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Abstract:We study the semiclassical limit to a singularly perturbed nonlinear Klein–Gordon–Maxwell–Proca
system, with Neumann boundary conditions, on a Riemannian manifold M with boundary. We exhibit
examples of manifolds, of arbitrary dimension, on which these systems have a solution which concentrates
at a closed submanifold of the boundary ofM, forming a positive layer, as the singular perturbation param-
eter goes to zero. Our results allow supercritical nonlinearities and apply, in particular, to bounded domains
in ℝN . Similar results are obtained for the more classical electrostatic Klein–Gordon–Maxwell system with
appropriate boundary conditions.
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1 Introduction

On a compact smooth Riemannian manifold (M, g) with boundary, we consider the system{{{{{{{{{
−ε2∆gu + α(x)u = up−1 + ω2(qv − 1)2u onM,−∆gv + Λ(u)v = qu2 onM,
∂u
∂ν
= 0, ∂v

∂ν
= 0 or v = 0 on ∂M,

(1.1)

where ∆g = divg ∇g is the Laplace–Beltrami operator (without a sign), ε > 0, q > 0,ω ∈ ℝ, α ∈ C2(M) is a real-
valued function which satisfies α(x) > ω2 onM, p ∈ (2,∞), and Λ is given by

Λ(u) = {{{{{{{
1 + qu2 if ∂u

∂ν
= ∂v
∂ν
= 0 on ∂M,

qu2 if ∂u
∂ν
= v = 0 on ∂M.

We are interested in studying the semiclassical limit to this system, i.e., the existence of positive solutions
and their asymptotic profile, as ε → 0.
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Solutions to system (1.1) correspond to standing waves of an electrostatic Klein–Gordon–Maxwell
(KGM) system if Λ(u) = qu2, and of a Klein–Gordon–Maxwell–Proca (KGMP) system with Proca mass 1 if
Λ(u) = 1 + qu2. For the physical meaning of these systems, we refer to [3, 4, 25].

The seminal paper [3] by Benci and Fortunato attracted the attention of the mathematical community,
and motivated much of the recent activity towards the study of this type of systems. For ε = 1, existence and
nonexistence results for subcritical nonlinear terms have been obtained, e.g., in [1, 3, 6, 10, 13–15, 27] for
systems in the entire space ℝ3, or in a bounded domain in ℝ3 with Dirichlet or Neumann boundary condi-
tions. KGMP-systems on a closed (i.e., compact and without boundary) Riemannianmanifold of dimension 3
or 4 have been recently investigated in [17, 24, 25] for subcritical or critical nonlinearities.

The existence and asymptotic behavior of semiclassical states in flat domains have been investigated,
e.g., in [11, 12, 31]. In [11], D’Aprile and Wei constructed a family of positive radial solutions (uε , ve) to
a KGM-system in a 3-dimensional ball, with Dirichlet boundary conditions, such that uε concentrates around
a sphere which lies in the interior of the ball. For compact manifolds of dimensions 2 and 3, with or with-
out boundary, the existence and multiplicity of positive semiclassical states, such that uε concentrates
at a point, have been exhibited, e.g., in [20, 21, 23], for subcritical nonlinearities. The concentration at
a positive-dimensional submanifold for a KGMP-system on closed manifolds of arbitrary dimension, and for
nonlinearities which include supercritical ones, was recently exhibited in [7].

Our aim is to extend the results in [7, 8] to manifolds with boundary, i.e., we will establish the exis-
tence of positive semiclassical states (uε , ve) to system (1.1), on some compact Riemannian manifolds M
with boundary, such that uε concentrates at a positive-dimensional submanifold as ε → 0. Our results
apply, in particular, to systems with supercritical nonlinearities in bounded smooth domains Ω of ℝN of
any dimension.

The Neumann boundary condition ∂v
∂ν = 0 on v seems to be more meaningful from a physical point of

view, as it gives a condition on the electric field on ∂M. However, if the Proca mass is 0, i.e., if Λ(u) = qu2,
and we set ∂v∂ν = 0, then the second equation in system (1.1) admits the trivial solution v = 1

q and the first
equation reduces to a Schrödinger equation, making the coupling effect unnoticeable. This is why we impose
a Dirichlet boundary condition on v when Λ(u) = qu2.

The Neumann boundary condition ∂u
∂ν = 0 on u produces an effect of the boundary ofM on the existence

and concentration of solutions to system (1.1). In fact, the solutions thatwe obtain formapositive layerwhich
concentrates around a submanifold of ∂M as ε → 0.

As in [7], our approach consists in reducing system (1.1) to a similar system,with the same power nonlin-
earity, on a manifold of lower dimension. Solutions to the new system which concentrate at a point will give
rise to solutions to the original system concentrating at a positive-dimensional submanifold. This approach
was introduced by Ruf and Srikanth in [29] and has been used, for instance, in [9, 28, 30]. We begin by
describing some of the reductions that we will use.

1.1 Reducing the dimension of the system

Let (M, g) be a compact smooth n-dimensional Riemannian manifold with boundary, let f : M → (0,∞) be
a C1-function, and let (N, h) be a compact smooth Riemannian manifold without boundary of dimension
k ≥ 1. The warped product M ×f 2 N is the cartesian product M × N endowed with the Riemannian metric
g := g + f 2h. It is a smooth Riemannian manifold of dimension n + k with boundary ∂M ×f 2 N.

For example, if Θ is a bounded smooth domain in ℝn whose closure is contained in ℝn−1 × (0,∞),
f(x1, . . . , xn) = xn and 𝕊k is the standard k-sphere, then, up to isometry, the warped product Θ ×f 2 𝕊k is

Θ ×f 2 𝕊k ≡ {(y, z) ∈ ℝn−1 × ℝk+1 : (y, |z|) ∈ Θ},
which is a bounded smooth domain inℝn+k.

Let πM : M ×f 2 N → M be the projection, α̂ ∈ C2(M) and α := α̂ ∘ πM. A straightforward computation gives
the following result; see, e.g., [16].
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Proposition 1.1. The functions uε , vε : M → ℝ solve the system{{{{{{{{{
−ε2 divg(f k∇gu) + f k α̂u = f kup−1 + ω2f k(qv − 1)2u on M,−divg(f k∇gv) + f kΛ(u)v = qf ku2 on M,
∂u
∂ν
= 0, ∂v

∂ν
= 0 or v = 0 on ∂M

(1.2)

if and only if the functions uε := uε ∘ πM , vε := vε ∘ πM : M ×f 2 N → ℝ solve the system{{{{{{{{{
−ε2∆gu + αu = up−1 + ω2(qv − 1)2u on M ×f 2 N,−∆gv + Λ(u)v = qu2 on M ×f 2 N,
∂u
∂ν
= 0, ∂v

∂ν
= 0 or v = 0 on ∂(M ×f 2 N). (1.3)

We stress that the exponent p is the same in both systems. Since k ≥ 1,we have that 2∗n+k < 2∗n , where 2∗d is the
critical Sobolev exponent in dimension d, i.e., 2∗d := ∞ if d = 2 and 2∗d := 2d

d−2 for d > 2. So, if 2∗n+k ≤ p < 2∗n ,
system (1.2) on M is subcritical, whereas system (1.3) on M ×f 2 N is critical or supercritical. Moreover, if the
solution uε of (1.2) concentrates at a point x0 ∈ M as ε → 0, then the function uε := uε ∘ πM concentrates at
the submanifold π−1M (x0) ≅ (N, f 2(x0)h). Note also that uε and vε are positive if uε and vε are positive.

Another type of reduction is obtained from the Hopf maps. For N = 2, 4, 8, 16, we write ℝN≡ 𝕂 × 𝕂,
where𝕂 is either the real numbersℝ, the complex numbersℂ, the quaternionsℍ, or the Cayley numbers𝕆.
The Hopf map h𝕂 is defined by

h𝕂 : ℝ2dim𝕂 ≡ 𝕂 × 𝕂 → 𝕂 × ℝ ≡ ℝdim𝕂+1,
h𝕂(z) := (2z1z2, |z1|2 − |z2|2) for z = (z1, z2) ∈ 𝕂 × 𝕂.

This map is horizontally conformal with dilation λ(z) = 2|z|. It is also invariant under the action of the units
S𝕂 := {ζ ∈ 𝕂 : |ζ| = 1}, i.e., h𝕂(ζz) = h𝕂(z) for all ζ ∈ S𝕂, z ∈ 𝕂 × 𝕂.

Let Ω be a bounded smooth domain inℝ2dim𝕂 \ {0} such that ζz ∈Ω for all ζ ∈ S𝕂, z ∈Ω. Then Θ := h𝕂(Ω)
is a bounded smooth domain inℝdim𝕂+1 \ {0}. Themain property of Hopfmaps, for our purposes, is that they
locally preserve the Laplace operator up to a factor, i.e.,

∆(u ∘ h𝕂) = λ2[(∆u) ∘ h𝕂] in Ω for every u ∈ C2(Θ).
Suchmaps are called harmonic morphisms; see [2]. This property allows us to reduce system (1.1) onM := Ω
to a system in Θ. Assume that α ∈ C2(Ω) satisfies α(ζz) = α(z) for all ζ ∈ S𝕂, z ∈ Ω. Then the map α̂ : Θ → ℝ
given by α̂(x) := α(h−1𝕂 (x)) is well defined and of class C2. Note that λ2(h−1𝕂 (x)) = 4|x| for every x ∈ ℝdim𝕂+1.
The following proposition is an immediate consequence of these facts.

Proposition 1.2. The functions uε , vε : Θ → ℝ solve the system{{{{{{{{{{{{{{{{{
−ε2∆u + α̂(x)4|x| u = 1

4|x|up−1 + ω2

4|x| (qv − 1)2u on Θ,−∆v + 1
4|x|Λ(u)v = q

4|x|u2 on Θ,

∂u
∂ν
= 0, ∂v

∂ν
= 0 or v = 0 on ∂Θ

(1.4)

if and only if the functions uε := uε ∘ h𝕂, vε := vε ∘ h𝕂 : Ω → ℝ solve the system{{{{{{{{{
−ε2∆u + α(x)u = up−1 + ω2(qv − 1)2u on Ω,−∆v + Λ(u)v = qu2 on Ω,
∂u
∂ν
= 0, ∂v

∂ν
= 0 or v = 0 on ∂Ω.

(1.5)

Note again that, if p ∈ [2∗2dim𝕂, 2∗dim𝕂+1), system (1.4) is subcritical, whereas system (1.5) is critical or super-
critical. And if the functions uε concentrate at a point ξ0 ∈ Θ as ε → 0, then the functions uε concentrate at
the (dim𝕂 − 1)-dimensional sphere h−1𝕂 (ξ0) in Ω.

