
Adv. Nonlinear Anal. 2019; 8: 517–532

Research Article

Ahmed Mohammed* and Giovanni Porru

Large solutions to non-divergence structure
semilinear elliptic equations with
inhomogeneous term
https://doi.org/10.1515/anona-2017-0065
Received March 17, 2017; revised April 5, 2017; accepted April 6, 2017

Abstract: Motivated by the work [9], in this paper we investigate the infinite boundary value problem

associated with the semilinear PDE Lu = f(u) + h(x) on bounded smooth domains Ω ⊆ ℝn, where L is

a non-divergence structure uniformly elliptic operator with singular lower-order terms. In the equation,

f is a continuous non-decreasing function that satisfies the Keller–Osserman condition, while h is a contin-
uous function in Ω that may change sign, and which may be unbounded on Ω. Our purpose is two-fold. First

we study some sufficient conditions on f and h that would ensure existence of boundary blow-up solutions
of the above equation, in which we allow the lower-order coefficients to be singular on the boundary. The

second objective is to provide sufficient conditions on f and h for the uniqueness of boundary blow-up solu-
tions. However, to obtain uniqueness, we need the lower-order coefficients of L to be bounded in Ω, but we

still allow h to be unbounded on Ω.

Keywords: Large solutions, existence and uniqueness, semilinear elliptic equation
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1 Introduction
Let Ω ⊆ ℝn be a bounded domainwith C2 boundary.We consider a uniformly elliptic nondivergence structure

second order differential operator, namely,

Lu = aij(x)uxixj + bi(x)uxi + c(x)u. (1.1)

In (1.1) and throughout this paper, the summation convention over repeated indices from 1 to n is in effect.
We will assume that [aij(x)] is an n × n symmetric matrix of continuous real-valued functions on Ω such that

|ξ |2 ≤ aij(x)ξiξj ≤ Λ|ξ |2 for all (x, ξ ) ∈ Ω × ℝN , (1.2)

for some constant Λ ≥ 1.
In this paper we wish to study the question of existence and uniqueness of solutions to the following

problem:

{
Lu = f(u) + h(x), x ∈ Ω,
u = ∞, x ∈ ∂Ω.

(1.3)

Here h : Ω → ℝ is a continuous function which may be unbounded on Ω, and f : ℝ → ℝ is a continuous

function with appropriate conditions to be specified later.
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To study the existence of solutions to (1.3) we assume the following conditions. The coefficients bi(x)
(1 ≤ i ≤ n) and c(x) in (1.1) are locally bounded Borel functions such that:
(DB) d(x) ∑|bi(x)| = o(1) as d(x) → 0,

(DC) d2(x)|c(x)| ≤ η(d(x)) for all x ∈ Ω, with d(x) ≤ δ
0
and c(x) ≤ 0 for all x ∈ Ω.

In (DB) and (DC) we have used d(x) to denote the distance of x ∈ Ω from the boundary ∂Ω, a notation we will
continue to use throughout the paper. In (DC), δ

0
> 0 is a positive constant and η : (0, δ

0
] → (0, η(δ

0
)] is an

increasing function that satisfies the Dini condition

δ
0

∫
0

η(s)
s

ds < ∞. (1.4)

Following the pioneering works of Keller [15] and Osserman [19], problem (1.3) has been studied exten-

sively by numerous authors when L is the Laplacian and h ≡ 0. The reader is referred to the monograph [11]

and the references therein for more discussion related to such problems. In [3], Bandle and Marcus inves-

tigated existence and asymptotic boundary behavior of solutions to (1.3) when h ≡ 0 ≡ c and bi ∈ Cα(Ω),
i = 1, . . . , n, for some 0 < α < 1. Concerning problem (1.3) with h(x) ̸≡ 0 on Ω, Véron in [24], and Díaz and

Letelier in [6], established the existence and uniqueness of positive solutions to (1.3) for the nonlinear-

ity f(t) = |t|p−1t, p > 1, and for a non-positive unbounded inhomogeneous term h ∈ C(Ω) with appropriate

growth condition on the boundary.

As far as we are aware, it was García-Melián who first studied problem (1.3) for a sign-changing and

unbounded inhomogeneous term h in the recent paper [9]. He studied the existence of a solution to prob-

lem (1.3) when L is the Laplacian, f(t) = |t|p−1t for p > 1 and h belonged to a large class of unbounded and
sign-changing functions on Ω. He also obtained uniqueness of positive solutions of (1.3) for h ∈ C(Ω) with
appropriate growth condition on the boundary, but bounded on Ω from above.

In this paper we wish to continue the aforementioned investigations with the objective of extending

the results in several fronts. In all cases the class of inhomogeneous terms h we consider will include sign-
changing and unbounded functions in Ω having appropriate growth conditions near the boundary. The

necessity of some restriction on the growth of h near the boundary has already been noted in [9, Theorem 3].

