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Abstract:We study the equation

(−∆)su + V(x)u = (Iα ∗ |u|p)|u|p−2u + λ(Iβ ∗ |u|q)|u|q−2u inℝN ,

where Iγ(x) = |x|−γ for any γ ∈ (0, N), p, q > 0, α, β ∈ (0, N), N ≥ 3, and λ ∈ ℝ. First, the existence of ground-
state solutions by using a minimization method on the associated Nehari manifold is obtained. Next, the
existence of least energy sign-changing solutions is investigated by considering the Nehari nodal set.
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1 Introduction
In this paper, we are concerned with the equation

(−∆)su + V(x)u = (Iα ∗ |u|p)|u|p−2u + λ(Iβ ∗ |u|q)|u|q−2u inℝN , (1.1)

where p, q > 0, α, β ∈ (0, N), N ≥ 3, and λ ∈ ℝ. Here Iγ stands for the Riesz potential of order γ defined as
Iγ = |x|γ−N for any γ ∈ (0, N).

The operator (−∆)s is the fractional Laplace operator of order s ∈ (0, 1), and is defined as follows (see
[6, 15]):

(−∆)su = C(N, s)P.V. ∫
ℝN

u(x) − u(y)
|x − y|N+2s

dy,

where P.V. stands for the principal value of the integral and C(N, s) > 0 is a normalizing constant. The oper-
ator (−∆)s is referred to as the infinitesimal generator of the Levy stable diffusion process. The function
V ∈ C(ℝN) is required to satisfy one (or both) of the following conditions:
(V1) infℝN V(x) ≥ V0 > 0.
(V2) For all M > 0, the set {x ∈ ℝN : V(x) ≤ M} has finite Lebesgue measure.

Note that condition (V2) is weaker than lim|x|→∞ V(x) = ∞, as for instance V(x) = |x|4 sin2|x| satis-
fies (V2) but has no limit as |x| → ∞.

In the last fewdecades, problems involving the fractional Laplacian andnonlocal operators have received
considerable attention. These kinds of problems arise in various applications such as continuummechanics,
phase transitions, population dynamics, optimization, finance, and many others.

The prototype model of (1.1) is the fractional Choquard equation

(−∆)su + V(x)u = (Iα ∗ |u|p)|u|p−2u inℝN , (1.2)

*Corresponding author: Gurpreet Singh, School of Mathematics and Statistics, University College Dublin, Belfield, Dublin 4,
Ireland, e-mail: gurpreet.singh@ucdconnect.ie

Open Access. ©2019 Walter de Gruyter GmbH, Berlin/Boston.
This work is licensed under the Creative Commons Attribution 4.0 Public License.



G. Singh, Nonlocal perturbations of the fractional Choquard equation | 695

studied by d’Avenia, Siciliano and Squassina in [5] in the case where V is a positive constant. They obtained
the existence of groundstate and radially symmetric solutions with diverging norm and diverging energy
levels.

The case of the standard Laplace operator in (1.2) has a long history in the literature. For s = 1, V ≡ 1 and
p = α = 2, equation (1.2) becomes the well-known Choquard or nonlinear Schrödinger–Newton equation

− ∆u + u = (I2 ∗ u2)u inℝN . (1.3)

Equation (1.3) for N = 3 was first introduced by Pekar [20] in 1954 in quantummechanics. In 1996, Penrose
[21, 22] used equation (1.3) in a different context as a model in self-gravitating matter (see also [11, 16]).
Since then, the Choquard equation has been investigated in various settings and in many contexts (see, e.g.,
[1, 10, 14, 19]). For a most up to date reference on the study of the Choquard equation in a standard Laplace
setting, the reader may consult [18].

For s = 1
2 , V ≡ 1, p = α = 2, N = 3, and λ = 0, equation (1.1) becomes

(−∆)
1
2 u + u = (I2 ∗ u2)u inℝ3,

and has been used to study the dynamics of pseudo-relativistic boson stars and their dynamical evolution
(see [7–9, 12]).

In this paper, we shall be interested in the study of groundstate solutions and least energy sign-changing
solutions to (1.1). To this aim,we denote byD2,s(ℝN) the completion of C∞c (ℝN)with respect to the Gagliardo
seminorm

[u]s,2 = [ ∫
ℝN

∫

ℝN

|u(x) − u(y)|2

|x − y|N+2s
dx dy]

1
2
.

Also, Hs(ℝN) denotes the standard fractional Sobolev space defined as the set of u ∈ D2,s(ℝN) satisfying
u ∈ L2(ℝN) with the norm

‖u‖Hs = [ ∫
ℝN

|u|2 + [u]2s,2]
1
2
.

Let us define the functional space

XsV (ℝ
N) = {u ∈ D2,s(ℝN) : ∫

ℝN

V(x)u2 < ∞}

endowed with the norm

‖u‖XsV = [ ∫
ℝN

∫

ℝN

|u(x) − u(y)|2

|x − y|N+2s
dx dy + ∫

ℝN

V(x)u2]
1
2
.