Propositions 1.1 and 1.2 lead us to study the following problem.
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1.2 The main results

Let (M, g) be a smooth compact Riemannian manifold with boundary of dimension n = 2, 3, 4. We consider
the subcritical system{{{{{{{{{

−ε2 divg(c(x)∇gu) + a(x)u = b(x)up−1 + b(x)ω2(qv − 1)2u on M,−divg(c(x)∇gv) + b(x)Λ(u)v = b(x)qu2 on M,
∂u
∂ν
= 0, ∂v

∂ν
= 0 or v = 0 on ∂M,

(1.6)

where ε, q > 0, ω ∈ ℝ, a, b, c ∈ C1(M) are strictly positive functions such that a(x) > ω2b(x) on M, and
p ∈ (2, 2∗n). As before, 2∗n := ∞ if n = 2 and 2∗n := 2n

n−2 if n = 3, 4.
Theorem 1.3. LetK ⊂ ∂M be a nonempty C1-stable critical set for the function Γ : ∂M → ℝ, which is given by

Γ(ξ) := c(ξ) n2 [a(ξ) − ω2b(ξ)] pp−2− n2
b(ξ) 2

p−2
.

Then, for ε small enough, system (1.6) has a positive solution (uε , vε) such that uε concentrates at a point ξ0 ∈ K
as ε goes to zero.

A C1-stable critical set is defined as follows.

Definition 1.4. Let f ∈C1(M,ℝ). A subsetK ofM is called aC1-stable critical set of f ifK⊂ {x ∈M : ∇g f(x) = 0}
and if, for any μ > 0, there exists δ > 0 such that every function h ∈ C1(M,ℝ) which satisfies

max
distg(x,K)≤μ

(|f(x) − h(x)| + |∇g f(x) − ∇gh(x)|g) ≤ δ
has a critical point x0 with distg(x0,K) ≤ μ. Here distg denotes the geodesic distance associated to the
Riemannian metric g.

Theorem 1.3, together with Propositions 1.1 and 1.2, yields the existence of solutions to the KGMP (or the
KGM) system (1.1), which concentrate at a submanifold for subcritical, critical and supercritical exponents.
The following two results illustrate this fact.

We write the points inℝn−1 × (0,∞) as (ȳ, yn) with ȳ ∈ ℝn−1 and yn ∈ (0,∞).
Theorem 1.5. Let Θ be a bounded smooth domain in ℝn whose closure is contained in ℝn−1 × (0,∞) for
n = 2, 3, 4, and let ω ∈ ℝ and α̂ ∈ C2(Θ) be such that α̂ > ω2. Let

M := {(ȳ, z) ∈ ℝn−1 × ℝk+1 : (ȳ, |z|) ∈ Θ}
and α(ȳ, z) := α̂(ȳ, |z|). IfK is a nonempty C1-stable critical set for the function Γ : ∂Θ → ℝ defined by

Γ(ȳ, yn) := ykn[α̂(ȳ, yn) − ω2] pp−2− n2 ,
then, for any q > 0, p ∈ (2, 2∗n) and ε small enough, system (1.1) has a positive solution (uε , vε) inM such that,
for some point ( ̄ξ , ξn) ∈ K, uε concentrates at the k-dimensional sphere {( ̄ξ , z) ∈ ℝn−1 × ℝk+1 : |z| = ξn} ⊂ ∂M
as ε → 0.

Proof. Set M := Θ, a := f k α̂ and b := f k =: c with f(ȳ, yn) := yn. Theorem 1.3 yields a positive solution(uε , vε) to system (1.2) such that uε concentrates at a point ( ̄ξ , ξn) ∈ K as ε → 0. The result follows from
Proposition 1.1.

Theorem 1.6. Let
M := {z ∈ ℂ2 : 0 < r < |z| < R}

and assume that α ∈ C2(M) satisfies α(ζz) = α(z) > ω2 for all ζ ∈ ℂ with |ζ| = 1, z ∈M. If K is a nonempty
C1-stable critical set for the function Γ : ∂(hℂ(M)) → ℝ defined by

Γ(x) := √2|x|[α(h−1ℂ (x)) − ω2] pp−2− 32 ,
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then, for any q > 0, p ∈ (2, 6) and ε small enough, system (1.1) has a positive solution (uε , vε) inM such that
uε concentrates at the circle {ζz0 : ζ ∈ ℂ, |ζ| = 1} ⊂ ∂M, for some z0 ∈ h−1ℂ (K), as ε → 0.

Proof. Set M := hℂ(M), a(x) := α̂(x)2|x| , b(x) := 1
2|x| , and c(x) := 1 with α̂(x) := α(h−1ℂ (x)). Theorem 1.3 yields

a positive solution (uε , vε) to system (1.4) such that uε concentrates at a point ξ0 ∈ K as ε → 0. The result
follows from Proposition 1.2.

The rest of the paper is devoted to the proof of Theorem 1.3.

2 Preliminaries

2.1 Reducing system (1.6) to a single equation

In order to overcome the problems given by the competition between u and v, using an idea of Benci and
Fortunato [3], we introduce the map Φ : H1

g (M) → H1
g (M) which associates to each u ∈ H1

g (M) the solution
Φ(u) to the problem {−divg(c(x)∇g[Φ(u)]) + b(x)q2u2[Φ(u)] = b(x)qu2 in M,

Φ(u) = 0 on ∂M
(2.1)

for system (1.6) with Dirichlet boundary conditions, or to the problem{{{{{−divg(c(x)∇g[Φ(u)]) + b(x)(1 + q
2u2)[Φ(u)] = b(x)qu2 in M,

∂[Φ(u)]
∂ν
= 0 on ∂M

(2.2)

for system (1.6) with Neumann boundary conditions. It follows from standard variational arguments that Φ
is well defined in H1

g (M). The proofs of the following two lemmas are contained in [17].

Lemma 2.1. The map Φ : H1
g (M) → H1

g (M) is of class C1 and its differential Φ󸀠(u)[h] = Vu[h] at u ∈ H1
g (M) is

the map defined by −divg(c(x)∇g[Vu[h]]) + b(x)q2u2[Vu[h]] = 2b(x)qu(1 − qΦ(u))h
for all h ∈ H1

g (M), in case of Dirichlet boundary conditions, or by−divg(c(x)∇g[Vu[h]]) + b(x)(1 + q2u2)[Vu[h]] = 2b(x)qu(1 − qΦ(u))h,
for all h ∈ H1

g (M), in case of Neumann boundary conditions. Moreover,
0 ≤ Φ(u) ≤ 1

q
and 0 ≤ Φ󸀠(u)[u] ≤ 2

q
.

Lemma 2.2. The function Θ : H1
g (M) → ℝ given by

Θ(u) = 12 ∫
M

b(x)(1 − qΦ(u))u2 dμg
is of class C1, and its differential is given by

Θ󸀠(u)[h] = ∫
M

b(x)(1 − qΦ(u))2uh dμg
for any u, h ∈ H1

g (M).
Now, we introduce the functionals Iε , Jε , Gε : H1

g (M) → ℝ given by
Iε(u) := Jε(u) + ω2

2 Gε(u), (2.3)
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where
Jε(u) := 1

2εn ∫
M

[ε2c(x)|∇gu|2 + d(x)u2] dμg − 1
pεn ∫

M

b(x)(u+)p dμg
with d(x) := a(x) − ω2b(x), and

Gε(u) := qεn ∫
M

b(x)Φ(u)u2 dμg .
From Lemma 2.2 we deduce that

1
2G
󸀠
ε(u)[φ] = 1

εn ∫
M

b(x)[2qΦ(u) − q2Φ2(u)]uφ dμg ,
so

I󸀠ε(u)φ = 1
εn ∫

M

[ε2c(x)∇gu∇gφ + a(x)uφ − b(x)(u+)p−1φ − b(x)ω2(1 − qΦ(u))2uφ dμg].
Therefore, if u is a critical point of the functional Iε, we have that− ε2 divg(c(x)∇gu) + d(x)u + ω2qb(x)Φ(u)(2 − qΦ(u))u = b(x)(u+)p−1, (2.4)

with d(x) := a(x) − ω2b(x). In particular, if u ̸= 0, by the maximum principle and regularity arguments we
have that u > 0. Thus, the pair (u, Φ(u)) is a positive solution to system (1.6).

This reduces solving system (1.6) to finding a solution uε ∈ H1
g (M) to the single equation (2.4).

Some useful estimates involving the function Φ are contained in the appendix.

2.2 The approximate solution

We shall obtain a solution uε to equation (2.4) using the Lyapunov–Schmidt reduction method. It will be an
approximation to a functionWε,ξ , which we introduce next.

If (M, g) is an n-dimensional compact smooth Riemannian manifold with boundary, its boundary ∂M
is a closed smooth Riemannian manifold of dimension n − 1, possibly not connected. We fix R > 0, smaller
than the injectivity radius of ∂M, such that for each point x ∈ M with distg(x, ∂M) < R there exists a unique
x ∈ ∂M for which distg(x, x) = distg(x, ∂M), where distg denotes the geodesic distance in (M, g). For ξ ∈ ∂M,
we set

Qξ := {x ∈ M : distg(x, ∂M) = distg(x, x) < R, x ∈ ∂M, distg(ξ, x) < R}.
We write each point x ∈ Qξ in Fermi coordinates (y1, . . . , yn) at ξ , i.e., (y1, . . . , yn−1) are normal coordinates
for x on ∂M at the point ξ , and yn = distg(x, x) is the geodesic distance from x to ∂M. We write ψ∂ξ : D

+ → Qξ
for the chart whose inverse is given by (ψ∂ξ )−1(x) := (y1, . . . , yn), defined on

D+ := Bn−1R (0) × [0, R), where Bn−1R (0) := {ȳ ∈ ℝn−1 : |ȳ| < R}.
The second fundamental form II(X, Y) of two vector fields X and Y on ∂M is the component of∇XY which

is normal to ∂M, where∇ is the covariant derivative operator in the ambientmanifoldM. In Fermi coordinates
at q it is given by a matrix (hij)i,j=1,...,n−1. One has the well-known formulas

gij(y) = δij + 2hijyn + O(|y|2) for i, j = 1, . . . , n − 1, (2.5)
gin(y) = δin , (2.6)√|g|(y) = 1 − (n − 1)Hyn + O(|y|2), (2.7)

where y = (y1, . . . , yn) are the Fermi coordinates, |g| is the determinant of g = (gij), gij are the coefficients of
the inverse of (gij), and H = 1

n−1 ∑n−1i=1 hii; see [5, 18, 19]. Abusing notation, we shall write (hij)i,j=1,...,n for the
matrix which coincides with the second fundamental form for i, j = 1, . . . , n − 1 and has hi,n = hn,j = 0 for
i, j = 1, . . . , n.
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Set d(x) := a(x) − ω2b(x). By assumption, this function is positive on M. Given ξ ∈ ∂M, we consider the
unique positive radial solution V̄ = V̄ ξ to the equation− c(ξ)∆V̄ + d(ξ)V̄ = b(ξ)V̄p−1 inℝn . (2.8)

By direct computation, one sees that

V̄ ξ (y) = (d(ξ)b(ξ)) 1
p−2 U(√ d(ξ)c(ξ) y),

where U is the unique positive radial solution of−∆U + U = Up−1 inℝn .
In the following, we set

γ(ξ) := (d(ξ)b(ξ) ) 1
p−2 and A(ξ) := d(ξ)

c(ξ) ,
so

V̄ ξ (y) = γ(ξ)U(√A(ξ)y).
The restriction V ξ (y) := V̄ ξ |ℝn+ of V̄ ξ to the half-spaceℝn+ := {yn ≥ 0} solves the Neumann problem{{{{{−c(ξ)∆V + d(ξ)V = b(ξ)V

p−1 inℝn+,
∂V
∂yn
= 0 on {yn = 0}.

