue points and convolution yields

lim lim J; = - j j Jﬁ’(us(s, ) = OV (ue(s, 1)) ¥y (5, Y)s(x - )] x Jilwt(s, x) ~ ) dk dx dy ds|.

k—0 §,—0
IIr R4 R

Recall that ¢#(a, b) = j; B'(s - b)¢'(s) ds. Making use of Green’s type formula along with the Young measure
theory and keeping in mind that u(s, y, a) and (s, x, y) are Young measure-valued limit processes associated
with the sequences {u.(s, y)}es0 and {ug(s, x)}e-0, respectively, we arrive at the following conclusion:

11
lim lim lim lim 1 =EU”IB v, ), (s, x, )M [, ~y)| dydadxdyds).
im lim }fgxgnééginols OO¢ (u(s,y, @), u(s, x, y)Ay [(s, y)os(x - y)] dy da dx dy ds

IIr R4
This completes the proof of the lemma. O

Next, we want to pass to the limits in (J¢ + J7) and Is, respectively. A slight modification of an argument used
in [2, 3, 5] yields the following lemma.

Lemma 4.6. It holds that

lim lim lim (/5 +J7) = —E[Hj | PPets, ), wots. ) - 9, 5. v)esx - )] dxdy ds|
T R4

£—0

- —IE[ j J Jl FP(u(s, y, @), ug(s, X)) - Vy [Y(s, y)os(x - y)] da dx dy ds]
IIr R4 O

=0, —IEU J jl fFﬁ(u(s, Y, @), u(s, x,y)) - Vy[Y(s, y)os(x — y)| dy da dx dy ds]
00

Iy R4

and

11
lim lim lim lim lim I5 = —IE[J J J JFﬁ(ﬂ(s, X, ¥), U(S, y, ) - Ve[0s(x — y)i(s, y)] dy da dx dy ds].
60—0e—01—0x—06,—0 T b b

T R
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In view of the above, we now want to pass to the limit as (9, §) — (0, 0). We follow a line of argument similar
to the proof of the second part of [5, Lemmas 5.7 and 5.8], and arrive at the following lemma.

Lemma 4.7. Assume that9 — 0,8 — 0 and § — 0. Then

lim lim lim lim lim lim lim lim [(J¢ + J7) + I5]
9—06—0 8,0 10 £10 -0 k=0 §o—0

11
j ”F(u(s Y, ), (s, y,y) - Vyy(s,y)dydadyds|.
IIr 0 0

We now focus on I7 + Jg and establish the following lemma.

Lemma 4.8. For fixed § > 0 and B, it holds that

limsup |I; +]Jg| =
(0,¢,1,x,60,)—0

Proof. Note that

sl < elBIoo| | [ 19t = (s, YUy (5. Y)os(x - )] dy dx s
Ilr R4

< ellﬁ’lloolE[ J JT ley(ug = Toe(t, Y|V [(t, y)os(x — y)]| dx dtdy]

lyl<K O R
< C(ﬁ)g%(EH £V, (e * Te(t, y))2 dy dt]);(lE“’ JlVy[!,l)(t, y)esx - )] dx dtdyD%
Il K Iy

T
< C(B. ¥, )} (supE [1e | [Iwuctenr dyatl])” < cp.w. o)e,
0 R4

where the second line follows by the Cauchy-Schwarz inequality. Similarly, we have |I7] < C(B, ¥, 5)61/2,
This completes the proof. O

Next we consider the stochastic terms I3 + J5. To this end, we cite [5] and assert that for two constants

T1, T > 0with T; < T,
T,

]E[XTl J j J(t, 2) N(dz, dt)] -0, (4.7)

T, E

where J is a predictable integrand and X is an adapted process.
For each B € C®(R) with B’, 8" € Cp(R) and each non-negative ¢ € C® (I, x [o,), we define

T
M[B, @](s;y, V) := JJ j Blug(r, x) + n(x, ug(r, x); ) = v) = Blug(r, x) - v)} x @(r, x, s, y) dx N(dz, dr),
0 E R4

where0<s< T, (y,v) € R? x R. Furthermore, we extend the process u; * Ty(-, y) for negative time simply
by ue * Tx(s, y) = uc(0, -) * T(y) if s < 0. With this convention, it follows from (4.7) that
B[ [ | MIB. gs.)(siy Iitue(s - 60.) - v) dy dsdv] = 0
Ry HT
and hence we have J3 = 0 and

I = IEH j MIB, 95,5153 v, VUi(ite * Tx(5,¥) = V) - Ji(te * (s — 60, y) - V) dydsdv].  (4.8)
R Iy
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Our aim is to pass to the limit into the stochastic terms I3 + /3. This requires the following moment
estimate of M[f, ¢s,s,], @ proof of which can be found in [5].