Throughout this paper, we shall assume that p and q satisfy

N + α
N
< p < N + α

N − 2s (1.4)

and
N + β
N
< q < N + β

N − 2s . (1.5)

It is not difficult to see that (1.1) has a variational structure. Indeed, any solution of (1.1) is a critical point of
the energy functional Eλ : XsV (ℝN) → ℝ defined by

Eλ(u) =
1
2 ‖u‖

2
XsV
−

1
2p ∫
ℝN

(Iα ∗ |u|p)|u|p −
λ
2q ∫
ℝN

(Iβ ∗ |u|q)|u|q .

A crucial tool to our approach is the Hardy–Littlewood–Sobolev inequality
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

ℝN

(Iγ ∗ u)v
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ C‖u‖r‖v‖t (1.6)
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for γ ∈ (0, N), u ∈ Lr(ℝN) and v ∈ Lt(ℝN) such that
1
r
+
1
t
= 1 + γ

N
.

Using (1.4) and (1.5) together with the Hardy–Littlewood–Sobolev inequality (1.6), the energy functional Eλ
is well defined, and moreover Eλ ∈ C1(XsV ).

We shall first be concerned with the existence of ground state solutions for equation (1.1) under the
assumption that V satisfies (V1). This will be achieved by a minimization method on the Nehari manifold
associated with Eλ, which is defined as

Nλ = {u ∈ XsV (ℝ
N) \ {0} : ⟨E󸀠λ(u), u⟩ = 0}.

The groundstate solutions will be obtained as minimizers of

mλ = inf
u∈Nλ

Eλ(u).

Our main result in this sense is stated below.

Theorem 1.1. Assume p > q > 1, λ > 0, p, q satisfy (1.4)–(1.5), and V satisfies (V1). Then equation (1.1) has
a ground state solution u ∈ XsV (ℝ

N).

Our approach relies on the analysis of the Palais–Smale sequences for Eλ|Nλ . Using an idea from [3, 4], we
show that any Palais–Smale sequence of Eλ|Nλ is either converging strongly to its weak limit or differs from
it by a finite number of sequences which further are the translated solutions of (1.2). The novelty of our
approach is that we shall rely on several nonlocal Brezis–Lieb results as we present in Section 2.

We now turn to the study of least energy sign-changing solutions of (1.1). In this setting, we require V
to fulfill both conditions (V1) and (V2). By the result in [25, Lemma 2.1] (see also [23, 24]), the embedding
XsV (ℝ

N) 󳨅→ Lq(ℝN) is compact for q ∈ [2, 2∗s ), where 2∗s = 2N
N−2s .

Our approach in the study of least energy sign-changing solutions of (1.1) is based on the minimization
method on the Nehari nodal set defined as

Mλ = {u ∈ XsV (ℝ
N) : u± ̸= 0 and ⟨E󸀠λ(u), u

±⟩ = 0}.

The solutions will be obtained as minimizers for

cλ = inf
u∈Mλ

Eλ(u).

In this situation, the problem ismore delicate as some of the usual properties of the local nonlinear functional
do not work. For instance, since

⟨E󸀠λ(u), u
±⟩ = ‖u±‖2XsV − ∫

ℝN

(Iα ∗ (u±)p)(u±)p − λ ∫
ℝN

(Iβ ∗ (u±)q)(u±)q − ∫
ℝN

∫

ℝN

u±(x)u∓(y) + u∓(x)u±(y)
|x − y|N+2s

dx dy

− ∫

ℝN

(Iα ∗ (u±)p)(u∓)p − λ ∫
ℝN

(Iβ ∗ (u±)q)(u∓)q ,

we have in general that

Eλ(u) ̸= Eλ(u+) + Eλ(u−) and ⟨E󸀠λ(u), u
±⟩ ̸= ⟨E󸀠λ(u

±), u±⟩.

Therefore, the standard local methods used to investigate the existence of sign-changing solutions do not
apply immediately to our nonlocal setting.

Our second main result in this regard is stated below.

Theorem 1.2. Assume λ ∈ ℝ, (N − 4s)+ < α, β < N, p > q > 2 satisfy (1.4) and (1.5), and V satisfies (V1)
and (V2). Then equation (1.1) has a least-energy sign-changing solution u ∈ XsV (ℝN).

The remaining of the paper is organized as follows: In Section 2, we collect some nonlocal versions of the
Brezis–Lieb lemma, which will be crucial in investigating the groundstate solutions of (1.1). Further, Sec-
tions 3 and 4 contain the proofs of our main results.
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2 Preliminary results
Lemma 2.1 ([13, Lemma 1.1], [17, Lemma 2.3]). Let r ∈ [2, 2∗s ]. There exists a constant C > 0 such that for any
u ∈ XsV (ℝ

N) we have

∫

ℝN

|u|r ≤ C‖u‖(sup
y∈ℝN
∫

B1(y)

|u|r)
1− 2r

.

Lemma 2.2 ([2, Proposition 4.7.12]). Let r ∈ (1,∞). Assume (wn) is a bounded sequence in Lr(ℝN) that con-
verges to w almost everywhere. Then wn ⇀ w weakly in Lr(ℝN).