As our first main result we will show the existence of solutions to (1.3), where the lower-order coefficients

are allowed to be unbounded in Ω, and f comes from a wide class of nonlinearities. In addition, to the usual

Keller–Osserman, we will require some mild conditions on f . As it turns out, if the inhomogeneous term h
grows no faster than a suitable multiple of f(ϕ(d(x))) near the boundary of Ω, then problem (1.3) admits

a solution. Here ϕ is a decreasing function on (0, a), for some a > 0, that is associated with the nonlin-

earity f . For instance, ϕ(t) = t−2/(p−1) when f(t) = tp, p > 1, for t > 0. Our second main result concerns the

asymptotic boundary estimates for solutions of (1.3) when the coefficients of L are bounded in Ω and, as

a consequence, the uniqueness of solutions is obtained. These results are shown to hold for a large class of

inhomogeneous terms h, which may change sign and be unbounded on Ω. In this regard, the asymptotic

estimate and uniqueness results of this paper are new even when L is the Laplacian and f(t) = |t|p−1t for
p > 1, as we do not require h to be bounded from above.

Wepoint out that problem (1.3)was also considered in [10, 25].Wedirect the reader to [9] for a discussion

of problem (1.3) in these papers. The reader is referred to the recent papers [2, 4, 5, 8, 21, 26], and references

therein, on asymptotic behavior and uniqueness of singular solutions related to the content of this paper. In

particular, we draw attention to the paper [5] in which the authors make a systematic use of Karamata varia-

tion theory to study uniqueness of boundary blow-up solutions. To the best of our knowledge, [8] is the first

paper to investigate existence of boundary blow-up solutions of equations with nonmonotonic nonlinearity.

The paper is organized as follows. In Section 2, we state the main conditions used on the nonlinearity

f to study problem (1.3). In particular, we recall a lemma that will be useful in establishing the existence

of solutions in the case when L has singular lower-order term coefficients. Section 3 is devoted to the study

of existence of a solution to (1.3). In Section 4, we establish boundary asymptotic estimates of solutions to

problem (1.3). Existence of positive solutions anduniqueness of solutions is investigated in Section5. Finally,

we have included an appendix where we prove some technical results that are used in the paper.
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2 Preliminaries
Let Ω ⊆ ℝn be a bounded domain with C2 boundary. Throughout the paper, it will be convenient to use the
following notations for a given δ > 0:

Ωδ := {x ∈ Ω : d(x) < δ} and Ω

δ
:= {x ∈ Ω : d(x) > δ}.

Since Ω is a bounded C2 domain, we note that there exists μ > 0 such that d ∈ C2(Ωμ) and |∇d(x)| = 1 on Ωμ.
See [12, Lemma 14.16] for a proof.

By modifying the distance function d appropriately we can suppose that d is a positive C2 function on Ω.
For instance, one can use (1 − ψ)d + ψ instead of d, where ψ ∈ C2c (Ω) is a cut-off function with 0 ≤ ψ ≤ 1 on
Ω, ψ ≡ 0 on Ωμ

0

for some 0 < μ
0
< μ, and ψ ≡ 1 on Ωμ. Therefore, hereafter, we will always suppose that d is

this modified distance function and that d is in C2(Ω) with |∇d| ≡ 1 on Ωμ.

By a solution u of Lu =(≥, ≤)H(x, u) we mean a twice weakly differentiable function on Ω such that

Lu(x) =(≥, ≤)H(x, u(x)) for almost every x ∈ Ω.

We start with the following extension of the classical maximum principle. We assume that t 󳨃→ H(x, t) is
non-decreasing onℝ for each x ∈ Ω.

Lemma 2.1 (Comparison Principle). Let u, w ∈ W2,n
loc

(Ω) ∩ C(Ω), and assume that Lu ≥ H(x, u) in Ω and Lw ≤
H(x, w) in Ω. If u ≤ w on ∂Ω, then u ≤ w in Ω.

Proof. Given ε > 0,

L(w + ε) = Lw + εc ≤ Lw ≤ H(x, w) ≤ H(x, w + ε) in Ω and u − (w + ε) < 0 on ∂Ω.

Let δ > 0 sufficiently small such that u − (w + ε) ≤ 0 on ∂Ωδ. Suppose that the open set

Ω

δ
0

:= {x ∈ Ωδ : u(x) > w(x) + ε}

is non-empty. Since L(u − (w + ε)) ≥ H(x, u) − H(x, w + ε) ≥ 0 in Ω

δ
0

and the coefficients of L are bounded

on Ω

δ
, the maximum principle applies (see [12, Theorem 9.1]) and we conclude that u − (w + ε) ≤ 0 on Ω

δ
0

.

This is an obvious contradiction to the assumption that Ω

δ
0

is non-empty. Therefore, we must have u ≤ w + ε
in Ω

δ
. Since δ > 0 is arbitrary, we conclude that u ≤ w + ε in Ω. Since ε > 0 is arbitrary, we find that u ≤ w

on Ω, as desired.

We consider the following conditions on the nonlinearity f in (1.3):
(f1) f : ℝ → ℝ is a non-decreasing continuous function such that f(0) = 0 with f(t) > 0 for t > 0.
(f2) f satisfies the Keller–Osserman condition, namely,

∞

∫
1

dt
√F(t)
< ∞, where F(t) =

t

∫
0

f(s) ds.

(f3) We have

lim inf

t→∞

F(t)
tf(t)
> 0.

We make a few remarks about the above conditions.