Lemma 4.9. Lety € C®(R) be a function such thaty' € CX(R) and let p be a positive integer of the form p = 2k
forsome k € N.If p > d + 3, then there exists a constant C = C(y', y, 8) such that

o', v, 9)
S::E ( ["M[Ys (Pé 50](51 ) )||L°°(Rd><]R ]) = W

>

and the following identities hold:
oOvMly, 9](s; y,v) = M[-Y', 9](s; ¥, ),
Oy, M[y, @](s; y,v) = M[y, 9y, 9] (s, v).

Lemma 4.10. It holds that

lim lim lim I3 = [ J {ﬁ(ug(r, x) + n(x, ug(r, x); 2) — ug(r, y) — n(y, ue(r, y); 2))
-0 k—0 §,—0
My R E

= B(ug(r, x) = ue(r, y) = n(ys ue(r, y); 2)) + Bug(r, x) - ue(r, y))
= B(ug(r, ) + n(x, up(r, x); 2) - ue(r, y))}l/)(r, Y)os(x - y) m(dz) dx dy dr|.
Proof. Note that u, * 7«(-, y) satisfies forall y € R4,

dug = Ty(s, y) = div(f(ue) = 1x(s,¥)) ds + A(P(ue) = Ti(s, y)) ds

+ ebue * Tul(s, y) ds + j(m - Ug; 2) * Tu(s, y)) N(dz, ds).
E

Now apply the Itd—-Lévy formula on J;(ug * T4(s, y) — v) to get

Ji(ug = T(s,y) = v) = Ji(ug * T4(s — 60, y) — V)
S

= J J1(ue = T(0, y) = V)(div(f(ue) * (0, ) + €AUe * Ti(0, ) + AP(ue) * (0, y))) do

5—60

+ ]l(ue £ Tx(0,9) + (-, Ues 2) * T(0, ) = V) = Ji(ute * T(0,Y) - v) ) N(dz, do)

$—00

+

ov,'—m o,'—am

1
H (1= D) (g * Te(0,Y) — v+ A+ s 2) % To(0, Y)))
E A=0

x (-, ug; 2) * (0, ))? dA m(dz) do

S— A=0

0

= —% J (div(f(ue) * Tx(0, ¥)) + eA(Uue * Tx(0, ) + A(P(ue) * Tx(0, ¥)))1(Ue * Ti(0,y) - V) do
=8

S

(Iz(ug # Toe(0, ) + (M-, Ug; 2) * T(0,Y)) = V) = Ji(ue * T(0, ) - V))N(dz, do)

+
L—u °

(<]

oy —

1
j(l NI (e * T(0,Y) = v+ A0I(-  ts3 2) * T(0,Y))

+
—

>

s=60 E

x (-, ug; 2) * Tx(0, y))? dAm(dz) do.
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Therefore, from (4.8) and Lemma 4.9 we have

S

I = —IEU jM[ﬁ’, 05.0,)(53 %) j it * T(0,y) = V) div(f(ue) * 7x(0, y)) do ) ds dy dv

R HT 5—60

-E

—_—

[ M1, sl ([ 7ot = 70, y) = VIEhue = o,y dor) ds dy ]

0

>

S—

3

—_—

M[B', 9s,5,1(S; Y, V)(

T S—

”EJ]U

it * T(0,Y) ~ VM) * T4(0, ) do ) ds dy dv

0

R
R

|

>

J’ I(B(ug(r, X) + n(x, ug(r, x); z) — v) — B(ug(r, x) - v))
R

Or 8o R E

Ui * T(r, y) + 0(- s Ue3 2) * Te(1,y) = V) = Ji(ue * Tx(r, y) = V)
% poy (r = S)(s, y)os(x — y) m(dz) dx dr dv dy ds]

+ UJM[B $5,6,1(s; y,V) JS
8

J j T (ue * T(0, y) = v + A((+ , ug; 2) * T(0, Y)))
R IIp s—6o E

A=0

0

x (1= N)1(-, e 2) * Tx(0, y))? dAm(dz) da} dy ds dv]
= AVE(8, 60) + ASVE(S, 80) + AYE(B, 80) + BELK + AXE(8, 8).

Note that A(ug * 7,) € L2(Q x II7) for fixed k and e. One can use Young’s inequality for convolution and
replace ug by u, * 7, to adapt the same line of argument as in [5] and conclude

APYE(8,80) 5 0, ASM4(8,80) >0, A8, 80) -0, AYM(5,60) >0  aséy— 0.