For ξ ∈ ∂M and ε > 0, set V ξε (y) := V ξ ( yε ). We define the functionsWε,ξ ∈ C∞(M) by
Wε,ξ (x) := {{{ V ξε ((ψ∂ξ )−1(x))χ((ψ∂ξ )−1(x)), x ∈ Qξ ,

0 elsewhere.
(2.9)

Here the function χ is a fixed cut-off function of the form χ(ȳ, yn) := χ̃(|ȳ|)χ̃(yn) for (ȳ, yn) ∈ D+, where
χ̃ : ℝ+ → [0, 1] is a smooth function such that χ(s) ≡ 1 for 0 ≤ s ≤ R2 , χ(s) ≡ 0 for s ≥ R and |χ̃󸀠(s)| ≤ 1

R .

Remark 2.3. The following limits hold uniformly with respect to ξ ∈ ∂M,

lim
ε→0

1
εn
|Wε,ξ |pp,g ≤ C|U|pp , p ≥ 2,

lim
ε→0

1
εn
󵄨󵄨󵄨󵄨ε2∇gWε,ξ

󵄨󵄨󵄨󵄨22,g ≤ C|∇U|22,
where the constant C does not depend on ξ .

It is well known that the space of solutions to the linearized problem{{{{{−∆φ + φ = (p − 1)(V
ξ )p−2φ inℝn+,

∂φ
∂yn
= 0 on {yn = 0},

is generated by the functions φi := ∂V ξ∂yi for i = 1, . . . , n − 1. The corresponding local functions on the mani-
fold M are given by

Z iε,ξ (x) := {{{φiε((ψ∂ξ )−1(x))χ((ψ∂ξ )−1(x)), x ∈ Qξ ,
0 elsewhere,

(2.10)

where φiε(y) := φi( yε ) and χ is as above.
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2.3 Proof of Theorem 1.3

As before, we set d(x) := a(x) − ω2b(x) > 0. We denote by Hε the space H1
g (M) equipped with the scalar

product ⟨u, v⟩ε := 1
εn ∫

M

ε2c(x)∇gu∇gv + d(x)uv dμg
and the norm ‖u‖ε = ⟨u, u⟩1/2ε . Similarly, we write Lpε for the space L

p
g (M) endowed with the norm|u|ε,p = 1

εn (∫
M

|u|p dμg) 1p .
For any p ∈ [2, 2∗n), the embedding iε : Hε 󳨅→ Lε,p is compact and there is a positive constant C, independent
of ε, such that |u|ε,p ≤ C‖u‖ε. The adjoint operator i∗ε : Lε,p󸀠 󳨅→ Hε, p󸀠 := p

p−1 , is defined by

u = i∗ε (v) ⇐⇒ ⟨u, φ⟩ε = 1
εn ∫

M

vφ dμg for all φ ∈ H1
g (M)⇐⇒ −ε2 divg(c(x)∇gu) + d(x)u = v.

Note that, for some positive constant C independent of ε,‖i∗ε (v)‖ε ≤ C|v|p󸀠 ,ε for all v ∈ Lε,p󸀠 . (2.11)

Using the adjoint operator, we can rewrite equation (2.4) as

u = i∗ε (b(x)f(u) + ω2b(x)g(u)),
where

f(u) := (u+)p−1; g(u) := [q2Φ2(u) − 2qΦ(u)]u.
For ξ ∈ ∂M and ε > 0, let

Kε,ξ := Span{Z1ε,ξ , . . . , Zn−1ε,ξ },
where the Z iε,ξ are the functions defined in (2.10). This is an (n − 1)-dimensional subspace of Hε. We denote
its orthogonal complement with respect to ⟨ ⋅ , ⋅ ⟩ε by

K⊥ε,ξ := {u ∈ Hε : ⟨u, Z iε,ξ ⟩ε = 0}.
We look for a solution to equation (2.4) of the form Wε,ξ + ϕ with ϕ ∈ K⊥ε,ξ . Thus, Wε,ξ + ϕ solves the

equations

Π⊥ε,ξ (Wε,ξ + ϕ − i∗ε [b(x)f(Wε,ξ + ϕ) + ω2b(x)g(Wε,ξ + ϕ)]) = 0, (2.12)

Πε,ξ (Wε,ξ + ϕ − i∗ε [b(x)f(Wε,ξ + ϕ) + ω2b(x)g(Wε,ξ + ϕ)]) = 0,
where Πε,ξ : Hε → Kε,ξ and Π⊥ε,ξ : Hε → K⊥ε,ξ are the orthogonal projections onto Kε,ξ and K

⊥
ε,ξ , respectively.

The first step in the proof of Theorem 1.3 is to solve equation (2.12). To this end, we define the linear
operator Lε,ξ : K⊥ε,ξ → K⊥ε,ξ by

Lε,ξ (ϕ) := Π⊥ε,ξ (ϕ − i∗ε [b(x)f 󸀠(Wε,ξ )ϕ]). (2.13)

Lemma 3.1 yields the invertibility of Lε,ξ . Then we will use a contraction mapping argument to solve equa-
tion (2.12). In Section 3, we will prove the following result.

Proposition 2.4. There exist ε0 > 0 and C > 0 such that, for any ξ ∈ ∂M and any ε ∈ (0, ε0), there is a unique
ϕ = ϕε,ξ which solves equation (2.12). This function satisfies‖ϕε,ξ ‖ε ≤ Cε.
Moreover, ξ → ϕε,ξ is a C1-map.
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Now, for each ε ∈ (0, ε0), we introduce the reduced energy Ĩε : ∂M → ℝ, defined by
Ĩε(ξ) := Iε(Wε,ξ + ϕε,ξ ),

where Iε is the functional defined in (2.3), whose critical points are the solutions to equation (2.4). It is easy
to verify that ξε is a critical point of Ĩε if and only if the function uε = Wε,ξε + ϕε,ξε is a weak solution to
problem (2.4).

In Section 4, we will compute the asymptotic expansion of the reduced functional Ĩε with respect to the
parameter ε. We will show that

Ĩε(ξ) = κ c(ξ) n2 d(ξ) pp−2− n2
b(ξ) 2

p−2
+ o(1)

C1-uniformly with respect to ξ ∈ ∂M as ε → 0, where

κ := (12 − 1p ) ∫
ℝn+

Up dz.

IfK is a nonempty C1-stable critical set for the function Γ, then, by Definition 1.4, there exists a critical
point ξε ∈ ∂M of Ĩε such that distg(ξε ,K) → 0as ε → 0. Consequently, uε = Wε,ξε + ϕε,ξε is a solution of (2.4),
and Theorem 1.3 is proved.

3 The finite-dimensional reduction

In this section, we prove Proposition 2.4. Using the linear operator Lε,ξ : K⊥ε,ξ → K⊥ε,ξ introduced in (2.13),
equation (2.12) can be rewritten as

Lε,ξ (ϕ) = Nε,ξ (ϕ) + Rε,ξ + Sε,ξ (ϕ),
where

Nε,ξ (ϕ) := Π⊥ε,ξ (i∗ε [b(x)(f(Wε,ξ + ϕ) − f(Wε,ξ ) − f 󸀠(Wε,ξ )ϕ)]),
Rε,ξ := Π⊥ε,ξ (i∗ε [b(x)f(Wε,ξ )] −Wε,ξ ),

Sε,ξ (ϕ) := ω2Π⊥ε,ξ (i∗ε [b(x)(q2Φ2(Wε,ξ + ϕ) − 2qΦ(Wε,ξ + ϕ))(Wε,ξ + ϕ)]).
We refer to [26, Proposition 3.1], [7, Lemma 4.1] or [22, Lemma 10] for the proof of the following lemma.

Lemma 3.1. There exist ε0 and C > 0 such that, for any ξ ∈ ∂M and ε ∈ (0, ε0),‖Lε,ξ ‖ε ≥ C‖ϕ‖ε for every ϕ ∈ K⊥ε,ξ .
We now estimate the remainder term Rε,ξ .

Lemma 3.2. There exists ε0 > 0 such that, for any ξ ∈ ∂M and ε ∈ (0, ε0), one has‖Rε,ξ ‖ε = o(ε).
Proof. Let Gε,ξ be the function such thatWε,ξ = i∗ε (b(x)Gε,ξ ), i.e.,−ε2 divg(c(x)∇gWε,ξ ) + d(x)Wε,ξ = b(x)Gε,ξ .
Then, for x ∈ Qξ and its Fermi coordinates y := (ψ∂ξ )−1(x), setting c̃(y) := c(x), d̃(y) := d(x) and b̃(y) := b(x),
we have

b(x)Gε,ξ (x) = d̃(y)V ξε (y)χ(y) − ε2√|g(y)| ∂∂yj [√|g(y)|gij(y)c̃(y) ∂∂yi (V ξε (y)χ(y))]= d̃(y)V ξε (y)χ(y) − ε2gij(y) ∂∂yj [c̃(y) ∂∂yi (V ξε (y)χ(y))]− ε2√|g(y)| ∂∂yj [√|g(y)|gij(y)]c̃(y) ∂∂yi (V ξε (y)χ(y))
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= d̃(y)V ξε (y)χ(y) − ε2 ∂
∂yi
[c̃(y) ∂∂yi V ξε (y)]χ(y) − ε2 c̃(y) ∂∂yi V ξε (y) ∂∂yi χ(y)− ε2 ∂

∂yi
[c̃(y)V ξε (y) ∂∂yi χ(y)] − ε2(gij(y) − δij) ∂∂yj [c̃(y) ∂∂yi (V ξε (y)χ(y))]− ε2√|g(y)| ∂∂yj [|g(y)| 12 gij(y)]c̃(y) ∂∂yi (V ξε (y)χ(y)).

Moreover, by (2.8), we have

d̃(y)V ξε (y)χ(y) − ε2 ∂
∂yi
[c̃(y) ∂∂yi (V ξε (y))]χ(y)= d(ξ)V ξε (y)χ(y) − ε2c(ξ)∆V ξε (y)χ(y) + [d̃(y) − d(ξ)]V ξε (y)χ(y) − ε2 ∂

∂yi
[(c̃(y) − c(ξ)) ∂∂yi (V ξε (y))]χ(y)= (b(ξ)(V ξε (y))p−1 + [d̃(y) − d(ξ)]V ξε (y) − ε2 ∂

∂yi
[(c̃(y) − c(ξ)) ∂∂yi (V ξε (y))])χ(y).