Remark 2.2. (i) Any regularly varying function at infinity with index 1 < q < ∞ satisfies conditions (f2) and

(f3). We recall that f is said to be regularly varying at infinity of index q ∈ ℝ if f is a measurable function

defined on (a,∞) for some a > 0 and

lim

t→∞

f(ξt)
f(t)
= ξ q for all ξ > 0.

(ii) f(t) = t satisfies (f3) but not (f2), while f(t) = et − 1 satisfies (f2) but not (f3).
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(iii) If f satisfies (f1), then it is clear that F(t) ≤ tf(t) for all t ≥ 0. Moreover, if f satisfies both (f1) and (f2),

then

lim inf

t→∞

F(t)
tf(t)
≤
1

2

.

We refer to Lemma A.1 in Appendix A for a proof of this assertion.

The reader may find more on regularly varying functions and some basic information on Karamata regular

variation theory in [14, 23].

It is a well-known fact, see [13, 22], that if f satisfies (f1) and the Keller–Osserman condition (f2), then

lim

t→∞

√F(t)
f(t)
= 0 and lim

t→∞

t
f(t)
= 0. (2.1)

In fact, the following result holds for any f that satisfies (f1), (f2) and (f3).

Lemma 2.3. Suppose that f satisfies (f1), (f2) and (f3). Then the following hold:
(i) lim supt→∞

√F(t)
f(t) ∫∞t F(s)−1/2 ds < ∞,

(ii) lim supt→∞
t

f(t)(∫∞t F(s)−1/2 ds)2 < ∞.
We refer the reader to [18] for a proof of the above lemma. We let ϕ to be the non-increasing function such

that

∞

∫
ϕ(t)

ds
√2F(s)

= t, t > 0.

It follows that

ϕ󸀠(t) = −√2F(ϕ(t)) and ϕ󸀠󸀠(t) = f(ϕ(t)), t > 0.
For later use, let us compute Lv, where v(x) := ϕ(ϱ(x)) for some ϱ ∈ C2(Ω):

Lv = ϕ󸀠󸀠(ϱ)aijϱxiϱxj + ϕ󸀠(ϱ)(aijϱxixj + biϱxi) + cϕ(ϱ)

= f(ϕ(ϱ))aijϱxiϱxj − √2F(ϕ(ϱ))(aijϱxixj + biϱxi) + cϕ(ϱ)

= f(ϕ(ϱ))(aijϱxiϱxj −
√2F(ϕ(ϱ))
f(ϕ(ϱ))

(aijϱxixj + biϱxi) +
ϕ(ϱ)c
f(ϕ(ϱ)))

. (2.2)

3 On existence of solutions to problem (1.3)
Throughout this section, we assume that the lower order coefficients bi(x) (1 ≤ i ≤ n) and c(x) of L satisfy
conditions (DB) and (DC), respectively.

The next result, a consequence of these conditions and Lemma 2.3, will prove useful in establishing the

existence of solutions to problem (1.3).

Corollary 3.1. Suppose that f satisfies conditions (f1), (f2) and (f3). Then

lim

d(x)→0
|c(x)| ϕ(d(x))

f(ϕ(d(x)))
= 0 and lim

d(x)→0

√F(ϕ(d(x)))
f(ϕ(d(x))) ∑i

|bi(x)| = 0.

Proof. We prove the first limit and omit the second as the proof is similar. We have

|c(x)|ϕ(d(x))
f(ϕ(d(x)))

=
d2(x)|c(x)|ϕ(d(x))
d2(x)f(ϕ(d(x)))

=
|c(x)|d2(x)ϕ(d(x))

f(ϕ(d(x)))( ∫∞ϕ(d(x)) F(s)
−1/2 ds)2

≤
η(d(x))ϕ(d(x))

f(ϕ(d(x)))( ∫∞ϕ(d(x)) F(s)
−1/2 ds)2

.

On noting that η(0+) = 0, the claim follows from Lemma 2.3 (ii).



A. Mohammed and G. Porru, Large solutions to non-divergence structure elliptic equations | 521

Remark 3.2. It is clear that (DB) and (DC) holdwhen the coefficientsb and c of L are boundedonΩ. Therefore,
Corollary 3.1 holds when the coefficients of L are bounded. In fact, in this case, condition (f3) is not needed.
One only needs to recall (2.1).

Let Ξ∗ := infξ>0 g∗(ξ ) and Ξ∗ := supξ>0 g∗(ξ ), where

g∗(ξ ) := ξ − lim sup

t→∞

f(ξt)
f(t)

and g∗(ξ ) := Λξ − lim inf

t→∞

f(ξt)
f(t)

.

Here, Λ is the ellipticity constant of L as noted in condition (1.2).
As an example, we observe that for any regularly varying function (at infinity) f of index 1 < q < ∞, it

can be easily seen that

Ξ∗ = −∞ and Ξ

∗ = (q − 1)(1q )
q/(q−1)

. (3.1)

On the other hand, for ϖ > 2, we note that f(t) = t logϖ(|t| + 1) is regularly varying at infinity of index
q = 1 and satisfies (f1), (f2) and (f3). Computation shows that Ξ∗ = 0 = Ξ∗.

Remark 3.3. On noting that g∗(1) = 0, we see that Ξ

∗ ≥ 0. Moreover, we also have Ξ∗ ≤ 0 for any f that
satisfies (f1) and (f3). We refer the reader to Lemma A.3 in Appendix A.