Lemma 2.3 (Local Brezis–Lieb lemma). Let r ∈ (1,∞). Assume (wn) is a bounded sequence in Lr(ℝN) that
converges to w almost everywhere. Then for every q ∈ [1, r] we have

lim
n→∞
∫

ℝN

󵄨󵄨󵄨󵄨|wn|
q − |wn − w|q − |w|q󵄨󵄨󵄨󵄨

r
q = 0

and
lim
n→∞
∫

ℝN

󵄨󵄨󵄨󵄨|wn|
q−1wn − |wn − w|q−1(wn − w) − |w|q−1w󵄨󵄨󵄨󵄨

r
q = 0.

Proof. Fix ε > 0. Then there exists C(ε) > 0 such that for all a,b ∈ ℝ we have
󵄨󵄨󵄨󵄨|a + b|

q − |a|q󵄨󵄨󵄨󵄨
r
q ≤ ε|a|r + C(ε)|b|r . (2.1)

Using (2.1), we obtain

|fn,ε| = (󵄨󵄨󵄨󵄨|wn|
q − |wn − w|q − |wq|󵄨󵄨󵄨󵄨

r
q − ε|wn − w|r)+ ≤ (1 + C(ε))|w|r .

Now using the Lebesgue dominated convergence theorem, we have

∫

ℝN

fn,ε → 0 as n →∞.

Therefore, we get
󵄨󵄨󵄨󵄨|wn|

q − |wn − w|q − |w|q󵄨󵄨󵄨󵄨
r
q ≤ fn,ε + ε|wn − w|r ,

which gives
lim sup
n→∞
∫

ℝN

󵄨󵄨󵄨󵄨|wn|
q − |wn − w|q − |w|q󵄨󵄨󵄨󵄨

r
q ≤ cε,

where c = supn|wn − w|rr < ∞. Further, letting ε → 0, we conclude the proof.

Lemma 2.4 (Nonlocal Brezis–Lieb lemma [17, Lemma 2.4]). Let α ∈ (0, N) and p ∈ [1, 2N
N+α ). Assume (un) is

a bounded sequence in L2Np/(N+α)(ℝN) that converges almost everywhere to some u : ℝN → ℝ. Then

lim
n→∞
∫

ℝN

󵄨󵄨󵄨󵄨(Iα ∗ |un|
p)|un|p − (Iα ∗ |un − u|p)|un − u|p − (Iα ∗ |u|p)|u|p󵄨󵄨󵄨󵄨 = 0.

Proof. For n ∈ N, we observe that

∫

ℝN

[(Iα ∗ |un|p)|un|p − (Iα ∗ (|un − u|p))(|un − u|p)] = ∫
ℝN

[Iα ∗ (|un|p − |un − u|p)](|un|p − |un − u|p)

+ 2 ∫
ℝN

[Iα ∗ (|un|p − |un − u|p)]|un − u|p . (2.2)

Using Lemma 2.3 with q = p, r = 2Np
N+α , we have |un − u|

p − |un|p → |u|p strongly in L2N/(N+α)(ℝN), and by
Lemma 2.2 we get |un − u|p ⇀ 0 weakly in L2N/(N+α)(ℝN). Also, by the Hardy–Littlewood–Sobolev inequal-
ity (1.6) we obtain

Iα ∗ (|un − u|p − |un|p) → Iα ∗ |u|p in L
2N
N−α (ℝN).

Using all the above arguments and passing to the limit in (2.2), we conclude the proof.
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Lemma 2.5. Let α ∈ (0, N) and p ∈ [1, 2N
N+α ). Assume (un) is a bounded sequence in L

2Np/(N+α)(ℝN) that con-
verges almost everywhere to u. Then for any h ∈ L2Np/(N+α)(ℝN) we have

lim
n→∞
∫

ℝN

(Iα ∗ |un|p)|un|p−2unh = ∫
ℝN

(Iα ∗ |u|p)|u|p−2uh.

Proof. By using h = h+ − h−, it is enough to prove our lemma for h ≥ 0. Denote vn = un − u and observe that

∫

ℝN

(Iα ∗ |un|p)|un|p−2unh = ∫
ℝN

[Iα ∗ (|un|p − |vn|p)](|un|p−2unh − |vn|p−2vnh)

+ ∫

ℝN

[Iα ∗ (|un|p − |vn|p)]|vn|p−2vnh + ∫
ℝN

[Iα ∗ (|un|p−2unh − |vn|p−2vnh)]|vn|p

+ ∫

ℝN

(Iα ∗ |vn|p)|vn|p−2vnh. (2.3)

Apply Lemma 2.3 with q = p and r = 2Np
N+α by taking (wn , w) = (un , u) and then (wn , w) = (unh1/p , uh1/p),

respectively. We find

{
|un|p − |vn|p → |u|p ,
|un|p−2unh − |vn|p−2vnh → |u|p−2uh

strongly in L
2N
N+α (ℝN).