From the definition of Rε,ξ we obtain‖Rε,ξ ‖ε ≤ ‖i∗ε (b(x)f(Wε,ξ )) −Wε,ξ ‖ε = 󵄩󵄩󵄩󵄩i∗ε (b(x)[f(Wε,ξ ) − Gε,ξ ])󵄩󵄩󵄩󵄩ε .
Using (2.11), we estimate the right-hand side by∫

M

󵄨󵄨󵄨󵄨b(x)Wp−1
ε,ξ − b(x)Gε,ξ 󵄨󵄨󵄨󵄨p󸀠 dμg ≤ C ∫

B(0,r)

b̃(y)p󸀠 󵄨󵄨󵄨󵄨(V ξε (y))p−1 − Gε,ξ (ψ∂ξ (y))󵄨󵄨󵄨󵄨p󸀠 dy≤ C ∫
D+

|b̃(y) − b(ξ)|p󸀠 |V ξε (y)|p dy + C ∫
B(0,r)

|d̃(y) − d(ξ)|p󸀠 |V ξε (y)|p dy
+ Cε2 ∫

D+

󵄨󵄨󵄨󵄨󵄨󵄨 ∂∂yi [(c̃(y) − c(ξ)) ∂∂yi (V ξε (y))]󵄨󵄨󵄨󵄨󵄨󵄨p󸀠 dy+ Cε2 ∫
D+

|gij(y) − δij|p󸀠 󵄨󵄨󵄨󵄨󵄨󵄨 ∂∂vj [c̃(y) ∂∂yi (V ξε (y))]󵄨󵄨󵄨󵄨󵄨󵄨p󸀠 dy+ Cε2 ∫
D+

1|g(y)| p󸀠2 ∂
∂yj
󵄨󵄨󵄨󵄨[|g(y)| 12 gij(y)]󵄨󵄨󵄨󵄨p󸀠 󵄨󵄨󵄨󵄨󵄨󵄨c̃(y) ∂∂yi (V ξε (y))󵄨󵄨󵄨󵄨󵄨󵄨p󸀠 dy.

By the usual change of variables y = εz, we can easily estimate almost all terms in the previous equation. The
only term needing more attention is

I1 = Cε2 ∫
D+

|gij(y) − δij|p󸀠 󵄨󵄨󵄨󵄨󵄨󵄨 ∂∂yj [c̃(y) ∂∂yi (V ξε (y))]󵄨󵄨󵄨󵄨󵄨󵄨p󸀠 dy.
We have

I1 ≤ Cε2 ∫
ℝn+

|gij(εz) − δij|p󸀠 󵄨󵄨󵄨󵄨󵄨󵄨 1ε2 ∂2

∂z2i
(V ξ (z))󵄨󵄨󵄨󵄨󵄨󵄨p󸀠εn dz + o(εp󸀠 ),

and by (2.5) we get ‖Rε,ξ ‖ε = O(ε 2+p󸀠+n−2p󸀠
p󸀠 ) = O(ε 2+n

p󸀠
−1) = o(ε)

since p > 2 and n ≥ 2, so 2+n
p󸀠 > 2.

Lemma 3.3. There exist ε0 > 0 and C > 0 such that, for any ξ ∈ ∂M, ε ∈ (0, ε0) and r > 0, we have that‖Sε,ξ (ϕ)‖ε ≤ Cε (3.1)

and ‖Sε,ξ (ϕ1) − Sε,ξ (ϕ2)‖ε ≤ ℓε‖ϕ1 − ϕ2‖ε (3.2)

for ϕ, ϕ1, ϕ2 ∈ {v ∈ Hε : ‖v‖ε ≤ rε}, with ℓε → 0 as ε → 0.
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Proof. Let us prove (3.1). From the definition of i∗ and (2.11) it follows that‖Sε,ξ (ϕ)‖ε ≤ C|Φ2(Wε,ξ + ϕ)(Wε,ξ + ϕ)|ε,p󸀠 + C|Φ(Wε,ξ + ϕ)(Wε,ξ + ϕ)|ε,p󸀠≤ C|Φ(Wε,ξ + ϕ)(Wε,ξ + ϕ)|ε,p󸀠
since 0 < Φ(u) < 1

q . Hence, for some t > 2 if n = 2 or for t = 2∗n if n = 3, 4, we have that‖Sε,ξ (ϕ)‖ε ≤ C 1
εn/p󸀠
(∫
M

|Φ(Wε,ξ + ϕ)|t) 1t (|Wε,ξ + ϕ| tp󸀠t−p󸀠 ) t−p󸀠tp󸀠

≤ C 1
εn/p󸀠
‖Φ(Wε,ξ + ϕ)‖H1

g
|Wε,ξ + ϕ| tp󸀠

t−p󸀠
,g≤ C 1

εn/p󸀠
‖Φ(Wε,ξ + ϕ)‖H1

g
εn

t−p󸀠

tp󸀠 |Wε,ξ + ϕ|ε, tp󸀠
t−p󸀠≤ Cε− nt ‖Φ(Wε,ξ + ϕ)‖H1

g
(1 + ‖ϕ‖ε)

by Remark 2.3. Now, for n = 2, by (5.2) we have that‖Sε,ξ (ϕ)‖ε ≤ Cεβ− 2t ,
and we can chose t > 2 sufficiently large and β < 2 sufficiently close to 2 to prove the claim. On the other
hand, for n = 3, 4, recalling that t = 2∗n and using (5.4), we have‖Sε,ξ (ϕ)‖ε ≤ Cε− n−22 ε n+22 = Cε2.
In every case, ‖Sε,ξ (ϕ)‖ε ≤ Cε, and we have proved (3.1).

Let us prove (3.2). From (2.11), since 0 < Φ(u) < 1
q , it follows that‖Sε,ξ (ϕ1) − Sε,ξ (ϕ2)‖ε≤ C|Φ2(Wε,ξ + ϕ1)(Wε,ξ + ϕ1) − Φ2(Wε,ξ + ϕ2)(Wε,ξ + ϕ1)|ε,p󸀠+ C|Φ(Wε,ξ + ϕ1)(Wε,ξ + ϕ1) − Φ(Wε,ξ + ϕ2)(Wε,ξ + ϕ1)|ε,p󸀠≤ C|Φ(Wε,ξ + ϕ1)(Wε,ξ + ϕ1) − Φ(Wε,ξ + ϕ2)(Wε,ξ + ϕ1)|ε,p󸀠= C󵄨󵄨󵄨󵄨[Φ(Wε,ξ + ϕ1) − Φ(Wε,ξ + ϕ2)]Wε,ξ
󵄨󵄨󵄨󵄨ε,p󸀠 + C|Φ(Wε,ξ + ϕ2)(ϕ1 − ϕ2)|ε,p󸀠 =: I1 + I2.

In the light of Remark 2.3, for some θ ∈ (0, 1) we have that
Ip

󸀠

1 = Cεn ∫
M

|Φ󸀠(Wε,ξ + θϕ1 + (1 − θ)ϕ2)(ϕ1 − ϕ2)|p󸀠 |Wε,ξ + ϕ1|p󸀠
≤ C
εn (∫

M

|Φ󸀠(Wε,ξ + θϕ1 + (1 − θ)ϕ2)(ϕ1 − ϕ2)|t) p󸀠t (∫
M

|Wε,ξ + ϕ1| p󸀠 tt−p󸀠 ) t−p󸀠t
= C
εn
‖Φ󸀠(Wε,ξ + θϕ1 + (1 − θ)ϕ2)(ϕ1 − ϕ2)‖p󸀠H1

g
εn

t−p󸀠
t |Wε,ξ + ϕ1|p󸀠ε, p󸀠 t

t−p󸀠≤ Cε− np󸀠t ‖Φ󸀠(Wε,ξ + θϕ1 + (1 − θ)ϕ2)(ϕ1 − ϕ2)‖p󸀠H1
g
.

Here, as before, t > 2 for n = 2 and t = 2∗n for n = 3, 4. Notice that, since p󸀠 < 2, we have
p󸀠2∗
2∗ − p󸀠 < 2∗.

By direct computation, one sees that ‖u‖H1
g
≤ ε(n−2)/2‖u‖ε for n = 2, 3, 4. Thus, in case n = 2, from Lemma 5.2

we obtain that
I1 ≤ Cε− 2t (εβ + ‖ϕ1‖ε + ‖ϕ2‖ε)‖ϕ1 − ϕ2‖ε ≤ Cεβ− 2t ‖ϕ1 − ϕ2‖ε

and, choosing t sufficiently large, we conclude that I1 ≤ ℓε‖ϕ1 − ϕ2‖ε with ℓε → 0. For n = 3, 4, again by
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Lemma 5.2, we have

I1 ≤ Cε− n
2∗ (ε2 + ε n−22 (‖ϕ1‖ε + ‖ϕ2‖ε))ε n−22 ‖ϕ1 − ϕ2‖ε≤ C(ε2 + ε n−22 (‖ϕ1‖ε + ‖ϕ2‖ε))‖ϕ1 − ϕ2‖ε ,

and since ‖ϕ1‖ε + ‖ϕ2‖ε ≤ Cε, we have again that I1 ≤ ℓε‖ϕ1 − ϕ2‖ε with ℓε → 0. To estimate I2 we proceed
in a similar way, obtaining

Ip
󸀠

2 = Cεn ∫
M

|Φ(Wε,ξ + ϕ2)|p󸀠 |ϕ1 − ϕ2|p󸀠
≤ C
εn (∫

M

|Φ(Wε,ξ + ϕ2)|t) p󸀠t (∫
M

|ϕ1 − ϕ2| p󸀠 tt−p󸀠 ) t−p󸀠t
≤ Cε− np󸀠t ‖Φ(Wε,ξ + ϕ2)‖p󸀠H1

g
‖ϕ1 − ϕ2‖p󸀠ε .

For n = 2, we have by (5.2) that
I2 ≤ Cε− 2t εβ(1 + ‖ϕ2‖ε)‖ϕ1 − ϕ2‖ε ≤ Cεβ− 2t ‖ϕ1 − ϕ2‖ε

and, since tmay be chosen arbitrarily large, we have εβ−2/t → 0. For n = 3, 4, again by (5.2) we conclude that
I2 ≤ Cε− n

2∗ ε2(1 + ‖ϕ2‖ε)‖ϕ1 − ϕ2‖ε ≤ Cε2‖ϕ1 − ϕ2‖ε ,
so I2 ≤ ℓε‖ϕ1 − ϕ2‖ε with ℓε → 0. Collecting the estimates for I1 and I2, we get (3.2).

Sketch of the proof of Proposition 2.4. Since, by Lemma 3.1, Lε,ξ is invertible, the map

Tε,ξ : K⊥ε,ξ → K⊥ε,ξ , Tε,ξ (ϕ) := L−1ε,ξ (Nε,ξ (ϕ) + Rε,ξ + Sε,ξ (ϕ))
is well defined. As ‖Tε,ξ (ϕ)‖ε ≤ C(‖Nε,ξ (ϕ)‖ε + ‖Sε,ξ (ϕ)‖ε + ‖Rε,ξ ‖ε)
and ‖Tε,ξ (ϕ1) − Tε,ξ (ϕ2)‖ε ≤ C‖Nε,ξ (ϕ1) − Nε,ξ (ϕ2)‖ε + C‖Sε,ξ (ϕ1) − Sε,ξ (ϕ2)‖ε ,
we deduce from Lemmas 3.2 and 3.3 that Tε,ξ is a contraction in the ball centered at 0 with radius Cε in K⊥ε,ξ
for a suitable constant C. Then Tε,ξ has a unique fixed point. The proof that the map ξ → ϕε,ξ is a C1-map
uses the implicit function theorem. This part of the proof is standard.