Again, it is routine to pass to the limit in B&!¥ and arrive at the conclusion that

lim lim lim B&'X = JEH J Hﬁ(ue(r, x) +n(x, ug(r, x); 2) — ue(r, y) = n(y, ug(r, y); 2))
-0 x—0 §,—0 i i
T R

- B(ug(r, x) — ue(r, y) = n(y, ue(r, y); 2)) + B(ug(r, x) — ue(r, y))
~ Blua(r, ) + n(x, ua(r, )5 2) = ue(r, ) (1, Y)os(x - y) m(dz) dx dy dr |.
This completes the proof. O

Let us consider the additional terms I + J4. A line of arguments similar to the ones in [2, 3, 5] and classical
properties of convolution yield the following lemma.

Lemma 4.11. It holds that

lim lim lim J, = IEH J J jl (1 =DB" (ue(s, y) — ug(s, x) + An(y, uc(s, y); 2))

1—-0 x—0 §,—0
IIr R4 E A=0

x N2, Ue(s, ); 2)W(s, ¥)os(x — y) dA m(dz) dx dy ds

and

1

lim lim lim I, = ]E[ J J J I (1 =" (ug(s, x) — ue(s, y) + An(x, ug(s, x); z))

1—0 k—0 §,—0
Iy R4 E A=0

X nz(x, up(s, x); 2)Y(s, x)ps(x - y) dAm(dz) dx dy ds |.
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Now we add these terms (cf. Lemma 4.11) with the terms resulting from Lemma 4.10 and have the following
lemma.

Lemma 4.12. Assume that 9 — 0%, 6 — 0 and 9-16% — 0*. Then

lim sup lim sup[lim lim hm ((13 +]3)+ Iy +J4))] =
9—0+, §—0*, 9-162-0+ 0,e—0 1-0k—06

Proof. In view of Lemmas 4.10 and 4.11, we see that

lim hm hm ((13 +J3) + (I4 +J4))

-0 x—0
= ]E[ J J(I{B(ue(t, X) — ug(t, y) + n(x, up(t, x); z) — Ny, us(t, y); 2))
Orrd E
- (’T(X’ ug(t, x); z) — n(y, ue(t, y); Z))ﬁ’(ug(t, x) — ug(t, y))
- Bua(t, )~ ue(t, y))} m(d2) (e, y)os(x - y) dx dy dt]

1

:EH J(J J b2(1—‘r)ﬁ//(a+Tb)d‘l’ﬂl(dZ))l/)(t,y)Q(;(X—y) dxdydt], (4.9)

Iy rd E 7=0
where
a=ug(t,x)—uc(t,y) and b =n(x,ug(t,x);z) - ny, u(t,y); z).

By using arguments similar to the ones used in the proof of [5, Lemma 5.11], we arrive at

lim lim hm ((13 +13)+ Uy +7J4) < CL(9+ 9716 T,

1—0 k—0

where the constant C; depends only on i and is in particular independent of e. We now let § — 0, § — 0 and
97162 — 0, yielding

limsup  limsup(lim lim hm L (I3 +]3) + Iy +J4))] <
9—0,6—0,9-162—0 0,e—0 -0 k—0§

This concludes the proof as
lim lim lim ((13 +J3)+ U4 +]4)) 20,

-0 k=0 §,—0

thanks to (4.9). O

We now turn our attention back to the terms which are originating from Lemmas 4.2 and 4.5. To this end,
define

u(s,y,@) u(s,x,y)

J{::—ZEH jjj ( JU B”(o—r)\/d)’(r)dr)\/mdo

X
=7
<
<
<
=
<=
w
<
=}
<N
)
|
=
QU
<
Q
1S
Qu
=
Q
<
QU
2

11
j j PPu(s, x, ), u(s, Y, @)x0s(x ~ YY(s, y) dy dadx dy ds |
00
11
Il

PP (s, y, a), a(s, x, YA [Y(s, y)os(x —y)] dy da dx dy ds]
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11
= J JJ 2Ip(u(s, x, y), u(s, y, (x))+¢ﬁ(u(s X, ¥), u(s, y, a))
Iy RI 0 O

+ PP (uls, y, @), (s, x, ) (s, y)Ay0s(x — y) dy da dx dy ds

11
+E J J ” 2Ig(u(s, y, @), u(s, x, y)) + 2¢P (u(s, x, y), u(s, y, @)))
00

IIr R4

x Vyip(s,y) - Vyos(x —y) dy da dx dy ds]

11
+E J J ”(ﬁﬁ(u(s v, @), (s, x, ¥))Ay(s, y)os(x — y) dy da dx dy ds
Iy RA 0 O

Ej‘fl +g‘fz +f}f3,

where

b a
Ig(a, b) = J j,B”(y - 0)\¢'(0)do\¢'(u)du foranya,b € R.
apu

Our aim is to pass to the limit in { as (9, ) — (0, 0). For this, we need some a priori estimates on Ig(a, b).
Here we state the required lemma whose proof can be found in [3].