Using now the Hardy–Littlewood–Sobolev inequality, we obtain

{
Iα ∗ (|un|p − |vn|p) → Iα ∗ |u|p ,
Iα ∗ (|un|p−2unh − |vn|p−2vnh) → Iα ∗ (|u|p−2uh)

strongly in L
2N
N−α (ℝN). (2.4)

Also, by Lemma 2.2 we have

|un|p−2unh ⇀ |u|p−2uh, |vn|p ⇀ 0, |vn|p−2vnh ⇀ 0 weakly in L
2N
N+α (ℝN). (2.5)

Combining (2.4)–(2.5), we find

{{{{{{{{{{{
{{{{{{{{{{{
{

lim
n→∞
∫

ℝN

[Iα ∗ (|un|p − |vn|p)](|un|p−2unh − |vn|p−2vnh) = ∫
ℝN

(Iα ∗ |u|p)|u|p−2uh,

lim
n→∞
∫

ℝN

[Iα ∗ (|un|p − |vn|p)]|vn|p−2vnh = 0,

lim
n→∞
∫

ℝN

[Iα ∗ (|un|p−2unh − |vn|p−2vnh)]|vn|p = 0.

(2.6)

By Hölder’s inequality and the Hardy–Littlewood–Sobolev inequality, we have
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

ℝN

(Iα ∗ |vn|p)|vn|p−2vnh
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ ‖vn‖

p
2Np
N+α
‖|vn|p−1h‖ 2N

N+α
≤ C‖|vn|p−1h‖ 2N

N+α
. (2.7)

On the other hand, by Lemma 2.2 we have v2N(p−1)/(N+α)n ⇀ 0 weakly in Lp/(p−1)(ℝN), so

‖|vn|p−1h‖ 2N
N+α
= ( ∫

ℝN

|vn|
2N(p−1)
N+α |h|

2N
N+α )

N+α
2N
→ 0.

Thus, from (2.7) we have
lim
n→∞
∫

ℝN

(Iα ∗ |vn|p)|vn|p−2vnh = 0. (2.8)

Passing to the limit in (2.3), from (2.6) and (2.8) we reach the conclusion.
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3 Proof of Theorem 1.1
In this section, we discuss the existence of groundstate solutions to (1.1) under the assumption λ > 0. For
u, v ∈ XsV (ℝN), we have

⟨E󸀠λ(u), v⟩ = ∫
ℝN

∫

ℝN

(u(x) − u(y))(v(x) − v(y))
|x − y|N+2s

dx dy + ∫
ℝN

V(x)uv − ∫
ℝN

(Iα ∗ |u|p)|u|p−1v − λ ∫
ℝN

(Iβ ∗ |u|q)|u|q−1v.

So, for t > 0 we have

⟨E󸀠λ(tu), tu⟩ = t
2‖u‖2XsV − t

2p ∫

ℝN

(Iα ∗ |u|p)|u|p − λt2q ∫
ℝN

(Iβ ∗ |u|q)|u|q .

Since p > q > 1, the equation
⟨E󸀠λ(tu), tu⟩ = 0

has a unique positive solution t = t(u), and the corresponding element tu ∈ Nλ is called the projection of u
on Nλ. The following result presents the main properties of the Nehari manifold Nλ, which we use in this
paper.

Lemma 3.1. (i) Eλ|Nλ is bounded from below by a positive constant.
(ii) Any critical point u of Eλ|Nλ is a free critical point.

Proof. (i) By using the continuous embeddings XsV (ℝN) 󳨅→ L2Np/(N+α)(ℝN) and XsV (ℝN) 󳨅→ L2Nq/(N+β)(ℝN)
together with the Hardy–Littlewood–Sobolev inequality, for any u ∈ Nλ we have

0 = ⟨E󸀠λ(u), u⟩ = ‖u‖
2
XsV
− ∫

ℝN

(Iα ∗ |u|p)|u|p − λ ∫
ℝN

(Iβ ∗ |u|q)|u|q

≥ ‖u‖2XsV − C‖u‖
2p
XsV
− Cλ‖u‖

2q
XsV
.

Therefore, there exists C0 > 0 such that

‖u‖XsV ≥ C0 > 0 for all u ∈ Nλ . (3.1)

Using the above fact, we have

Eλ(u) = Eλ(u) −
1
2q ⟨E
󸀠
λ(u), u⟩

= (
1
2 −

1
2q )‖u‖

2
XsV
+ (

1
2q −

1
2p ) ∫
ℝN

(Iα ∗ |u|p)|u|p

≥ (
1
2 −

1
2q )‖u‖

2
XsV

≥ (
1
2 −

1
2q )C

2
0 > 0.

(ii) Let L(u) = ⟨E󸀠λ(u), u⟩ for u ∈ X
s
V (ℝ

N). Now, for u ∈ Nλ, from (3.1) we get

⟨L󸀠(u), u⟩ = 2‖u‖2 − 2p ∫
ℝN

(Iα ∗ |u|p)|u|p − 2qλ ∫
ℝN

(Iβ ∗ |u|q)|u|q

= 2(1 − q)‖u‖2XsV − 2(p − q) ∫
ℝN

(Iα ∗ |u|p)|u|p

≤ −2(q − 1)‖u‖2XsV
< −2(q − 1)C0.