4 The reduced energy

In this section, we obtain the expansion of the functional Ĩε(ξ) with respect to ε. Recall the notation intro-
duced in Section 2.2.

Lemma 4.1. The expression

Ĩε(ξ) = Iε(Wε,ξ + ϕε,ξ ) = Iε(Wε,ξ ) + o(1) = Jε(Wε,ξ ) + ω2

2 Gε(Wε,ξ ) + o(1)
holds true C0-uniformly with respect to ξ as ε goes to zero. Moreover, setting ξ(z) := expξ (z) for z ∈ Bn−1R (0), we
have that ( ∂

∂zh
Ĩε(ξ(z))) 󵄨󵄨󵄨󵄨󵄨󵄨z=0 = ( ∂∂zh Iε(Wε,ξ(z) + ϕε,ξ(z))) 󵄨󵄨󵄨󵄨󵄨󵄨z=0= ( ∂

∂zh
Iε(Wε,ξ(z))) 󵄨󵄨󵄨󵄨󵄨󵄨z=0 +o(1)= ( ∂

∂zh
Jε(Wε,ξ(z))) 󵄨󵄨󵄨󵄨󵄨󵄨z=0 +ω2

2 ( ∂∂zh Gε(Wε,ξ(z))) 󵄨󵄨󵄨󵄨󵄨󵄨z=0 +o(1)
C0-uniformly with respect to ξ as ε goes to zero, for every h = 1, . . . , n − 1.
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Proof. As in [7, Lemma 5.1], we obtain the estimates

Jε(Wε,ξ(z) + ϕε,ξ(z)) − Jε(Wε,ξ(z)) = o(1),(J󸀠ε(Wε,ξ(z) + ϕε,ξ(z)) − J󸀠ε(Wε,ξ(z)))[( ∂∂zhWε,ξ(z)) 󵄨󵄨󵄨󵄨󵄨󵄨z=0] = o(1).
To complete the proof we need the following estimates:

Gε(Wε,ξ + ϕε,ξ ) − Gε(Wε,ξ ) = o(1), (4.1)[G󸀠ε(Wε,ξ + ϕε,ξ ) − G󸀠ε(Wε,ξ )][( ∂∂zhWε,ξ(z)) 󵄨󵄨󵄨󵄨󵄨󵄨z=0] = o(1), (4.2)(J󸀠ε(Wε,ξ(z) + ϕε,ξ(z)) + ω2

2 G󸀠ε(Wε,ξ(z) + ϕε,ξ(z)))[ ∂∂zh ϕε,ξ(z)] = o(1). (4.3)

The proof of (4.1), (4.2) and (4.3) is technical and it is postponed to the appendix. With these estimates, one
can prove the claim following the argument of [7, Lemma 5.1].

Lemma 4.2. The estimate

Jε(Wε,ξ ) = (12 − 1p ) c(ξ) n2 d(ξ) pp−2− n2b(ξ) 2
p−2
∫
ℝn+

Up dz + O(ε)
holds true C1-uniformly with respect to ξ ∈ ∂M.

Proof. For y ∈ D+, setting c̃(y) := c(x), d̃(y) := d(x) and b̃(y) := b(x) with x := ψ∂ξ (y) ∈ Qξ , we have
Jε(Wε,ξ ) = ε2

2εn ∫
D+

c̃(y) n∑
i,j=1

gij(y)∂(V ξε (y)χ(y))
∂yi

∂(V ξε (y)χ(y))
∂yj

|g(y)| 12 dy
+ 1
2εn ∫

D+

d̃(y)(V ξε (y)χ(y))2|g(y)| 12 dy − 1
pεn ∫

D+

b̃(y)(V ξε (y)χ(y))p|g(y)| 12 dy.
Using the change of variables y = εζ , from the expansions (2.5), (2.6) and (2.7) we immediately obtain

Jε(Wε,ξ ) = 12 ∫
ℝn+

c(ξ)|∇V ξ (ζ)|2 + d(ξ)(V ξ (ζ))2 dζ − 1
p ∫
ℝn+

b(ξ)(V ξ (ζ))p dζ + O(ε).
From the definitions of V ξ and U we get

Jε(Wε,ξ ) = c(ξ) n2 d(ξ) pp−2− n2
b(ξ) 2

p−2
[12 ∫
ℝn+

(|∇U|2 + U2) − 1
p ∫
ℝn+

Up dζ] + O(ε)
= (12 − 1p ) c(ξ) n2 d(ξ) pp−2− n2b(ξ) 2

p−2
∫
ℝn+

Up dζ + O(ε)
C0-uniformly with respect to ξ ∈ ∂M. For the sake of readability, the C1-convergence is postponed to the
appendix, where a proof is given in full detail.

Lemma 4.3. The expression

Iε(Wε,ξ ) = (12 − 1p ) c(ξ) n2 d(ξ) pp−2− n2b(ξ) 2
p−2
∫
ℝn+

Up dz + o(1)
holds true C1-uniformly with respect to ξ ∈ ∂M.

Proof. In Lemma 4.2 we proved that

Jε(Wε,ξ ) = (12 − 1p ) c(ξ) n2 d(ξ) pp−2− n2b(ξ) 2
p−2
∫
ℝn

Up dz + O(ε).
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It is enough to show now that Gε(Wε,ξ ) = o(1) holds true C1-uniformly with respect to ξ ∈ ∂M. For the
C0-convergence, by Remark 2.3 and since ‖Φ(Wε,ξ )‖ε ≤ Cε, we have that|Gε(Wε,ξ )| ≤ Cεn 󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫

M

Φ(Wε,ξ )W2
ε,ξ dμg
󵄨󵄨󵄨󵄨󵄨󵄨󵄨≤ C

εn
|Φ(Wε,ξ )|2,g|Wε,ξ |24,g≤ C|Φ(Wε,ξ )|ε,2|Wε,ξ |2ε,4≤ C‖Φ(Wε,ξ )‖ε ≤ Cε.

For the C1-convergence, we estimate󵄨󵄨󵄨󵄨󵄨󵄨 ∂∂zh Gε(Wε,ξ(z))|z=0󵄨󵄨󵄨󵄨󵄨󵄨 ≤ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨 Cεn ∂
∂zh
∫
M

Φ(Wε,ξ(z))W2
ε,ξ(z)|z=0 dμg󵄨󵄨󵄨󵄨󵄨󵄨󵄨≤ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨 Cεn ∫

M

Φ(Wε,ξ(z))2Wε,ξ(h)( ∂∂zhWε,ξ(z)) 󵄨󵄨󵄨󵄨󵄨󵄨z=0 dμg󵄨󵄨󵄨󵄨󵄨󵄨󵄨+ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨 Cεn ∫
M

W2
ε,ξ(h)Φ

󸀠(Wε,ξ(z))[ ∂∂zhWε,ξ(z)|z=0] dμg󵄨󵄨󵄨󵄨󵄨󵄨󵄨=: I1 + I2.
Now, by Remark 2.3 and since 󵄩󵄩󵄩󵄩󵄩󵄩 ∂∂zhWε,ξ(z)|z=0󵄩󵄩󵄩󵄩󵄩󵄩ε = O(1ε ),
we have

I1 ≤ Cεn |Φ(Wε,ξ(z))|3,g|Wε,ξ(z)|3,g󵄨󵄨󵄨󵄨󵄨󵄨 ∂∂zhWε,ξ(z)|z=0󵄨󵄨󵄨󵄨󵄨󵄨3,g≤ C ε 2
3 n

εn
‖Φ(Wε,ξ(z))‖H1

g
|Wε,ξ(z)|ε,3󵄩󵄩󵄩󵄩󵄩󵄩 ∂∂zhWε,ξ(z)|z=0󵄩󵄩󵄩󵄩󵄩󵄩ε≤ Cε− n3−1‖Φ(Wε,ξ(z))‖H1
g
.

From Lemma 5.1, choosing 5
3 < β < 2 if n = 2, we get I1 ≤ Cεβ−2/3−1 = o(1), and for n = 3, 4 we get

I1 ≤ Cε n+22 − n3−1 = ε n6 = o(1).
Using Remark 2.3 and choosing 2n

n+2 < t < 2, we obtain
I2 ≤ Cεn |Wε,ξ(z)|22t,g󵄨󵄨󵄨󵄨󵄨󵄨Φ󸀠(Wε,ξ(z))[ ∂∂zhWε,ξ(z)|z=0]󵄨󵄨󵄨󵄨󵄨󵄨t󸀠 ,g≤ C ε nt

εn
|Wε,ξ(z)|2ε,2t󵄩󵄩󵄩󵄩󵄩󵄩Φ󸀠(Wε,ξ(z))[ ∂∂zhWε,ξ(z)|z=0]󵄩󵄩󵄩󵄩󵄩󵄩H1

g≤ Cε nt −n󵄩󵄩󵄩󵄩󵄩󵄩Φ󸀠(Wε,ξ(z))[ ∂∂zhWε,ξ(z)|z=0]󵄩󵄩󵄩󵄩󵄩󵄩H1
g
.

Finally, using Lemma 5.2 and noting that ‖u‖H1
g
≤ Cε(n−2)/2‖u‖ε, for n = 2 and 3 − 2

t < β < 2 we have
I2 ≤ Cε 2

t −2εβ
󵄩󵄩󵄩󵄩󵄩󵄩 ∂∂zhWε,ξ(z)|z=0󵄩󵄩󵄩󵄩󵄩󵄩ε ≤ Cεβ+ 2t −3 = o(1),

while for n = 3, 4 we get
I2 ≤ Cε nt −nε2ε n−22 󵄩󵄩󵄩󵄩󵄩󵄩 ∂∂zhWε,ξ(z)|z=0󵄩󵄩󵄩󵄩󵄩󵄩ε ≤ Cε nt − n2 = o(1)

since t < 2.
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5 Appendix

We collect a series of technical results that were used previously.

5.1 Key estimates for the function Φ

Lemma 5.1. For ε > 0, ξ ∈ ∂M and φ ∈ H1
g (M), we have the following estimates:

For n = 2 and 1 < β < 2, we have‖Φ(Wε,ξ + φ)‖H1
g
≤ C1(εβ + ‖φ‖2H1

g
), (5.1)‖Φ(Wε,ξ + φ)‖H1

g
≤ C1εβ(1 + ‖φ‖2ε ), (5.2)

and for n = 3, 4 we have ‖Φ(Wε,ξ + φ)‖H1
g
≤ C1(ε n+22 + ‖φ‖2H1

g
), (5.3)‖Φ(Wε,ξ + φ)‖H1

g
≤ C1ε n+22 (1 + ‖φ‖2ε ), (5.4)

where the constant C1 does not depend on ε, ξ and φ.

Proof. To simplify the notation we set v := Φ(Wε,ξ + φ). By (2.1) or (2.2) we have‖v‖2H1
g
≤ C∫

M

c(x)|∇gv|2 + b(x)q2(Wε,ξ + φ)2v2= Cq∫
M

b(x)(Wε,ξ + φ)2v
≤ C(∫

M

vt) 1t (∫
M

(Wε,ξ + φ)2t󸀠) 1t󸀠≤ C‖v‖H1
g
‖Wε,ξ + φ‖2L2t󸀠g≤ C‖v‖H1

g
(‖Wε,ξ ‖2L2t󸀠g + ‖φ‖2L2t󸀠g ),

where t = 2∗n for n = 3, 4 and t ≥ 2 for n = 2. We recall (see Remark 2.3) that

lim
ε→0

1
εn
|Wε,ξ |qq ≤ C|U|qq uniformly with respect to ξ ∈ ∂M.