We need some conditions on f and h in order to prove the existence of a solution to (1.3). We require the

following assumption on f :
(f4) limt→−∞ f(t) = −∞.

We should note that if f : [0,∞) → [0,∞) satisfies (f1) and (f2), then the odd extension of f to ℝ satis-
fies (f4).

In addition to condition (f4), we will also require some growth restrictions, near the boundary ∂Ω, on the
inhomogeneous term h in (1.3). We state one of these conditions on h as follows:
(h1) Θ

∗(h) := lim supd(x)→0
h(x)

f(ϕ(d(x))) < Ξ
∗
.

The main result of this section gives the existence of a solution to problem (1.3). We employ the sub-

solution and super-solution technique to establish the result. In preparation for this, let us consider a function

H : Ω × ℝ → ℝwhich is non-decreasing inℝ in the secondvariable for each x ∈ Ω, andH( ⋅ , t) ∈ C(Ω) for each
t ∈ ℝ.

From [18] we recall the following result on the solvability of a class of Dirichlet problemswith continuous

boundary data.

Lemma 3.4. Given g ∈ C(∂Ω), the following Dirichlet problem admits a solution u ∈ W2,p
loc

(Ω) ∩ C(Ω) for each
1 ≤ p < ∞:

{
Lu = H(x, u) in Ω,
u = g on ∂Ω.

(3.2)

Remark 3.5. Suppose that all coefficients of L are bounded and belong to Cα(Ω) for some 0 < α < 1. If,
in addition to the hypotheses on H, we suppose H ∈ Cα(Ω × ℝ), then problem (3.2) admits a solution

u ∈ C2(Ω) ∩ C(Ω). This is a consequence of the elliptic regularity theory, see [12, Theorem 9.19] with k = 1.

We will use Lemma 3.4 to study the following infinite boundary value problem.

{
Lu = H(x, u) in Ω,

u = ∞ on ∂Ω.
(3.3)

As a simple consequence of Lemma 3.4 we obtain the following.

Lemma 3.6. Let u∗, u∗ ∈ W2,p
loc

(Ω) ∩ C(Ω) for 1 < p < ∞ be such that

Lu∗ ≥ H(x, u∗) in Ω, Lu∗ ≤ H(x, u∗) in Ω and u∗ = ∞ on ∂Ω.

Assume that u∗ ∈ L∞(Ω) or u∗ = ∞ on ∂Ω. If u∗ ≤ u∗ in Ω, then there exists a solution u ∈ W
2,p
loc

(Ω) ∩ C(Ω) of
(3.3) with u∗ ≤ u ≤ u∗ a.e. in Ω.
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Proof. Let us first consider the case when u∗ ∈ L∞(Ω). For each positive integer j ≥ supΩ u∗, by Lemma 3.4,

we let uj ∈ W
2,p
loc

∩ C(Ω) be a solution of

{
Luj = H(x, uj) in Ω,

u = j on ∂Ω.

By the Comparison Principle, Lemma 2.1, we have

u∗ ≤ uj ≤ uj+1 ≤ u∗ in Ω for all j.

By proceeding as in the proof of [18, Lemma 3.2], we conclude that {uj} converges locally uniformly to a

solution u ∈ C2(Ω) of problem (3.3) on Ω with u∗ ≤ u ≤ u∗.
Nowassume that u∗ =∞on ∂Ω.LetOj := {x ∈ Ω : d(x) > 1/j} for j = 1, 2, . . . , and let uj ∈W

2,p
loc

(Oj)∩C(Oj)
be a solution of

{
Luj = H(x, uj) in Oj ,

uj = u∗ on ∂Oj .

By the Comparison Principle, we see that u∗ ≤ uj ≤ u∗ on Oj for each j ≥ 1. Consequently,¹ we also note that
uj ≤ uj+1 in Oj. Thus, we have

u∗ ≤ uj ≤ uj+1 ≤ u∗ on Oj .

Again, by proceeding as in the proof of [18, Lemma 3.2], we conclude that {uj} converges locally uniformly

to a solution u ∈ W2,p
loc

(Ω) ∩ C(Ω) of problem (3.3) with u∗ ≤ u ≤ u∗ on Ω.

For the rest of the paper, we will assume that f satisfies both conditions (f1) and (f2).
We are now ready to state the following theorem on the existence of a solution to (1.3).

Theorem 3.7. Suppose that f satisfies (f3) and (f4). We also assume that h ∈ C(Ω) satisfies (h1). Then prob-
lem (1.3) has a solution u ∈ W2,p

loc

(Ω) ∩ C(Ω) for 1 ≤ p < ∞. Moreover, u is the maximal solution.

Proof. There is no loss of generality in supposing that p ≥ n. Let {Oj} be the sequence of open subsets of Ω

introduced in the proof of Lemma 3.6 above. Let us first show that the following has a solution:

{
Lw = f(w) + h in Oj ,

w = ∞ on ∂Oj .
(3.4)

To this end, let vj be a solution of Lvj = f(vj) in Oj and vj = ∞ on ∂Oj. If h ≥ 0 in Oj, then wj := vj is a super-
solution of (3.4). Otherwise, let zj be a solution of Lzj = minOj

h in Oj with zj = 0 on ∂Oj. Note that zj > 0.
Then wj := vj + zj satisfies

Lwj = L(vj + zj) = f(vj) +min

Oj

h ≤ f(vj + zj) + h(x) = f(wj) + h(x), x ∈ Oj ,

and

wj = ∞ on ∂Oj .