Assuming that u ∈ Nλ is a critical point of Eλ|Nλ and using the Lagrange multiplier theorem, there exists
μ ∈ ℝ such that E󸀠λ(u) = μL

󸀠(u). In particular, ⟨E󸀠λ(u), u⟩ = μ⟨L
󸀠(u), u⟩. As ⟨L󸀠(u), u⟩ < 0, this implies μ = 0,

so E󸀠λ(u) = 0.
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3.1 Compactness

Define
J : XsV (ℝ

N) → ℝ, J(u) = 12 ‖u‖
2 −

1
2p ∫
ℝN

(Iα ∗ |u|p)|u|p .

For all ϕ ∈ C∞0 (ℝN), we have

⟨J󸀠(u), ϕ⟩ = ∫
ℝN

∫

ℝN

(u(x) − u(y))(ϕ(x) − ϕ(y))
|x − y|N+2s

dx dy + ∫
ℝN

V(x)uϕ − ∫
ℝN

(Iα ∗ |u|p)|u|p−1ϕ

and
⟨J󸀠(u), u⟩ = ‖u‖2XsV − ∫

ℝN

(Iα ∗ |u|p)|u|p .

Also, consider the Nehari manifold associated with J as

NJ = {u ∈ XsV (ℝ
N) \ {0} : ⟨J󸀠(u), u⟩ = 0},

and let
mJ = inf

u∈NJ

J(u).

Lemma 3.2. Let (un) ⊂ NJ be a (PS) sequence ofEλ|Nλ , that is, (Eλ(un)) is bounded andE󸀠λ|Nλ (un) → 0 strongly
in X−sV (ℝ

N). Then there exists a solution u ∈ XsV (ℝ
N) of (1.1) such that, by replacing (un) with a subsequence,

one of the following alternatives holds:
(i) un → u strongly in XsV (ℝ

N).
(ii) un⇀ u weakly in XsV (ℝN), and there exists a positive integer k ≥ 1and k functions u1, u2, . . . , uk ∈ X

s
V (ℝ

N),
which are nontrivial weak solutions to (1.2), and k sequences of points (zn,1), (zn,2), . . . , (zn,k) ⊂ ℝN such
that the following conditions hold:
(a) |zn,j| → ∞ and |zn,j − zn,i| → ∞ if i ̸= j, n →∞;
(b) un − ∑kj=1 uj( ⋅ + zn,j) → u in XsV (ℝ

N);
(c) Eλ(un) → Eλ(u) + ∑kj=1 J(uj).

Proof. Since (un) is bounded in XsV (ℝN), there exists u ∈ X
s
V (ℝ

N) such that, up to a subsequence, we have

{{{
{{{
{

un ⇀ u weakly in XsV (ℝ
N),

un ⇀ u weakly in Lr(ℝN), 2 ≤ r ≤ 2∗s ,
un → u a.e. inℝN .

(3.2)

By using (3.2) and Lemma 2.5, it follows that E󸀠λ(u) = 0, so u ∈ X
s
V (ℝ

N) is a solution of (1.1). Further, if
un → u strongly in XsV (ℝN), then Lemma 3.2 (i) holds.

Now, assume that (un) does not converge strongly to u in XsV (ℝN), and set wn,1 = un − u. Then (wn,1)
converges weakly to zero in XsV (ℝN), and

‖un‖2XsV = ‖u‖
2
XsV
+ ‖wn,1‖2XsV + o(1). (3.3)

By Lemma 2.4, we have

∫

ℝN

(Iα ∗ |un|p)|un|p = ∫
ℝN

(Iα ∗ |u|p)|u|p + ∫
ℝN

(Iα ∗ |wn,1|p)|wn,1|p + o(1). (3.4)

Using (3.3) and (3.4), we get
Eλ(un) = Eλ(u) + J(wn,1) + o(1). (3.5)

Further, for any h ∈ XsV (ℝN), by Lemma 2.5 we have

⟨J󸀠(wn,1), h⟩ = o(1).
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From Lemma 2.4 we deduce that

0 = ⟨E󸀠λ(un), un⟩ = ⟨E
󸀠
λ(u), u⟩ + ⟨J

󸀠(wn,1), wn,1⟩ + o(1) = ⟨J󸀠(wn,1), wn,1⟩ + o(1).

This implies
⟨J󸀠(wn,1), wn,1⟩ = o(1). (3.6)

We need the following auxiliary result.

Lemma 3.3. Define
δ := lim sup

n→∞
( sup
w∈ℝN
∫

B1(z)

|wn,1|
2Np
N+α ).

Then δ > 0.

Proof. Assume by contradiction δ = 0. By Lemma 2.1, we deduce that wn,1 → 0 strongly in L2Np/(N+α)(ℝN).
Then by the Hardy–Littlewood–Sobolev inequality we get

∫

ℝN

(Iα ∗ |wn,1|p)|wn,1|p = o(1).

Using this fact together with (3.6), we get wn,1 → 0 strongly in XsV (ℝN). This is a contradiction. Hence,
δ > 0.