Thus, we have ‖v‖H1
g
≤ C1(ε n

t󸀠 + |φ|22t󸀠 ,g) ≤ C1(ε n
t󸀠 + ‖φ‖2H1

g
). (5.5)

Notice that for n = 2, since t ≥ 2, we have that 1 ≤ 2
t󸀠 < 2, while for n = 3, 4 we have t󸀠 = 2n

n+2 , which proves
(5.1) and (5.3). In the light of (5.5), we also obtain that‖v‖H1

g
≤ C1(ε n

t󸀠 + |φ|22t󸀠 ,g) ≤ C1ε n
t󸀠 (1 + |φ|22t󸀠 ,ε) ≤ C1ε n

t󸀠 (1 + ‖φ‖2ε ),
which proves the other two inequalities (5.2) and (5.4).

Lemma 5.2. For ε > 0, ξ ∈ ∂M and h, k ∈ H1
g (M), we have the following estimates:

For n = 2 and β ∈ (0, 2), we have‖Φ󸀠(Wε,ξ + k)[h]‖H1
g
≤ C‖h‖H1

g
(εβ + ‖k‖H1

g
),

and for n = 3, 4 we have ‖Φ󸀠(Wε,ξ + k)[h]‖H1
g
≤ C‖h‖H1

g
(ε2 + ‖k‖H1

g
),

where the constant C does not depend on ε, ξ , h and k.



574 | M. Clapp, M. Ghimenti and A.M. Micheletti, KGMP system

Proof. From Lemma 2.1 we obtain‖Φ󸀠(Wε,ξ + k)[h]‖2H1
g
= 2q∫

M

b(x)(Wε,ξ + k)(1 − qΦ(Wε,ξ + k))hΦ󸀠(Wε,ξ + k)[h]− q2 ∫
M

b(x)(Wε,ξ + k)2(Φ󸀠(Wε,ξ + k)[h])2≤ C∫
M

Wε,ξ |h||Φ󸀠(Wε,ξ + k)[h]| + ∫
M

|k||h||Φ󸀠(Wε,ξ + k)[h]|.
We call the last two integrals I1 and I2, respectively, and we estimate each of them separately. We have, by
Remark 2.3, that

I2 ≤ ‖k‖L3g ‖h‖L3g ‖Φ󸀠(Wε,ξ + k)[h]‖L3g ≤ ‖k‖H1
g
‖h‖H1

g
‖Φ󸀠‖H1

g

and

I1 ≤ ‖Φ󸀠(Wε,ξ + k)[h]‖Ltg‖h‖Ltg‖Wε,ξ ‖
L

t
t−2
g
≤ εn t−2t ‖Φ󸀠‖H1

g
‖h‖H1

g
,

where t = 2∗n for n = 3, 4 and t > 2 for n = 2.
5.2 Change of coordinates along ∂M

For ξ ∈ ∂M, we consider the chart ψ∂ξ : D
+ → Qξ , introduced in Section 2.2, whose inverse (ψ∂ξ )−1(x) = y

expresses a point x ∈ Qξ ⊂ M in Fermi coordinates y = (y1, . . . , yn) around ξ .
For z ∈ Bn−1R (0) and x ∈ Qξ ∩ Qexpξ (z), we consider the change of coordinates map

E(z, x) = (ψ∂expξ (z))−1(x) = (ψ∂expξ (z))−1ψ∂ξ (y) = Ẽ(z, y). (5.6)

Since yn = distg(x, ∂M), writing y = (y, yn) with y ∈ ℝn−1 and yn ∈ [0,∞), we have that
Ẽ(z, y, yn) = (exp−1expξ (z) expξ (y), yn). (5.7)

Lemma 5.3. The derivatives of E at (0, ξ) are given by
∂Ek
∂yh
(0, ξ) = ∂Ẽk

∂yh
(0, 0) = −δhk for h = 1, . . . , n − 1, k = 1, . . . , n,

∂2Ek
∂ηj∂yh
(0, ξ) = ∂2Ẽk

∂ηj∂yh
(0, 0) = 0 for h = 1, . . . , n − 1, j, k = 1, . . . , n.

Proof. This follows from [26, Lemma 6.4] by using the expression (5.7).

For z ∈ Bn−1R (0), we set ξ(z) := expξ (z) ∈ ∂M. The functionWε,ξ(z), defined in (2.9), can now be written as

Wε,ξ(z)(x) = γ(ξ(z))Uε(√A(ξ(z))(ψ∂ξ(z))−1(x))χ((ψ∂ξ(z))−1(x))= γ̃(z)Uε(√Ã(z)E(z, x))χ(E(z, x)),
where Ã(z) := A(expξ (z)) and γ̃(z) := γ(expξ (z)). Thus, we have

∂
∂zs

Wε,ξ(z)|z=0 = ( ∂∂zs γ̃(z)|z=0)U(1ε√Ã(0)E(0, x))χ(E(0, x))+ γ̃(0)U(1ε√Ã(0)E(0, x)) ∂∂zs χ(E(z, x))|z=0+ γ̃(0)χ(E(0, x)) ∂
∂zs

U(1ε√Ã(z)E(z, x)) 󵄨󵄨󵄨󵄨󵄨󵄨z=0 .
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If x := ψ∂ξ (εy), ξ := ξ(0), then E(0, x) = εy, and we have
∂
∂zs

Wε,ξ(z)|z=0 = ( ∂∂zs γ̃(z)|z=0)U(√Ã(0)y)χ(εy) + γ̃(0)U(√Ã(0)y) ∂χ∂ηk (εy) ∂∂zs Ek(z, ψ∂ξ0 (εy))|z=0+ γ̃(0)χ(εy)√Ã(0)
ε

∂U
∂ηk
(√Ã(0)y) ∂

∂zs
Ek(z, ψ∂ξ0 (εy))|z=0+ γ̃(0)χ(εy) ∂U

∂ηk
(√Ã(0)y) ∂

∂zs
√Ã(z) 󵄨󵄨󵄨󵄨󵄨󵄨z=0 yk , (5.8)

where ∂f
∂ηk ( ⋅ ) denotes the derivative of the function f with respect to its k-th variable.

5.3 The pending proofs in Section 4

Conclusion of the proof of Lemma 4.1. Tofinish theproof of this lemmaweneed toprove (4.1), (4.2) and (4.3).

Proof of (4.1). For some θ ∈ [0, 1], we have
Gε(Wε,ξ + ϕε,ξ ) − Gε(Wε,ξ ) = 1

εn ∫
M

b(x)[Φ(Wε,ξ + ϕε,ξ )(Wε,ξ + ϕε,ξ )2 − Φ(Wε,ξ )(Wε,ξ )2]
= 1
εn ∫

M

b(x)Φ󸀠(Wε,ξ + θϕε,ξ )[ϕε,ξ ](Wε,ξ )2
+ 1
εn ∫

M

b(x)Φ(Wε,ξ + ϕε,ξ )[2ϕε,ξWε,ξ + ϕ2
ε,ξ ].

Since ‖ϕε,ξ ‖ε ≤ Cε and 0 < Φ(u) < 1
q , from Remark 2.3 we obtain|Gε(Wε,ξ + ϕε,ξ ) − Gε(Wε,ξ )| ≤ Cεn |Φ󸀠(Wε,ξ + θϕε,ξ )[ϕε,ξ ]|2,g|Φε,ξ |24,g + Cεn |ϕε,ξ |2,g(|Wε,ξ |2,g + |ϕε,ξ |2,g)≤ C εn/2
εn
‖Φ󸀠(Wε,ξ + θϕε,ξ )[ϕε,ξ ]‖H1

g
‖Φε,ξ ‖2ε + C‖Φε,ξ ‖ε(‖Wε,ξ ‖ε + ‖Φε,ξ ‖ε)≤ ε2

εn/2
‖Φ󸀠(Wε,ξ + θϕε,ξ )[ϕε,ξ ]‖H1

g
+ Cε(1 + ε).

Using Lemma 5.2, we conclude that|Gε(Wε,ξ + ϕε,ξ ) − Gε(Wε,ξ )| ≤ C(ε3− n2 + ε) ≤ Cε.
Proof of (4.2). Recall that ξ(z) := expξ (z) for z ∈ Bn−1R (0). Since 0 < Φ(u) < 1

q , for some θ ∈ [0, 1] we have󵄨󵄨󵄨󵄨󵄨󵄨[G󸀠ε(Wε,ξ + ϕε,ξ ) − G󸀠ε(Wε,ξ )][( ∂∂zhWε,ξ(z)) 󵄨󵄨󵄨󵄨󵄨󵄨z=0]󵄨󵄨󵄨󵄨󵄨󵄨≤ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨 Cεn ∫
M

[Φ(Wε,ξ + ϕε,ξ ) − Φ(Wε,ξ )]Wε,ξ( ∂∂zhWε,ξ(z)) 󵄨󵄨󵄨󵄨󵄨󵄨z=0󵄨󵄨󵄨󵄨󵄨󵄨󵄨+ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨 Cεn ∫
M

[qΦ2(Wε,ξ + ϕε,ξ ) − qΦ2(Wε,ξ )]Wε,ξ( ∂∂zhWε,ξ(z)) 󵄨󵄨󵄨󵄨󵄨󵄨z=0󵄨󵄨󵄨󵄨󵄨󵄨󵄨+ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨 Cεn ∫
M

[Φ(Wε,ξ + ϕε,ξ ) − qΦ2(Wε,ξ + ϕε,ξ )]ϕε,ξ( ∂∂zhWε,ξ(z)) 󵄨󵄨󵄨󵄨󵄨󵄨z=0󵄨󵄨󵄨󵄨󵄨󵄨󵄨≤ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨 Cεn ∫
M

[Φ(Wε,ξ + ϕε,ξ ) − Φ(Wε,ξ )]Wε,ξ( ∂∂zhWε,ξ(z)) 󵄨󵄨󵄨󵄨󵄨󵄨z=0󵄨󵄨󵄨󵄨󵄨󵄨󵄨+ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨 Cεn ∫
M

Φ(Wε,ξ + ϕε,ξ )ϕε,ξ( ∂∂zhWε,ξ(z)) 󵄨󵄨󵄨󵄨󵄨󵄨z=0󵄨󵄨󵄨󵄨󵄨󵄨󵄨
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≤ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨 Cεn ∫
M

Φ󸀠(Wε,ξ + θϕε,ξ )(ϕε,ξ )Wε,ξ( ∂∂zhWε,ξ(z)) 󵄨󵄨󵄨󵄨󵄨󵄨z=0󵄨󵄨󵄨󵄨󵄨󵄨󵄨+ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨 Cεn ∫
M

Φ󸀠(Wε,ξ + θϕε,ξ )(ϕε,ξ )ϕε,ξ( ∂∂zhWε,ξ(z)) 󵄨󵄨󵄨󵄨󵄨󵄨z=0󵄨󵄨󵄨󵄨󵄨󵄨󵄨+ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨 Cεn ∫
M

Φ(Wε,ξ )ϕε,ξ( ∂∂zhWε,ξ(z)) 󵄨󵄨󵄨󵄨󵄨󵄨z=0󵄨󵄨󵄨󵄨󵄨󵄨󵄨=: I1 + I2 + I3.
From (5.8) and a straightforward computation we derive that󵄨󵄨󵄨󵄨󵄨󵄨( ∂∂zhWε,ξ(z)) 󵄨󵄨󵄨󵄨󵄨󵄨z=0󵄨󵄨󵄨󵄨󵄨󵄨ε,3 ≤ ( ∫

ℝn

[ n∑
k=1

󵄨󵄨󵄨󵄨󵄨󵄨1ε ∂U∂yk (y)󵄨󵄨󵄨󵄨󵄨󵄨]3 dy) 1
3 = O(1ε ).