Lemma 4.13. The following holds:

b b
Ig(a, b) = Ig(b,a) and Ig(a,b)= —% I Iﬁ"(a - ﬂ)\/(l)Tu)\/mdu do,
B (- 0)[\9' (W) - \¢' ()] dp do.

D e, o

b
2Ig(a, b) + (j)ﬁ(a’ b) + (].')ﬁ(b, a) = % J

Moreover, if \/¢" has a modulus of continuity wg, then
2Ig(a, b) + pP(a, b) + pP(b, a) < CIb - al lwy (1))

and
2Ig(a, b) + $P(b,a) < C|b - al I(u¢(|.9|)|2 + Cmin{29, |b - al}.

We now shift our focus back to the expression 3 and prove the following lemma.

Lemma 4.14. It holds

o, 6 —»(OO

© —

1
[1¢uts.y. @ - gtacs. v, I, wis. y) dy dady ds|.
HT 0

Proof. Let wg be a modulus of continuity of 1/¢’. Then, thanks to Lemma 4.13, we obtain

11
190, < CEH j j j|w¢(|9|)|2|u<s,y, @) = (s, %, Y)IW(s, V)Iy0s(x - )| dy dardx dy ds |
IIr R4 0 O

9 2
C(¢)|w¢(| DI
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and

11
191 < CE| j ”|w¢<|8|>| (s, y, @) — (s, x, Y| 19,15, )| IVy@6(x - y)| dy da dx dy ds
IIr R4 0 O

+1EH j CIV, (s, y)| IVy0s(x - y)| dx dy ds

Iy R4
we(ID> .9
C(l/))| ¢(| DI CE'
Hence, we have , 5
lwe(19))] lwe(19D)] 9
191 + 3] < Cp)—L + C)— + .

Put § = 92/3. Then, by our assumption (i), we see that

lim (H;+H)=0
(9,6)—(0,0)

To conclude the proof, it is now required to show

lim
(9,6)—(0,0)

-[ | jl jl|¢(u(s,y, @) - Bu(s, v, VI, (s, y) dy dady ds|,
00

which follows easily from the fact that (a, b) — |¢(a) — ¢(b)| is Lipschitz continuous and that
|¢53(a, b) - |p(a) - p(b)|| < C9 foranya,b € R. O
The following proposition combines all of the above results.

Proposition 4.15. Let ii(¢, x, y) and u(t, x, a) be the predictable process with initial data v(0, x) and u(0, x),
respectively, which have been extracted out of Young measure-valued sub-sequential limits of the sequences
{ug(t, x)}g>0 and {ug(t, x)}es0, respectively. Then, for any non-negative H' ([0, co) x RY) function (¢, x) with
compact support, the following inequality holds:

1
0< ]E[leo(x) uo(x)[1(0, x) dx +]E J J lia(t, x, y) — u(t, x, a)|osY(t, x) dy da dx dt
R4 Iy 0

o'—aH

- IE[H[ j j Fu(t, x, a), i(t, x, y)) - Va(t, x) dy da dx dt]

- IE[ j v(jl Jllqb(u(t, X, @) - p(a(t, x, y)| dy da) V(¢ x) dx dt]. (4.10)

Or 00

Proof. First we add (4.2) and (4.3) and then pass to the limit lim, o lim;_,¢ lim,—,o lims, | 0. Invoking Lemmas
4.2,4.3, 4.4,4.5, 4.6, 4.8 and 4.12, we put § = 92/3 in the resulting expression and then let 9 — 0 with the
second parts of Lemmas 4.3 and 4.4. Keeping in mind Lemmas 4.7, 4.12 and 4.14, we conclude that (4.10)
holds for any non-negative test function ¥ € C2([0, c0) x R%). It now follows by routine approximation argu-
ments that (4.10) holds for any ) with compact support such that 1) € H'([0, co) x R?). This completes the
proof. O

Remark 4.16. Note that the same proposition holds without assuming the existence of a modulus of conti-
nuity for ¢’ if 17 is not a function of x. Indeed, it is possible to pass to the limit first in the parameter 9, then &,
in Lemmas 4.3, 4.4, 4.7 and 4.12. Thus, if one assumes that 7 is not a function of the space variable x, it is
also possible to pass to the limit first in the parameter 9, then §, in Lemma 4.12 since one would have

lim lim lim ((I3 +J3)+ Iy +J4)) € C19T

-0 xk—0 §,—0

in its proof. Then the result holds following the first situation on [3, p. 523].
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Our aim is to show the uniqueness of u(t, x, «) and i(t, x, y). To do this, we follow the ideas of [1, 3], and
define for each n € N,

1 if |x| < n,
(I)n(x) = n% .