Now, we return to the proof of Lemma 3.2. Since δ > 0, we may find zn,1 ∈ ℝN such that

∫
B1(zn,1)

|wn,1|
2Np
N+α >

δ
2 . (3.7)

Consider the sequence (wn,1( ⋅ + zn,1)). Then there exists u1 ∈ XsV (ℝN) such that, up to a subsequence, we
have

wn,1( ⋅ + zn,1) ⇀ u1 weakly in XsV (ℝ
N),

wn,1( ⋅ + zn,1) → u1 strongly in L
2Np
N+α
loc (ℝ

N),
wn,1( ⋅ + zn,1) → u1 a.e. inℝN .

Next, passing to the limit in (3.7), we get
∫

B1(0)

|u1|
2Np
N+α ≥

δ
2 ,

therefore u1 ̸≡ 0. Since (wn,1) converges weakly to zero in XsV (ℝN), it follows that (zn,1) is unbounded. Thus,
passing to a subsequence, we may assume that |zn,1| → ∞. By (3.6), we deduce that J󸀠(u1) = 0, so u1 is
a nontrivial solution of (1.2).

Further, define
wn,2(x) = wn,1(x) − u1(x − zn,1).

Similarly to before, we have
‖wn,1‖2 = ‖u1‖2 + ‖wn,2‖2 + o(1).

Then, using Lemma 2.4, we deduce that

∫

ℝN

(Iα ∗ |wn,1|p)|wn,1|p = ∫
ℝN

(Iα ∗ |u1|p)|u1|p + ∫
ℝN

(Iα ∗ |wn,2|p)|wn,2|p + o(1).

Hence,
J(wn,1) = J(u1) + J(wn,2) + o(1).

So, by (3.5) one can get
Eλ(un) = Eλ(u) + J(u1) + J(wn,2) + o(1).
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Using the above techniques, we also obtain

⟨J󸀠(wn,2), h⟩ = o(1) for any h ∈ XsV (ℝ
N)

and
⟨J󸀠(wn,2), wn,2⟩ = o(1).

Now, if (wn,2) converges strongly to zero, then we finish the proof by taking k = 1 in the statement of
Lemma 3.2. If wn,2 ⇀ 0 weakly and not strongly in XsV (ℝN), then we iterate the process. In k steps one
could find a set of sequences (zn,j) ⊂ ℝN , 1 ≤ j ≤ k, with

|zn,j| → ∞ and |zn,i − zn,j| → ∞ as n →∞, i ̸= j,

and k nontrivial solutions u1, u2, . . . , uk ∈ XsV (ℝN) of (1.2) such that, denoting

wn,j(x) := wn,j−1(x) − uj−1(x − zn,j−1), 2 ≤ j ≤ k,

we have
wn,j(x + zn,j) ⇀ uj weakly in XsV (ℝ

N)

and

Eλ(un) = Eλ(u) +
k
∑
j=1

J(uj) + J(wn,k) + o(1).

As Eλ(un) is bounded and J(uj) ≥ mJ, we can iterate the process only a finite number of times, which con-
cludes our proof.

Corollary 3.4. For c ∈ (0,mJ), any (PS)c sequence of Eλ|Nλ is relatively compact.

Proof. Assume (un) is a (PS)c sequence of Eλ|Nλ . From Lemma 3.2 we have J(uj) ≥ mJ, and hence it follows
that, up to a subsequence, un → u strongly in XsV (ℝN) and u is a solution of (1.1).

In order to finish the proof of Theorem 1.1 we need the following result.

Lemma 3.5. mλ < mJ.

Proof. Let Q ∈ XsV (ℝN) be a groundstate solution of (1.2); we know that such a groundstate exists, and for
this we refer the reader to [5]. Denote by tQ the projection of Q on Nλ, that is, t = t(Q) > 0 is the unique real
number such that tQ ∈ Nλ. Set

A(Q) = ∫
ℝN

(Iα ∗ |Q|p)|Q|p , B(Q) = λ ∫
ℝN

(Iβ ∗ |Q|p)|Q|p .

As Q ∈ NJ and tQ ∈ Nλ, we get
‖Q‖2 = A(Q)

and
t2‖Q‖2 = t2pA(Q) + t2qB(Q).

From the above equalities one can easily deduce that t < 1. Therefore, we have

mλ ≤ Eλ(tQ) =
1
2 t

2‖Q‖2 − 1
2p t

2pA(Q) − 1
2q t

2qB(Q)

= (
t2

2 −
t2p

2p )‖Q‖
2 −

1
2q (t

2‖Q‖2 − t2pA(Q))

= t2(12 −
1
2q )‖Q‖

2 + t2p( 12q −
1
2p )‖Q‖

2

< (
1
2 −

1
2q )‖Q‖

2 + (
1
2q −

1
2p )‖Q‖

2

< (
1
2 −

1
2p )‖Q‖

2 = J(Q) = mJ,

as desired.
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Further, using the Ekeland variational principle, for any n ≥ 1 there exists (un) ∈ Nλ such that

Eλ(un) ≤ mλ +
1
n

for all n ≥ 1,

Eλ(un) ≤ Eλ(v) +
1
n
‖v − un‖ for all v ∈ Nλ , n ≥ 1.

Now, one can easily deduce that (un) ∈ Nλ is a (PS)mλ sequence for Eλ on Nλ. Further, using Lemma 3.5 and
Corollary 3.4, we obtain that, up to a subsequence, (un) converges strongly to some u ∈ XsV (ℝN) which is
a groundstate of Eλ.