Now, recalling that ‖ϕε,ξ(z)‖ε ≤ Cε and that ‖u‖H1
g
≤ Cε(n−2)/2‖u‖ε, from Remark 2.3 and Lemma 5.2 we get

that

I1 ≤ C ε 2n
3

εn (∫
M

|Φ󸀠(Wε,ξ + ϕε,ξ )(ϕε,ξ )|3) 13 ( 1εn ∫
M

W3
ε,ξ) 13 ( 1εn ∫

M

󵄨󵄨󵄨󵄨󵄨󵄨( ∂∂zhWε,ξ(z)) 󵄨󵄨󵄨󵄨󵄨󵄨z=0󵄨󵄨󵄨󵄨󵄨󵄨3) 13≤ Cε− n3−1‖Φ󸀠(Wε,ξ + ϕε,ξ )(ϕε,ξ )‖H1
g≤ Cε− n3−1‖ϕε,ξ ‖2H1

g≤ Cε− n3−1εn = o(1).
The term I2 can be estimated in the same way, while for I3 we have

I3 ≤ C ε 2n
3

εn (∫
M

|Φ(Wε,ξ )|3) 13 ( 1εn ∫
M

|ϕ|3ε,ξ) 13 ( 1εn ∫
M

󵄨󵄨󵄨󵄨󵄨󵄨( ∂∂zhWε,ξ(z)) 󵄨󵄨󵄨󵄨󵄨󵄨z=0󵄨󵄨󵄨󵄨󵄨󵄨3) 13≤ Cε− n3 ‖Φ(Wε,ξ )‖H1 .

Now, if n = 2, by (5.1) we have I3 ≤ Cεβ−n/3 = o(1), choosing β wisely. If n = 3, 4, by (5.2) we get
I3 ≤ Cε n+22 − n3 = Cε n6+1.

This proves (4.2).

Proof of (4.3). Following the proof of [7, Lemma 5.1, step 2], we just have to prove that󵄨󵄨󵄨󵄨G󸀠ε(Wε,ξ(z) + ϕε,ξ(z))[Z lε,ξ(z)]󵄨󵄨󵄨󵄨 = o(1),
Since 0 < Φ(u) < 1

q ,󵄨󵄨󵄨󵄨G󸀠ε(Wε,ξ(z) + ϕε,ξ(z))[Z lε,ξ(z)]󵄨󵄨󵄨󵄨 ≤ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨 Cεn ∫
M

Φ(Wε,ξ(z) + ϕε,ξ(z))(Wε,ξ(z) + ϕε,ξ(z))Z lε,ξ(z)󵄨󵄨󵄨󵄨󵄨󵄨󵄨+ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨 1εn ∫
M

Φ2(Wε,ξ(z) + ϕε,ξ(z))(Wε,ξ(z) + ϕε,ξ(z))Z lε,ξ(z)󵄨󵄨󵄨󵄨󵄨󵄨󵄨≤ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨 Cεn ∫
M

Φ(Wε,ξ(z) + ϕε,ξ(z))(Wε,ξ(z) + ϕε,ξ(z))Z lε,ξ(z)󵄨󵄨󵄨󵄨󵄨󵄨󵄨 =: I4.
By (2.10) it can be proved easily that ‖Z lε,ξ(z)‖ε = O(1). So we have

I4 ≤ ε− n3 (∫
M

|Φ(Wε,ξ + ϕε,ξ )|3) 13 ( 1εn ∫
M

|Wε,ξ + ϕε,ξ |3) 13 ( 1εn ∫
M

|Z lε,ξ(z)|3) 13≤ ε− n3 ‖Φ(Wε,ξ + ϕε,ξ )‖H1
g
(‖Wε,ξ ‖3,ε + ‖ϕε,ξ ‖ε)‖Z lε,ξ(z)‖ε≤ ε− n3 ‖Φ(Wε,ξ + ϕε,ξ )‖H1

g
.
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Now, if n = 2, by (5.2) we have that
I3 ≤ cεβ−n/3 = o(1),

and if n = 3, 4 by (5.2) we have that
I3 ≤ cε n+22 − n3 = cε n6+1.

Conclusion of the proof of Lemma 4.2. To finish the proof of this lemmawe need to prove theC1-convergence.
We do this for the first partial derivative. We set ξ(z) := expξ (z) for z ∈ Bn−1R (0). Then we have

∂
∂z1

Jε(Wε,ξ(z))|z=0 = J󸀠ε(Wε,ξ(z))[ ∂∂z1Wε,ξ(z)] 󵄨󵄨󵄨󵄨󵄨󵄨z=0= ε2
εn ∫

M

c(x)∇gWε,ξ(z)∇g ∂
∂z1

Wε,ξ(z) dμg|z=0
+ 1
εn ∫

M

d(x)Wε,ξ(z)
∂
∂z1

Wε,ξ(z) dμg|z=0
+ 1
εn ∫

M

b(x)Wp−1
ε,ξ(z)

∂
∂z1

Wε,ξ(z) dμg|z=0=: I1 + I2 + I3.
Next, we estimate each term. Set x := ψ∂ξ (y) and c̃(y) := c(ψ∂ξ (y)) = c(x). By (5.8), we have

I1 = ε2εn ∫
M

c(x)∇gWε,ξ(z)∇g( ∂∂z1Wε,ξ(z)) dμg|z=0
= ε2
εn ∫
ℝn+

c̃(y)|gξ (y)| 12 gijξ (y) ∂∂yi [γ̃(0)Uε(√Ã(0)Ẽ(0, y))χ(Ẽ(0, y))]× ∂
∂yj

∂
∂z1
[γ̃(z)Uε(√Ã(z)Ẽ(z, y))χ(Ẽ(z, y))] 󵄨󵄨󵄨󵄨󵄨󵄨z=0 dy= ∫

ℝn

c̃(εζ)|gξ (εζ)| 12 gijξ (εζ) ∂∂ζi [γ̃(0)Uε(√Ã(0)Ẽ(0, εζ))χ(Ẽ(0, εζ))]× ∂
∂ζj

∂
∂z1
[γ̃(z)Uε(√Ã(z)Ẽ(z, εζ))χ(Ẽ(z, εζ))] 󵄨󵄨󵄨󵄨󵄨󵄨z=0 dζ.

Using the definition (5.6) of Ẽ, we obtain

I1 = ∫
ℝn+

c̃(εζ)γ̃(0)|gξ (εζ)| 12 gijξ (εζ)[( ∂∂ζi U(√Ã(0)ζ))χ(εζ) + U(√Ã(0)ζ) ∂∂ζi χ(εζ)]× ∂
∂ζj

∂
∂z1
[γ̃(z)Uε(√Ã(z)Ẽ(z, εζ))χ(Ẽ(z, εζ))] 󵄨󵄨󵄨󵄨󵄨󵄨z=0 dζ + O(ε)= ∫

ℝn+

c̃(εζ)γ̃(0)|gξ (εζ)| 12 gijξ (εζ)[( ∂∂ζi U(√Ã(0)ζ))χ(εζ) + U(√Ã(0)ζ) ∂∂ζi χ(εζ)]× ∂
∂ζj
[ ∂
∂z1

γ̃(z)|z=0U(√Ã(0)ζ)χ(εζ) + γ̃(0)U(√Ã(0)ζ) ∂χ∂ζk (εζ) ∂∂z1Ek(z, ψ∂ξ (εζ))|z=0+ γ̃(0)χ(εζ)√Ã(0)
ε

∂U
∂ζk
(√Ã(0)ζ) ∂

∂z1
Ek(z, ψ∂ξ (εζ))|z=0+ γ̃(0)χ(εζ) ∂U

∂ζk
(√Ã(0)ζ) ∂

∂z1
√Ã(z) 󵄨󵄨󵄨󵄨󵄨󵄨z=0 ζk] dζ + O(ε)=: D1 + D2 + D3 + D4 + O(ε),
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where ∂f
∂ζk ( ⋅ ) denotes the derivative of the function f with respect to its k-th variable. Expanding c̃(εζ), by the

exponential decay of U and its derivative, and by (2.5), (2.6) and (2.7), we get

D1 = γ̃(0) ∫
ℝn+

(c̃(0)δij + O(ε|ζ|))[ ∂∂ζi (U(√Ã(0)ζ))χ(εζ) + O(ε|ζ|)]× ∂
∂z1

γ̃(z)|z=0[ ∂∂ζj (U(√Ã(0)ζ))χ(εζ) + O(ε2|ζ|2)] dζ= 12 ∂
∂z1
(γ̃(z))2|z=0 c̃(0) ∫

ℝn

󵄨󵄨󵄨󵄨󵄨󵄨∇ζ (U(√Ã(0)ζ))󵄨󵄨󵄨󵄨󵄨󵄨2 dζ + O(ε).
Similarly, D2 = O(ε). Also, we have

D4 = γ̃2(0) ∫
ℝn+

(c̃(0)δij + O(ε|ζ|))[ ∂∂ζi (U(√Ã(0)ζ))χ(εζ) + O(ε2|ζ|2)]× ∂
∂ζj
[χ(εζ) ∂U∂ζk (√Ã(0)ζ) ∂∂z1√Ã(z)|z=0ζk] dζ= c̃(0)γ̃2(0) ∂
∂z1
√Ã(z)|z=0 ∫

ℝn+

∂
∂ζi
(U(√Ã(0)ζ)) ∂∂ζi [ ∂U∂ζk (√Ã(0)ζ)ζk] dζ + O(ε).

Now, an elementary computation yields

1
2
∂
∂z1
󵄨󵄨󵄨󵄨󵄨󵄨∇ζU(√Ã(z)ζ)󵄨󵄨󵄨󵄨󵄨󵄨2 = ∂

∂ζi
(U(√Ã(z)ζ)) ∂∂ζi ∂

∂z1
(U(√Ã(z)ζ))= ∂

∂ζi
(U(√Ã(z)ζ)) ∂∂ζi [ ∂U∂ξk (√Ã(z)ζ)ζk ∂

∂z1
√Ã(z)].

Hence,

D4 = 12 c̃(0)γ̃2(0) ∫
ℝn+

∂
∂z1
(󵄨󵄨󵄨󵄨󵄨󵄨∇ζU(√Ã(z)ζ)󵄨󵄨󵄨󵄨󵄨󵄨2) 󵄨󵄨󵄨󵄨󵄨󵄨z=0 dζ + O(ε).