Thus, in any case wj is a super-solution of (3.4). We now proceed to construct a sub-solution of (3.4). To this

end, we claim that there are positive constants A and α such that

w = Aϕ(d(x)) − α

is a sub-solution of (1.3) in Ω. To see this, let ϱ := d in (2.2), and we estimate (2.2) in Ωμ as follows:

Lw ≥ f(ϕ(d))[A − A
√2F(ϕ(d))
f(ϕ(d)) (

|L
0
d| + ∑

i
|bi(x)|) −

A|c(x)|ϕ(d)
f(ϕ(d)) ]

− αc

≥ f(ϕ(d))[A − A
√2F(ϕ(d))
f(ϕ(d)) (

|L
0
d| + ∑

i
|bi(x)|) −

A|c(x)|ϕ(d)
f(ϕ(d)) ]

. (3.5)

1 Note that uj+1 ≥ u∗ on Oj+1 and hence uj = u∗ ≤ uj+1 on ∂Oj . Therefore, the Comparison Principle applies.
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In the last inequality, we have used the fact that −αc ≥ 0 for any α > 0. By (h1), since Ξ∗ > Θ∗, we let A such

that g∗(A) > Θ∗. Let us choose ε > 0 sufficiently small so that

Θ

∗ + 2ε < g∗(A) = A − lim sup

d(x)→0

f(Aϕ(d(x)))
f(ϕ(d(x)))

.

Therefore, there exists 0 < δ < μ such that for x ∈ Ωδ, we have

A − ε > Θ∗ + ε
2

+
f(Aϕ(d(x)))
f(ϕ(d(x)))

.

Recalling (2.1) and Corollary 3.1, we can take δ > 0 sufficiently small so that for all x ∈ Ωδ,

A
√2F(ϕ(d))
f(ϕ(d)) (

|L
0
d| + ∑

i
|bi(x)|) +

A|c(x)|ϕ(d)
f(ϕ(d))

< ε. (3.6)

Likewise, by the definition of Θ

∗
:= Θ∗(h), we have (by shrinking δ further, if necessary)

h(x)
f(ϕ(d(x)))

< Θ∗ +
ε
2

for all x ∈ Ωδ . (3.7)

Putting (3.5), (3.6) and (3.7) together, we find that w(x) = Aϕ(d(x)) − α satisfies the following for all x ∈ Ωδ:

Lw ≥ f(ϕ(d(x)))(A − ε)

≥ f(ϕ(d(x)))[ h(x)
f(ϕ(d(x)))

+
f(Aϕ(d(x)))
f(ϕ(d(x))) ]

= h(x) + f(Aϕ(d(x)))
≥ f(w) + h(x) for any α > 0.

Next we choose α so that w is a sub-solution of Lw = f(w) + h(x) on Ω

δ
. For this, let

η := min{ALϕ(d) : x ∈ Ωδ}.

We should point out that η is independent of α. The hypothesis on f shows that

f(Aϕ(δ) − α) +max{h(x) : x ∈ Ωδ} → −∞ as α →∞.

Thus, we can choose α > 0 sufficiently large so that

f(Aϕ(δ) − α) +max{h(x) : x ∈ Ωδ} ≤ η.

Having fixed such α, we see that in Ω

δ
the following holds:

Lw = ALϕ(d(x)) − αc
≥ η
≥ f(Aϕ(δ) − α) +max{h(x) : x ∈ Ωδ}
≥ f(Aϕ(d(x)) − α) + h(x)
= f(w) + h(x).

Thus, we have shown that w is a sub-solution of (1.3) in Ω. Moreover, for each positive integer j, the Compar-

ison Principle shows that w ≤ wj in Oj. Therefore, by Lemma 3.6, problem (3.4) has a solution uj such that

w ≤ uj ≤ wj in Oj. Since uj is bounded on Oj−1, the Comparison Principle shows that uj ≤ uj−1 on Oj−1, that

is, {uk}∞k=j−1 is a decreasing sequence in Oj−1. Let us set

u(x) := lim
j→∞

uj(x), x ∈ Ω.

Since {uj} is locally uniformly bounded, by standard Schauder estimates, we see that u ∈ C2(Ω) satisfies
Lu = f(u) + h in Ω. From this and the inequality w ≤ u in Ω, we see that u is a solution of (1.3), as desired.

If v is any solution of (1.3), then Comparison Principle shows that v ≤ uj onOj for all j ≥ 1. Consequently,
we have v ≤ u in Ω, and therefore u is a maximal solution of (1.3), as claimed.

Remark 3.8. If the coefficients of L are bounded in Ω, we note that condition (f3) is not needed in the above

theorem, see Remark 3.2.
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4 On the boundary asymptotic estimates of solutions to
problem (1.3)

In this section we will assume that the coefficients bi(x) (1 ≤ i ≤ n) and c(x) are bounded on Ω. It should be

recalled that we always assume conditions (f1) and (f2) on f .
To discuss asymptotic boundary estimates of solutions to (1.3), we need an additional condition on h

which we now make explicit:

(h2) Θ∗(h) := lim infd(x)→0
h(x)

f(ϕ(d(x))) > Ξ∗.