4 Proof of Theorem 1.2
In this section, we discuss the existence of a least energy sign-changing solution of (1.1).

Lemma 4.1. Assume p > q > 2 and λ ∈ ℝ. Then for any u ∈ XsV (ℝ
N) and u± ̸= 0 there exists a unique pair

(τ0, θ0) ∈ (0,∞) × (0,∞) such that τ0u+ + θ0u− ∈Mλ. Furthermore, if u ∈Mλ, then for all τ, θ ≥ 0 we have
Eλ(u) ≥ Eλ(τu+ + θu−).

Proof. We shall follow an idea developed in [26]. Denote

a1 = ‖u+‖2XsV , b1 = ‖u−‖2XsV ,

a2 = ∫
ℝN

(Iα ∗ |u+|p)|u+|p , b2 = ∫
ℝN

(Iβ ∗ |u+|q)|u+|q ,

a3 = ∫
ℝN

(Iα ∗ |u−|p)|u−|p , b3 = ∫
ℝN

(Iβ ∗ |u−|q)|u−|q ,

a4 = ∫
ℝN

(Iα ∗ |u+|p)|u−|p , b4 = ∫
ℝN

(Iβ ∗ |u+|q)|u−|q ,

A = ∫
ℝN

∫

ℝN

u+(x)u−(y) + u−(x)u+(y)
|x − y|N+2s

dx dy.

Let us define the function Φ : [0,∞) × [0,∞) → ℝ by

Φ(τ, θ) = Eλ(τ
1
2p u+ + θ

1
2p u−)

=
τ

1
p

2 a1 +
θ

1
p

2 b1 − λ
τ
q
p

2q b2 − λ
θ
q
p

2q b3 − λ
τ

q
2p θ

q
2p

2q b4 −
τ
2p a2 −

θ
2p a3 −

τ 1
2 θ 1

2

2p a4 − τ
1
2p θ

1
2p A.

Note that Φ is strictly concave. Therefore, Φ has at most one maximum point. Also

lim
τ→∞

Φ(τ, θ) = −∞ for all θ ≥ 0 and lim
θ→∞

Φ(τ, θ) = −∞ for all τ ≥ 0, (4.1)

and it is easy to check that

lim
τ↘0

∂Φ
∂τ
(τ, θ) = ∞ for all θ > 0 and lim

θ↘0

∂Φ
∂θ
(τ, θ) = ∞ for all τ > 0. (4.2)

Hence, (4.1) and (4.2) rule out the possibility of achieving a maximum at the boundary. Therefore, Φ has
exactly one maximum point (τ0, θ0) ∈ (0,∞) × (0,∞).

Lemma 4.2. The energy level cλ > 0 is achieved by some v ∈Mλ.



704 | G. Singh, Nonlocal perturbations of the fractional Choquard equation

Proof. Let (un) ⊂Mλ be a minimizing sequence for cλ. Note that

Eλ(un) = Eλ(un) −
1
2q ⟨E
󸀠
λ(un), un⟩

= (
1
2 −

1
2q )‖un‖

2
XsV
+ (

1
2q −

1
2p ) ∫
ℝN

(Iα ∗ |u|q)|u|q

≥ (
1
2 −

1
2q )‖un‖

2
XsV

≥ C1‖un‖2XsV ,

where C1 > 0 is a positive constant. Therefore, for some constant C2 > 0 we have

‖un‖2XsV ≤ C2Eλ(un) ≤ M,

which implies that (un) is bounded in XsV (ℝN). So, (u+n) and (u−n) are also bounded in X
s
V (ℝ

N), and, by passing
to a subsequence, there exists u+, u− ∈ Hs(ℝN) such that

u+n ⇀ u+ and u−n ⇀ u− weakly in XsV (ℝ
N).

Since p, q > 2 satisfy (1.4) and (1.5), we deduce that the embeddings XsV (ℝN) 󳨅→ L2Np/(N+α)(ℝN) and
XsV (ℝ

N) 󳨅→ L2Nq/(N+β)(ℝN) are compact. Thus,

u±n → u± strongly in L
2Np
N+α (ℝN) ∩ L

2Nq
N+β (ℝN). (4.3)

Moreover, by the Hardy–Littlewood–Sobolev inequality, we estimate

C(‖u±n‖2
L
2Np
N+α
+ ‖u±n‖2

L
2Nq
N+β
) ≤ ‖u±n‖2XsV = ∫

ℝN

(Iα ∗ |un|p)|u±n |p + |λ| ∫
ℝN

(Iβ ∗ |un|q)|u±n |q

≤ C(‖u±n‖
p

L
2Np
N+α
+ ‖u±n‖

p

L
2Np
N+α
)

≤ C(‖u±n‖2
L
2Np
N+α
+ ‖u±n‖2

L
2Nq
N+β
)(‖u±n‖

p−2

L
2Np
N+α
+ ‖u±n‖

q−2

L
2Nq
N+β
).