We conclude that

D1 + D4 = 12 c̃(0) ∫
ℝn+

∂
∂z1
(󵄨󵄨󵄨󵄨󵄨󵄨γ̃(z)∇ζU(√Ã(z)ζ)󵄨󵄨󵄨󵄨󵄨󵄨2) 󵄨󵄨󵄨󵄨󵄨󵄨z=0 dζ + O(ε)= 12 c(ξ) ∫

ℝn+

∂
∂z1
(󵄨󵄨󵄨󵄨󵄨󵄨∇ζV ξ(z)(ζ)󵄨󵄨󵄨󵄨󵄨󵄨2) 󵄨󵄨󵄨󵄨󵄨󵄨z=0 dζ + O(ε).

The term D3 is more delicate since the factor 1
ε forces us to expand all factors up to the second order. In

the light of (2.5), (2.6) and (2.7), with the convention that the matrix (hij)i,j=1,...,n coincides with the second
fundamental form when i, j = 1, . . . , n − 1 and hi,n = hn,j = 0 for i, j = 1, . . . , n, we obtain

D3 = γ̃2(0)√Ã(0) ∫
ℝn+

1
ε
c̃(εζ)|gξ (εζ)| 12 gijξ (εζ)[ ∂∂ζi (U(√Ã(0)ζ))χ(εζ) + O(ε2|ζ|2)]× ∂

∂ζj
[χ(εζ) ∂U∂ξk (√Ã(0)ζ) ∂∂z1Ek(z, ψ∂ξ (εζ))|z=0] dζ= γ̃2(0)√Ã(0) ∫
ℝn+

[ δij c̃(0)ε
+ 2c̃(0)hijζn − c̃(0)(n − 1)δijHζn + δij ∂c̃∂ζl (0)ζl]× ∂

∂ζi
(U(√Ã(0)ζ)) ∂∂ζj [ ∂U∂ξk (√Ã(0)ζ) ∂∂z1Ek(z, ψ∂ξ (εζ))|z=0] dζ + O(ε).
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By Lemma 5.3, we have

∂
∂z1

Ek(z, ψ∂ξ (εζ))|z=0 = −δ1k + O(ε2|ζ|2),
∂
∂ζj
( ∂
∂z1

Ek(z, ψ∂ξ (εζ))|z=0) = O(ε2|ζ|2).
Moreover, since U is radial,

∂U
∂ζi
(√Ã(0)ζ) = U󸀠(√Ã(0)ζ) ζi|ζ| , (5.9)

∂
∂ζ1
(U󸀠(√Ã(0)ζ )|ζ| ) = (√Ã(0)U󸀠󸀠(ζ)|ζ|2 − U󸀠(ζ)|ζ|3 )ζ1, (5.10)

where U󸀠 = ∂U∂r , U󸀠󸀠 = ∂2U∂r2 and r = |ζ|. Thus, we get
D3 = −γ̃2(0)Ã(0) ∫

ℝn+

[ δij c̃(0)ε
+ 2c̃(0)hijζn − c̃(0)(n − 1)δijHζn + δij ∂c̃∂ξl (0)ζl]

× U󸀠(√Ã(0)ζ )|ζ| ζi
∂
∂ζj
(U󸀠(√Ã(0)ζ )|ζ| ζk)δ1k dζ + O(ε)= −γ̃2(0)Ã(0) ∫

ℝn+

[ δij c̃(0)ε
+ 2c̃(0)hijζn − c̃(0)(n − 1)δijHζn + δij ∂c̃∂ξl (0)ζl]

× (U󸀠(√Ã(0)ζ )|ζ| )2ζiδj1 + U󸀠(√Ã(0)ζ )|ζ| (√Ã(0)U󸀠󸀠(ζ)|ζ|2 − U󸀠(ζ)|ζ|3 )ζjζiζ1 dζ + O(ε).
Now, by symmetry considerations, for i = 1, . . . , n − 1, any term containing ζi to an odd power vanishes, and,
since hin = hnj = 0, we get that

D3 = −γ̃2(0)Ã(0) ∂c̃∂ξl (0) ∫
ℝn+

δij(U󸀠(√Ã(0)ζ )|ζ| )2ζiζlδj1
+ δij U󸀠(√Ã(0)ζ )|ζ| (√Ã(0)U󸀠󸀠(ζ)|ζ|2 − U󸀠(ζ)|ζ|3 )ζjζiζ1ζl dζ + O(ε)= −γ̃2(0)Ã(0) ∂c̃

∂ξ1
(0) ∫
ℝn+

(U󸀠(√Ã(0)ζ )|ζ| )2ζ 21
+ U󸀠(√Ã(0)ζ )|ζ| (√Ã(0)U󸀠󸀠(ζ)|ζ|2 − U󸀠(ζ)|ζ|3 )ζiζiζ 21 dζ + O(ε)

Notice that, by (5.9) and (5.10), we have

1
2
∂
∂ζ1
󵄨󵄨󵄨󵄨󵄨󵄨∇ζU(√Ã(0)ζ)󵄨󵄨󵄨󵄨󵄨󵄨2 = Ã(0)(U󸀠(√Ã(0)ζ )|ζ| )2ζ1 + Ã(0)U󸀠(√Ã(0)ζ )|ζ| (√Ã(0)U󸀠󸀠(ζ)|ζ|2 − U󸀠(ζ)|ζ|3 )ζiζiζ1,

so

D3 = −γ̃2(0) ∂c̃∂ξ1 (0)12 ∫
ℝn+

∂
∂ζ1
󵄨󵄨󵄨󵄨󵄨󵄨∇ζU(√Ã(0)ζ)󵄨󵄨󵄨󵄨󵄨󵄨2ζ1 dζ= γ̃2(0) ∂c̃

∂ξ1
(0)12 ∫
ℝn+

∂
∂ζ1
󵄨󵄨󵄨󵄨󵄨󵄨∇ζU(√Ã(0)ζ)󵄨󵄨󵄨󵄨󵄨󵄨2 dζ= ∂c̃

∂ξ1
(0)12 ∫
ℝn+

|∇V ξ (ζ)|2 dζ = ∂
∂z1

c(ξ(z))|z=0 12 ∫
ℝn+

|∇V ξ (ζ)|2 dζ + O(ε).



580 | M. Clapp, M. Ghimenti and A.M. Micheletti, KGMP system

Consequently, we obtain
I1 = 12 ∫

ℝn+

∂
∂z1
[c(ξ(z))|∇V ξ(z)(ζ)|2] 󵄨󵄨󵄨󵄨z=0 dζ + O(ε).

For the second term, setting d̃(y) = d(ψ∂ξ (y)) = d(x), we obtain in an analogous way
I2 = ∫
ℝn+

d̃(εζ)|gξ (εζ)| 12 γ̃(0)U(√Ã(0)ζ)χ(εζ) ∂∂z1 [γ̃(z)Uε(√Ã(z)Ẽ(z, εζ))χ(Ẽ(z, εζ))] 󵄨󵄨󵄨󵄨󵄨󵄨z=0 dζ= ∫
ℝn

d̃(εζ)|gξ (εζ)| 12 γ̃(0)U(√Ã(0)ζ)χ(εζ)
× [ ∂

∂z1
γ̃(z)|z=0U(√Ã(0)ζ)χ(εζ) + γ̃(0)χ(εζ)√Ã(0)ε ∂U

∂ξk
(√Ã(0)ζ) ∂

∂z1
Ek(z, ψ∂ξ (εζ))|z=0+ γ̃(0)χ(εζ) ∂U

∂ξk
(√Ã(0)ζ) ∂

∂z1
√Ã(z) 󵄨󵄨󵄨󵄨󵄨󵄨z=0 ζk + γ̃(0)U(√Ã(0)ζ) ∂∂z1 [χ(Ẽ(z, εζ))] 󵄨󵄨󵄨󵄨z=0] dζ=: B1 + B2 + B3 + B4.

Expanding d̃(εζ), by the exponential decay of U and its derivative, and by (2.7) and the definition of Ẽ, we get

B1 = ∫
ℝn+

d̃(0)γ̃(0) ∂
∂z1

γ̃(z)|z=0U2(√Ã(0)ζ) dζ + O(ε)
= 12 d̃(0) ∂∂z1 γ̃2(z)|z=0 ∫

ℝn

U2(√Ã(0)ζ) dζ.
As before, we obtain that B4 = O(ε) and

B3 = ∫
ℝn+

d̃(0)γ̃2(0)U(√Ã(0)ζ) ∂U∂ξk (√Ã(0)ζ) ∂∂z1√Ã(z) 󵄨󵄨󵄨󵄨󵄨󵄨z=0 ζk dζ + O(ε)= 12 ∫
ℝn+

d̃(0)γ̃2(0) ∂
∂z1
(U(√Ã(z)ζ))2 󵄨󵄨󵄨󵄨󵄨󵄨z=0 dζ + O(ε).

Thus,

B1 + B3 = 12 d̃(0) ∫
ℝn+

∂
∂z1
(γ̃2(z)U(√Ã(z)ζ))2 󵄨󵄨󵄨󵄨󵄨󵄨z=0 dζ + O(ε)= 12d(ξ) ∫

ℝn+

∂
∂z1
(V ξ(z)(ζ))2|z=0 dζ + O(ε).

Again, we have to pay particular attention to the term containing 1
ε as a factor. From (2.7) and Lemma 5.3 we

get

B2 = γ̃2(0)√Ã(0) ∫
ℝn+

d̃(εζ)
ε
|gξ (εζ)| 12 U(√Ã(0)ζ) ∂U∂ξk (√Ã(0)ζ)(−δ1k + O(ε2|ζ|2)) dζ + O(ε)= −γ̃2(0)√Ã(0) ∫

ℝn+

( d̃(0)ε + ∂d̃∂ξl (0)ζl)U(√Ã(0)ζ) ∂U∂ξ1 (√Ã(0)ζ) dζ + O(ε)
and, by (5.9),

B2 = −γ̃2(0)√Ã(0) ∫
ℝn+

( d̃(0)ε + ∂d̃∂ξl (0)ζl)U(√Ã(0)ζ)U󸀠(√Ã(0)ζ )|ζ| ζ1 dζ + O(ε)
= −γ̃2(0)√Ã(0) ∫

ℝn+

∂d̃
∂ξ1
(0)U(√Ã(0)ζ)U󸀠(√Ã(0)ζ )|ζ| ζ 21 dζ + O(ε)
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due to the symmetry. So,

B2 = −γ̃2(0) ∂d̃∂ξ1 (0) ∫
ℝn+

1
2
∂
∂ζ1
[U(√Ã(0)ζ)]2ζ1 dζ + O(ε)

= γ̃2(0) ∂d̃
∂ξ1
(0) ∫
ℝn+

U2(√Ã(0)ζ) dζ + O(ε)
= 12 ∂

∂z1
d(ξ)|z=0 ∫

ℝn+

(V ξ(z)(ζ))2 dζ
and

I2 = 12 ∫
ℝn+

∂
∂z1
{d(ξ(z))(V ξ(z)(ζ))2} 󵄨󵄨󵄨󵄨z=0 dζ + O(ε).

In a similar way we proceed for I3, completing the proof.
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