Remark 4.1. If h is bounded from above on Ω, then Θ∗ ≤ Θ∗ ≤ 0.

We have the following lemma on asymptotic boundary estimates of solutions to (1.3).

Lemma 4.2. Let h ∈ C(Ω).
(i) If h satisfies (h2), then there exists a positive constant A∗ such that for any solution u ∈ W2,n

loc

(Ω) of (1.3),
we have

lim sup

d(x)→0

u(x)
ϕ(d(x))

≤ A∗. (4.1)

(ii) If h satisfies (h1) and is bounded from above, then there exists a positive constant A∗ such that for any
solution u ∈ W2,n

loc

(Ω) of (1.3), we have

A∗ ≤ lim inf

d(x)→0

u(x)
ϕ(d(x))

. (4.2)

Proof. For any 0 < ρ < μ, let us consider the sets

Ω

−
ρ := {x ∈ Ω : ρ < d(x) < μ} and Ω

+
ρ := {x ∈ Ω : 0 < d(x) < μ − ρ}.

Proof of (4.1). For an appropriate choice of a positive constant A∗, we will show that

w∗(x) := A∗ϕ(d(x) − ρ), x ∈ Ω−ρ ,

is a super-solution of (1.3) on Ω

−
ρ for all 0 < ρ < μ and sufficiently small μ. To this end, we estimate (2.2) with

ϱ(x) := d(x) − ρ as follows. Recalling that c ≤ 0 in Ω, we estimate

Lw∗ ≤ f(ϕ(d(x) − ρ))[A∗Λ + A
∗√2F(ϕ(d − ρ))
f(ϕ(d − ρ))

(|L
0
d| + ‖b‖L∞ )]. (4.3)

Let ε > 0, to be specified later. By (2.1), we can take μ > 0 sufficiently small so that for all x ∈ Ω−ρ ,

A∗√2F(ϕ(d − ρ))
f(ϕ(d − ρ))

(|L
0
d| + ‖b‖L∞ ) < ε. (4.4)

Therefore, from (4.3) and (4.4), we conclude that for x ∈ Ω−μ,

Lw∗ ≤ f(ϕ(d − ρ)))(A∗Λ + ε).

Now, let ε be chosen so that Θ∗ − 2ε > Ξ∗. We pick a number A∗ := A∗(Λ, f, Θ∗(h)) > 0 such that

Θ∗ − 2ε > g∗(A∗) = A∗Λ − lim inf

0<d(x)−ρ→0

f(A∗ϕ(d(x) − ρ))
f(ϕ(d(x) − ρ))

.

That is,

A∗Λ + ε < Θ∗ − ε + lim inf

0<d(x)−ρ→0

f(A∗ϕ(d(x) − ρ))
f(ϕ(d(x) − ρ))

.

We also suppose that μ is sufficiently small, so that for (x, ρ) ∈ Ω−ρ × (0, μ),

A∗Λ + ε < Θ∗ −
ε
2

+
f(A∗ϕ(d(x) − ρ))
f(ϕ(d(x) − ρ))

.
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Let us now suppose that Θ∗(h) ≤ 0. In this case, for (x, ρ) ∈ Ω−ρ × (0, μ), we have

Lw∗ ≤ f(ϕ(d(x) − ρ))(A∗Λ + ε)

≤ f(ϕ(d(x) − ρ))[Θ∗ −
ε
2

+
f(A∗ϕ(d(x) − ρ))
f(ϕ(d(x) − ρ)) ]

= (Θ∗ −
ε
2

)f(ϕ(d(x) − ρ)) + f(A∗ϕ(d(x) − ρ))

≤ (Θ∗ −
ε
2

)f(ϕ(d(x))) + f(A∗ϕ(d(x) − ρ))

≤ h(x) + f(w∗),

from the definition of Θ∗. Let B∗ := max{u(x) : d(x) ≥ μ}. Then u ≤ w∗ + B∗ on ∂Ω−ρ and

Lu = f(u) + h, L(w∗ + B∗) ≤ Lw∗ ≤ f(w∗) + h ≤ f(w∗ + B∗) + h on Ω

−
ρ .

By the Comparison Principle, Lemma 2.1, we conclude that u ≤ w∗ + B∗ in Ω

−
ρ . Therefore,

u(x)
ϕ(d(x) − ρ)

−
B∗

ϕ(d(x) − ρ)
≤ A∗ for x ∈ Ω−ρ .

On letting ρ → 0

+
, we see that the following holds on Ωμ:

u(x)
ϕ(d(x))

−
B∗

ϕ(d(x))
≤ A∗.