—— if [x| > n,

| x|

wherea = % + Zinwhich & > 0 could be chosen in such a way that ¢, € L2 (RY). Also, for each h > 0 and fixed

t > 0, we define
1 ifs<t,

Phis) = 1—% ift<s<t+h,
0 ifs>t+h.
A straightforward calculation revels that

¢n(X) X

—Lysn €L (]Rd)d
Xl x|

Vpn(x

Apn(x) = a(2 + 2& - a) d)I;lcT;() e L*({Ix| > n}).

Clearly, (4.10) holds with (s, x) = (,bn(x)l/)fl(s). Thus, for a.e t > 0, we obtain

t+h

1
% j J’J‘ lu(s, x, a) = u(s, x, y)|pn(x) dy da dx | ds
a0

J

{|x|>n}

'——'n—\

1
|
T 1
<B[[ [ ][ b xan- g x isgaoowis) dy dadx ds]
0 0

11
—IE J JjF(u(s X, ), 4(s, x,y)) - Vo (x) 1/)h(s)dydadxds]
00

{Ix|>n}

—]E

—

11
P (s) j j|¢(u<s, X, @) = (E(s, X, Y)IVeba(x) - T dy da ) s |
00

o{lx|>n}

+E| [ Vo) - uo(0)ln(x) dx]. 4.11)

B Oy O—y o

Since V¢, (x) - it = & > 0 on the set 0{|x| > n}, we have from (4.11),

t+h 1

1

h J J lu(s, x, a) — u(s, x, Y)|¢n(X)dydadx] ds
]Rd

1

|

T 11
iy Pn(x) . t

J J J a2 +2&-a) [p(uls, x, a)) — p(u(s, x, y)p,(s) dy da dx ds]

0 { 0

o] [ []e%
<[ |

{Ix|>n}

F(u(s X, ), u(s, x,y)) - |l,l)ﬁl(s) dy da dxds]

{Ix|>n}

[Vo(x) — up(x)[¢n(x) dX]. (4.12)

R4
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Note that |F(a, b)| < cfla - b| forany a, b € R. Since ¢ is a Lipschitz continuous function and n > 1, inequal-
ity (4.12) gives

t+h

% j Hljlw(s,x, &) — (s, X, Y)|pn(x) dy da dx| ds
a0 0
|

t
< CE J J lu(s, x, a) — (s, x, y)I(;l)n(x)l/);l(s)dydadxds]+E[I|v0(x)—u0(x)|¢n(x)dx.
Mr [0,1]2 R4

Now passing to the limit as h — 0, and then using a weaker version of Gronwall’s inequality, we obtain for
a.e. t>0,

B[ | H'““ % @) = (Va0 dy dadx] < TE[ [ 1vo(0) - uo00lghn (0 x|
00

R4

Thus, if we assume that vo(x) = ug(x), then we arrive at the conclusion
11
J leu (t, x, @) — u(t, x, y)|dpn(x) dydadx]
a0 0

which says that for almost all w € Q, a.e. (¢, x) € (0, T] x R4 and a.e. (a, y) € [0, 1]2, we have the equation
u(t, x, «) = u(t, x, y). On the other hand, we conclude that the whole sequence of viscous approximation con-
verges weakly in L2(Q x II7). Since the limit process is independent of the additional (dummy) variable, the
viscous approximation converges strongly in LP(Q x (0, T); LP(©)) for any p < 2 and any bounded open set
0 c R4,

4.2 Existence of an entropy solution

In this subsection, using the strong convergence of the sequence of viscous solutions and the a priori bounds
(3.17), we establish the existence of an entropy solution to problem (1.1).

Fix a non-negative test function ¢ € C°([0, co) x RY), B € Fr and a convex entropy flux triple (B, (, v).
Now apply the It6-Lévy formula (3.1) and conclude

E[lB J B (ue(t, X))V G ue (£, X)) 2(t, x) dx dt]

Iy

< IE[lB Jﬂ(ug(o,x))l,b(o,x) dx] —eIE[lB j B! (ue(t, X)) Vuie(t, X) - Vib(t, x) dx dt]
Ir

R4

+E :13 I (Blue(t, X))dp(t, X) + V(e (t, X)AY(E, X) — Vip(t, X) - {(ue(t, 1)) dx dt]
IIr
J-IR

x P(t, x) dO dx m(dz) dt|. (4.13)

+E 13 n(x, ug(t, x); 2)B' (ue(t, x) + On(x, ue(t, x); 2))(t, x) do dx N(dz, dt)]

w_

+E 1B (1 - 0)n2(x, ug(t, x); 2)B" (ue(t, ) + ON(x, ue(t, x); 2))

[l
|

o-—_ﬂ o-_‘

%

Let the predictable process u(t, x) be the pointwise limit of u(t, x) for a.e. (t, x) € (0, T) x R almost surely.
One can now pass to the limit in (4.13) (same argument as in [5]) except the first term. The pointwise limit of
ug(t, x) is not enough to pass to the limit in the first term of the inequality because u. is in a gradient term.
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For this, we proceed as follows: Fix v € L2(Q x II7). Define

fe = B (uelt, XDp(t, 015 and g, = VG(ue(t, X)).