Since u±n ̸= 0, we can deduce

‖u±n‖
p−2

L
2Np
N+α
+ ‖u±n‖

q−2

L
2Nq
N+β
≥ C > 0 for all n ≥ 1. (4.4)

Hence, by (4.3) and (4.4) it follows that u± ̸= 0. Further, using (4.3) and the Hardy–Littlewood–Sobolev
inequality, we have

∫

ℝN

(Iα ∗ |u±n |p)|u±n |p → ∫
ℝN

(Iα ∗ |u±|p)|u±|p ,

∫

ℝN

(Iα ∗ |u+n |p)|u−n |p → ∫
ℝN

(Iα ∗ |u+|p)|u−|p ,

∫

ℝN

(Iβ ∗ |u±n |q)|u±n |q → ∫
ℝN

(Iβ ∗ |u±|q)|u±|q ,

∫

ℝN

(Iβ ∗ |u+n |q)|u−n |q → ∫
ℝN

(Iβ ∗ |u+|q)|u−|q .

By Lemma 4.1, there exists a unique pair (τ0, θ0) such that τ0u+ + θ0u− ∈Mλ. By the weakly lower semi-
continuity of the norm ‖ ⋅ ‖XsV , we deduce that

cλ ≤ Eλ(τ0u+ + θ0u−) ≤ lim inf
n→∞

Eλ(τ0u+ + θ0u−)

≤ lim sup
n→∞

Eλ(τ0u+ + θ0u−)

≤ lim
n→∞

Eλ(un)

= cλ .

Letting now v = τ0u+ + θ0u− ∈Mλ, we finish the proof.
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Lemma 4.3. v = τ0u+ + θ0u− ∈Mλ is a critical point of Eλ : XsV (ℝN) → ℝ, that is,

E󸀠λ(v) = 0.

Proof. Assume by contradiction that v is not a critical point of Eλ. Then there exists φ ∈ C∞c (ℝN) such that

⟨E󸀠λ(v), φ⟩ = −2.

Since Eλ is continuous and differentiable, there exists r > 0 small such that

⟨E󸀠λ(τu
+ + θu− + εv̄), v̄⟩ ≤ −1 if (τ − τ0)2 + (θ − θ0)2 ≤ r2 and 0 ≤ ε ≤ r. (4.5)

LetD be the opendisc inℝ2 of radius r > 0 centered at (τ0, θ0).Wedefine a continuous functionψ : D→[0, 1]
as

ψ(τ, θ) =
{
{
{

1 if (τ − τ0)2 + (θ − θ0)2 ≤ r2
16 ,

0 if (τ − τ0)2 + (θ − θ0)2 ≥ r
2

4 .

Further, we define a continuous map S : D → XsV (ℝ
N) as

S(τ, θ) = τu+ + θu− + rψ(τ, θ)v̄ for all (τ, θ) ∈ D

and L : D → ℝ2 as

L(τ, θ) = (⟨E󸀠λ(S(τ, θ)), S(τ, θ)
+⟩, ⟨E󸀠λ(S(τ, θ)), S(τ, θ)

−⟩) for all (τ, θ) ∈ D.

Since themapping u 󳨃→ u+ is continuous inXsV (ℝN), it follows that L is continuous. If (τ − τ0)2 + (θ − θ0)2 = r2,
that is, if we are on the boundary of D, then ψ = 0 by definition. Then S(τ, θ) = τu+ + θu− and, using
Lemma 4.1, we get

L(τ, θ) = (⟨E󸀠λ(τu
+ + θu−), (τu+ + θu−)+⟩, ⟨E󸀠λ(τu

+ + θu−), (τu+ + θu−)−⟩) ̸= 0 on ∂D.

Therefore, theBrouwerdegree iswell definedanddeg(L, int(D), (0, 0)) = 1. Then there exists (τ1, θ1) ∈ int(D)
such that L(τ1, θ1) = (0, 0). Thus, S(τ1, θ1) ∈Mλ and, using the definition of cλ, we get

Eλ(S(τ1, θ1)) ≥ cλ . (4.6)

Using equation (4.5), we deduce that

Eλ(S(τ1, θ1)) = Eλ(τ1u+ + θ1u−) +
1

∫
0

d
dt

Eλ(τ1u+ + θ1u− + rtψ(τ1, θ1)v̄) dt

= Eλ(τ1u+ + θ1u−) +
1

∫
0

⟨E󸀠λ(τ1u
+ + θ1u− + rtψ(τ1, θ1)v̄), rψ(τ1, θ1)v̄⟩ dt

= Eλ(τ1u+ + θ1u−) − rψ(τ1, θ1).

If (τ1, θ1) = (τ0, θ0), then ψ(τ1, θ1) = 1 by definition and we deduce that

Eλ(S(τ1, θ1)) ≤ Eλ(τ1u+ + θ1u−) − r ≤ cλ − r < cλ .

If (τ1, θ1) ̸= (τ0, θ0), then, using Lemma 4.1, we have

Eλ(τ1u+ + θ1u−) < Eλ(τ0u+ + θ0u−) = cλ .

This yields
Eλ(S(τ1, θ1)) ≤ Eλ(τ1u+ + θ1u−) < cλ ,

which is a contradiction to equation (4.6).
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