Now, let d(x) → 0 to obtain (4.1) when Θ∗(h) ≤ 0.
We now consider the case Θ∗(h) > 0. Then h is non-negative near ∂Ω. Let {Oj} be the sequence of open

subsets of Ω defined as in the proof of Lemma 3.6 andm := min{h(x) : x ∈ Ω}. We note thatm > −∞. Let vj be
a solution of (3.4) with h ≡ m. If u is any solution of (1.3), then Lu = f(u) + h ≥ f(u) + m. By the Comparison

Principle, u ≤ vj in Oj for all j. Proceeding as in the proof of Theorem 3.7, one can show that v = limj→∞ vj is
a solution of (1.3) on Ω with h ≡ m on Ω. Clearly, u ≤ v in Ω, and since v is a large solution of Lv = f(v) + m
on Ω and Θ∗(m) = 0, the case considered above applied to v shows that

lim sup

d(x)→0

u(x)
ϕ(d(x))

≤ lim sup

d(x)→0

v(x)
ϕ(d(x))

≤ A∗,

where A∗ = A∗(Λ, f, Θ∗(h)), and therefore (4.1) holds.

Proof of (4.2). We consider the function

w∗(x) := A∗ϕ(d(x) + ρ), x ∈ Ω+ρ .

For an appropriate choice of A∗, we show that w∗ is a sub-solution in Ω+ρ for all ρ < μ, assuming that μ is
sufficiently small. We assume first that Ξ

∗ > 0. Let us fix ε > 0 such that 3ε < Ξ∗. Then, by definition, there
exists a positive real number A∗ such that Ξ∗/2 + 3ε/2 < g∗(A∗). That is,

1

2

Ξ

∗ + lim sup

d(x)+ρ→0

f(A∗ϕ(d(x) + ρ))
f(ϕ(d(x) + ρ))

< A∗ −
3

2

ε.

Therefore, assuming that μ is sufficiently small, the following holds in Ω

+
ρ for all 0 < ρ < μ:

1

2

Ξ

∗ +
f(A∗ϕ(d(x) + ρ))
f(ϕ(d(x) + ρ))

< A∗λ − ε.

By shrinking μ if necessary, we can invoke (2.1) to estimate

A∗[
√2F(ϕ(d(x) + ρ))
f(ϕ(d(x) + ρ))

(|L
0
d| + ‖b‖L∞ ) + ϕ(d(x) + ρ)

f(ϕ(d(x) + ρ))
‖c‖L∞] < ε for all x ∈ Ω+ρ and 0 < ρ < μ.
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Thus, for any 0 < ρ < μ, the following chain of inequalities hold on Ω

+
ρ :

Lw∗ ≥ f(ϕ(d(x) + ρ))[A∗ − A∗
√2F(ϕ(d(x) + ρ))
f(ϕ(d(x) + ρ))

(|L
0
d| + ‖b‖L∞ ) − A∗‖c‖L∞ϕ(d(x) + ρ)f(ϕ(d(x) + ρ)) ]

≥ f(ϕ(d(x) + ρ))(A∗ − ε)

≥ f(ϕ(d(x) + ρ))(1
2

Ξ

∗ +
f(A∗ϕ(d(x) + ρ))
f(ϕ(d(x) + ρ)) )

≥
1

2

Ξ

∗f(ϕ(d(x) + ρ)) + f(A∗ϕ(d(x) + ρ)). (4.5)

Recall that Ξ

∗ > 0. Since h is bounded from above on Ω, we can assume μ is small enough so that

1

2

Ξ

∗f(ϕ(d(x) + ρ)) ≥ h(x), x ∈ Ω+ρ .

Thus, for Ξ

∗ > 0 and sufficiently small μ > 0, we have shown that

Lw∗ ≥ f(w∗) + h(x), x ∈ Ω+ρ , for all 0 < ρ < μ.

Now let us suppose that Ξ

∗ = 0. Then there exists A∗ > 0 such that for ε > 0 and d + ρ small, we have

A∗ −
f(A∗ϕ(d + ρ))
f(ϕ(d + ρ))

> −ε,

which can be rewritten as

f(A∗ϕ(d + ρ))
f(ϕ(d + ρ))

− 2ε < A∗ − ε.

Using this in estimate (4.5), we find

Lw∗ ≥ f(A∗ϕ(d + ρ)) − 2εf(ϕ(d + ρ)). (4.6)

By (h1), we recall that −∞ ≤ Θ∗ < Ξ∗ = 0. There is no loss in generality if we assume that Θ

∗ > −∞. At this
point we use condition (h1), that is,

lim sup

d(x)→0

h(x)
f(ϕ(d))

= Θ∗ < 0. (4.7)

On noting that f(ϕ(d + ρ)) ≤ f(ϕ(d)), and using (4.7), we find

h(x)
f(ϕ(d + ρ))

≤
1

2

Θ

∗
.

Choosing ε = −Θ∗/4 in the above inequality, we find

h(x) ≤ −2εf(ϕ(d + ρ)).

Inserting the latter estimate into (4.6), for sufficiently small ρ > 0, yields

Lw∗ ≥ f(w∗) + h(x), x ∈ Ω+ρ .

In conclusion, we have shown that in either of the cases, the following holds:

Lw∗ ≥ f(w∗) + h(x), x ∈ Ω+ρ .

Let B∗ := A∗ϕ(μ). Note that w∗ − B∗ ≤ u on ∂Ω+ρ and

L(w∗ − B∗) ≥ Lw∗ ≥ f(w∗) + h ≥ f(w∗ − B∗) + h and L(u) = f(u) + h in Ω

+
ρ .