Note that f; is uniformly bounded and g, — g = VG(u(t, x)) in L2(Q x II7). Also, f. converges to f pointwise
(up to a subsequence), where

£ = VB (ult, ) (t, X)1p.

Ifevl < \IB" oo (t, X)IV(E, X))

and the right-hand side is L? integrable, one can apply the dominated convergence theorem to conclude
fev — fv in L?(Q x II7). Moreover, we have f.g. — fg in L?>(Q x II7), and therefore, by Fatou’s lemma for
weak convergences,

Since

IE[lB Jﬁ”(u(t, X))IVGu(t, )2t x) dx dt]

Iy
< limlgnflE[lg J B (ue(t, x))|IVG(ug(t, x)12P(t, x) dx dt].
&
Iy
Thus, we can pass to the limit in (4.13) as € — 0 and arrive at following inequality:

E[15 [ B (e 0)VGu(t, 0)PY(e, 0 dxde] ~ E[ 15 | Buao0onp(©, x) dx]

Ir R4

E[lB j (ﬁ(u(t, X)O(E, X) + v(u(t, X\)AY(E, x) — ViP(E, x) - {ue(t, x))) dx dt]

Ir

n(x, u(t, x); 2)B' (u(t, x) + On(x, u(t, x); z))P(t, x) d6 dx N(dz, dt)]

(1 - 0)n*(x, u(t, x); 2)B" (u(t, x) + On(x, u(t, x); z))

x P(t, x) dG dx m(dz) dt|. (4.14)

We are now in a position to prove the result of existence of an entropy solution for the original prob-
lem (1.1).

Proof of the theorem 2.5. The uniform moment estimate (3.17) together with a general version of Fatou’s
lemma give

sup Ellu(t,-)I3] <co and VGl
0<t<T

QxIly) < 00.

For any 0 < 3 € CX([0, 00) x RY) and any given convex entropy flux triple (B8, {, v), inequality (4.14) holds
for every B € Jr. Hence, the inequality

J Buo(x))p(0, x) dx + J Bu(t, x))os(t, x) dx dt + J v(u(t, x))Ay(t, x) dx dt - J Vip(e, x) - {(u(t, x)) dx dt

R4 Iy My Iy

1]

J J n(x, u(t, x); 2)B' (u(t, x) + n(x, u(t, x); 2))P(t, x) d6 dx N(dz, dt)
R4 O

+
[ L —

1
j(l - 0N (x, u(t, x); 2)B" (u(t, x) + On(x, u(t, x); 2))P(t, x) d dx dt m(dz)
T 0

> J B (u(t, x))|VG(u(t, x))|*P(t, x) dx dt
Ir
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holds P-almost surely. This shows that u(t, x) is an entropy solution of (1.1) in the sense of Definition 2.2.
This completes the proof. O

We now close this section with a sketch of the justification of our claim in Remark 2.7. To see this, let hs
denote a smooth even convex approximation of | - [P defined for positive x by the following: hs vanishes at 0,
and uniquely recovered from its second-order derivative defined as hg’ (x) =xP~2if x € [0, %] and 1/6P72 if
x> %. Itholds that O < hs(x) ~ h(x) = Kp|x|?, and there exists Cp such that 0 < hg’ (x) < Cph(x). Furthermore,
it is easily seen that

Ry (x +y) < Cp(hf (X) + Ry (y)).

Note that the weak Ito-Lévy formula in Theorem A.1 makes sense for B = hs as hy is bounded. This
enables us to write, for almost every ¢ > 0,

¢
E j hs(ue) dx — E j hs(uo) dx + EJ’ I(¢'(u€) + €y (ue)Vuel* dx dt
0

R4 R4 R4

t
h EJ j j(hé(ue +1(X, Ue; 2)) — hs(ue) — n(x, ue; 2)hi(ue)) dx m(dz) dt.
0E

R
t
:EI
0

We can now use the properties of hs and the assumptions on 1 to arrive at

1
j(l — 0) (%, e 2))2 R (ue + On(x, e; 2)) dO dx m(dz) ds.
0

S —

R4

¢
E j hs(ue) dx < E J hs(uo) dx + C,,Eb[ j(l +ud)hy (ue) ds

R4 R4 R4

t
<E J luplP dx + KUEJ. hs(ue) ds,
RY 0 Rd

and, by a weak Gronwall inequality,

E j hs(ue) dx < eXi'E Jluolp dx
Rd Rd
for almost all t. This implies
E j|u€|l’ dx < e“'E J|u0|P dx
R4 R4

by the monotone convergence theorem. The solution u will inherit the same property by Fatou’s lemma.

If up is bounded and n(x, u; z) = 0 for |u| > M, with given M, then consider the non-negative regular
convex function x — h(x) = [(x + K)~]% + [(x — K)*]?, where K = max(M + M1, |[uolleo). Since h(ug) = O and h
vanishes where 7 is active, It&’s formula yields

E th(ue)l dx=0
R4

and u is uniformly bounded by K. Again, the solution u will inherit the same property by passing to the limit.

5 Uniqueness of the entropy solution

To prove the uniqueness of the entropy solution, we compare any entropy solution to the viscous solution
via Kruzhkov’s doubling variables method and then pass to the limit as the viscosity parameter goes to zero.
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We have already shown that the limit of the sequence of viscous solutions serves to prove the existence of
an entropy solution to the underlying problem. Now, let v(t, x) be any entropy solution and let u,(¢, x) be
a viscous solution for problem (3.1). Then one can use exactly the same arguments as in Section 4, and end
up with the following equality:

IEH Jllu(t, % @) = v(t, X)ln(x) dax dx] -0
R

d0

This implies that, for almost every t € [0, c0), one has v(t, x) = u(t, x, a) for almost every x € R? and
(w, a) € Q x (0, 1). In other words, this proves the uniqueness of the entropy solution.

A Weak Ito-Lévy formula

Let u be an H!(R9)-valued F;-predictable process and assume that it is a weak solution to the SPDE

du(t, x) — A¢(u(t, x)) dt
= divy flu(t, x)) dt + J n(x, u(t, x); z) N(dz, dt) + eAu(t, x)dt, t>0, x € RY. (A.1)

E
In addition, in view of (3.7), we further assume that u € L2((0, T) x Q; H'(R?)). Moreover, u satisfies the

initial condition ug € L?(R?) in the following sense: P -almost surely

h

tim = | j u(t, )90 dx = [ uo(0p0x) dx (A.2)

0 R R4
for every ¢ € C‘CX’(IRd ). We have the following weak version of the It6—Lévy formula for u(t, - ).

Theorem A.1. Let assumptions (i)—(v) hold and let u(t, - ) be an H*(R%)-valued weak solution of equation (A.1),
as described in Section 3.1.3, which satisfies equation (A.2). Then for every entropy triplet (8, {,v) and
Y e Ci’z([O, 00) x RY), it holds P-almost surely that

[ B w0 ax - [ B, x)wio, x dx

R4 R4
= J Bu(t, x))osY(t, x) dx dt - I Vip(t, x) - {(u(t, x)) dx dt
Iy Iy
+ J J n(x, u(t, x); 2)B' (u(t, x) + On(x, u(t, x); 2))(t, x) d6 N(dz, dt) dx
My E

(1 - 0)n?(x, u(t, x); 2)B" (u(t, x) + On(x, u(t, x); 2))P(t, x) d0 m(dz) dx dt

!
gl

By —

(eV(t, X).VBu(t, x)) + B’ (u(t, X)) |Vxu(t, x)|1*(t, x)) dx dt

E‘E_

o' (u(t, )" (u(t, x)|Vu(t, x)|*(t, x) dx dt + J v(u(t, X))Ap(t, x) dx dt
T Iy

=

for almost every T > 0.
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Proof. Let {Ty} be a standard sequence of mollifiers on R<. Then for every p(-) € C1((0, T)) we have that

T T T
- J u(s, ) * Tep'(s) ds = Jp(s)A(qb(u(s, ) % i) ds + J'p(s) dive(fu) = 7x) ds
0 0 0
T T
+ I Ip(s)(n(x, u, z) = 7x) N(dz, ds) + € J A(u = Ti(s, x))p(s) ds (A.3)
0E 0
holds P-almost surely. For every n € IN, define
) ‘ 1
ns ifo<s< —,
n
; 1 if 1 <s<t,
pn(s) = n

. 1
1-n(s-t) 1ft+;>szt,

0 elsewhere.

It follows by standard approximation arguments that (A.3) is still valid if we replace p( - ) by p, (- ). Afterwards,
we invoke the right continuity of the stochastic integral and standard facts related to Lebesgue points of
Banach space valued functions to pass to the limit n — co and conclude that, for almost all ¢ > 0,

t t
u * Tp(t,-) — Up * p = JA(d)(u(s, 2)) * Tk) ds + Jdivx(f(u) % Ty) ds
0 0

t t
+ J J(rl(x, u,z) * 7x) N(dz, ds) + € J A(u * T4(s, x)) ds
0 E 0
holds P-almost surely. Above, we have used that the weak solution satisfies the initial condition in the sense
of (A.2). Let 8 be the entropy function mentioned in the statement and let i be the test function specified.
Now we apply the It6—Lévy chain rule to S(u * 7 (¢, - )) to have, for almost every ¢ > 0,

t
Bu = Tilt, ) = Buo * pi) + jﬁ’(u « Tr(t, NA(PU(s, ) * i) ds
0

+

O~

t
B'(u # Ti(t, ) divi(f(u) * 74) ds + € I B’ (u x Tr(t, - ))Au * Ti(s, X)) ds
0

+

O~

J(ﬁ(u * T+ N0, u, 2) * Tx) - B(u * 7)) N(dz, ds)
E

+

—

J(B(u * T+ N6 U, 2) * Tx) = Bu * T) - n(x, u, 2) * Txf' (u * 7)) m(dz) dt
0F

P-almost surely. We now apply the It6—-Lévy product rule to S(u = Tx)i(t, x) and integrate with respect to x
to obtain for almost every T > O,

T
J Bu = (T, x))P(T, x) dx = I Buo * pr)Y(0, x) dx + J J Bu = tr)osP(s, x) dx ds
0

R4 R4 R4

B’ (u = Ti(s, )A(P(us, -)) * Ti)W(s, x) dx ds

R4

B’ (u * Ti(s, ) divye(f(u) * T, (s, x) dx ds

R4

Qe O—
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T
+ ej J Y(s, X)B'(u + Ti(s, - ))A(u * Tx(s, x)) dx ds
0 Rd

I
I

R

(s, X)(Bu = Tk + n(x, u, 2) * ) — B(u * 7)) dx N(dz, ds)

o L R—

Y(s, x) B(u * T+ (X, U, 2) * T) — P * T) — (X, u, 2) * TS (u * ‘rk)) m(dz) dx ds (A.4)

s L E—

almost surely. Note that u = 7(T, ) — u(T,-) and ug * Tx — uo in L2(Q x RY) as k — 0. Therefore, by the
Lipschitz continuity of 8, we have

j B * T(T, X)(T, x) dx — j BQu(T, )P(T, x) dx

R4 R4

and
j Bluo * pP(0, x) dx — j Buo)p(0, x) dx

R4 R4

in L?(Q). By a similar reasoning,

j Bu)os(s,x)dxds ask — 0.
]Rd

T T

[ [ B rooawts, x axds — |

0 R4 0
Furthermore, note that

T
J j B # Tt - NA(Pus, -)) * TE)P(s, x) ds dx
0 Rrd

|

and Vu, Vg (u) € L?(0, T; L2(Q x R%)). Therefore,

J Vi (P(t, )B' (u * Ti(t, x))).(VPWO) * Tk)(s, X)) dx ds

R

Vi(P(t, )B' (u * Ti(t, x))) — Vi (P(t, )B' (u(t, x)))

and V(u) = Tx — V(u) in L2(0, T; L2(Q x RY)) as k — 0. Therefore,

J Vi (W(t, x)B' (u(t, x))).(Vo(u(s, x))) dx ds

o-_‘ﬂ

T
J JB (u = T (t, - NA(P(uls, -)) = Tr)P(s, x) ds dx —
0 R

in L1(Q) as k — 0. By the same reasoning,
J (s, X)B' (u * Tx(s, X))A(u * Tk(s, X)) dx ds — — J Vi(W(s, x)B' (u(s, x))).V(u(s, x)) dx ds
Iy Or

inL'(Q)ask — 0.
Also, it may be recalled that divy f(u) € L2(0, T; L2(Q x R)) and B(u * Tx) — B(u)in L2(0, T; L2(Q x RY))
as k — 0. Therefore,

[ B e, diva g = rwes, 0 drds —

Ot—
=

au
Ot—

[ B divatranmes, x axas

R
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as k — 0in L1(Q). To this end, we denote

Ii(s, z) = j (s, X)(Bu * T + n(x, u, 2) * T4) — P(u = 1)) dx,

R4

I(s, z) = J Y(s, )(B(u +n(x, u, z)) — B(u = 1)) dx.
R4
It follows from straightforward computations that
T
J Jllk(s, z) - I(s, z)|* m(dz)ds — 0 ask — 0.
0E

Therefore, we can invoke the [t6-Lévy isometry and pass to the limit as k — 0, in the martingale term in (A.4).
This completes the validation of the passage to the limit as k — 0 in every term of (A.4). The assertion is now
concluded by simply letting k — 0 in (A.4) and rearranging the terms. O
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