Therefore, w∗ − B∗ ≤ u in Ω

+
ρ and

A∗ ≤
u(x)

ϕ(d(x) + ρ)
+

B∗
ϕ(d(x) + ρ)

for x ∈ Ω+ρ .
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On letting ρ → 0

+
, we see that

A∗ ≤
u(x)

ϕ(d(x))
+

B∗
ϕ(d(x))

on Ωμ .

On recalling that ϕ(d(x)) → ∞ as d(x) → 0, we get

A∗ ≤ lim inf

d(x)→0

u(x)
ϕ(d(x))

,

and the proof is complete.

In Lemma 4.2, we required h in (1.3) to be bounded from above in order to get the asymptotic estimate (4.2).

Next, we wish to remove this restriction to allow h to be unbounded on Ω. However, the growth of h near the
boundary of Ω needs to be constrained in such a way that a Dirichlet problem with zero boundary data is

solvable. We use the notation h+(x) := max{h(x), 0}.
(h3) We assume that d2(x)h+(x) is bounded in Ω and that the following Dirichlet problem admits a solution

w ∈ W2,n
loc

(Ω) ∩ C(Ω):

{
Lw = h+(x) in Ω,

w = 0 on ∂Ω.
(4.8)

Suppose that h ∈ C(Ω) satisfies (h3). Then we note that there exists a positive constant C such that

h+(x) ≤ Cd−2(x) in Ω. Therefore, we have

0 ≤
h+(x)

f(ϕ(d(x)))
≤

C
d2(x)f(ϕ(d(x)))

, x ∈ Ω. (4.9)

By Lemma 2.3 (ii), we note that

lim

t→∞

1

( ∫
∞
t F(s)−1/2 ds)2f(t)

= 0. (4.10)

Thus, from (4.9) and (4.10), we conclude that

Θ∗(h+) = Θ∗(h+) = lim

d(x)→0

h+(x)
f(ϕ(d(x)))

= 0.

Consequently, we see that

Θ

∗(h) = Θ∗(−h−) and Θ∗(h) = Θ∗(−h−). (4.11)

The following result complements Lemma 4.2.

Theorem 4.3. Suppose that h ∈ C(Ω) satisfies (h1), (h2) and (h3). Then there exist constants 0 < A∗ ≤ A∗ such
that both estimates (4.1) and (4.2) hold for any solution u ∈ W2,n

loc

(Ω) of (1.3).

Proof. Estimate (4.1) is proved in Lemma 4.2. Thus, it only remains to show (4.2). For j = 1, 2, . . . , let vj be
the solution of

Lvj = f(vj) −min{j, h−} in Ω, vj = j on ∂Ω.

TheComparisonPrinciple shows that {vj} is an increasing sequence. Letw be the unique solution of (4.8).

Since w < 0 on Ω, we find that

L(vj + w) = f(vj) −min{j, h−} + h+ ≥ f(vj + w) + h in Ω, vj + w = j on ∂Ω.

Now, if u is any solution of (1.3) in Ω, then again by the Comparison Principle, we find

vj + w(x) ≤ u(x) for all j.

Letting j →∞, we obtain
v + w ≤ u in Ω,

where

v(x) := lim
j→∞

vj(x), x ∈ Ω.

Then v is a large solution of Lv = f(v) − h− on Ω.
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Since h satisfies (h1) and (h3),we see that Θ∗(−h−) = Θ∗(h) < Ξ∗. Since, in addition,−h− is bounded from
abovewe invoke Lemma4.2 (ii) to infer that there exists a constant A∗ > 0 such that v satisfies the asymptotic

estimate (4.2). Since w is bounded on Ω, we have

A∗ ≤ lim inf

d(x)→0

v(x)
ϕ(d(x))

≤ lim sup

d(x)→0

u(x)
ϕ(d(x))

,

and this concludes the proof of (4.2).

The following corollary is noteworthy.

Corollary 4.4. Let h ∈ C(Ω) and suppose that |h| satisfies (h3). If Ξ∗ < 0 < Ξ∗, then there exist constants
0 < A∗ ≤ A∗ such that for any solution u of (1.3),

A∗ ≤ lim inf

d(x)→0

u(x)
ϕ(d(x))

≤ lim sup

d(x)→0

u(x)
ϕ(d(x))

≤ A∗. (4.12)

Proof. Since |h| satisfies (h3), we recall from (4.11) that Θ

∗(h) = Θ∗(h) = 0. Therefore, by hypothesis, h sat-
isfies (h1) and (h2). Thus, the conclusion of the corollary follows from Theorem 4.3.

Remark 4.5. Suppose that h ∈ C(Ω) satisfies d2(x)|h(x)| ≤ η(d(x)) for all x ∈ Ω, with d(x) ≤ δ
0
, for some δ

0
,

where η : (0, δ
0
] → (0, η(δ

0
)] is an increasing function that satisfies (1.4). According to [1, Theorem 4]

or [16, Theorem 5.2], we note that |h| satisfies condition (h3). Therefore, if f satisfies (f1) and is regularly

varying at infinity of order q > 1, then (3.1), together with Corollary 4.4, shows that any solution u of (1.3)
satisfies (4.12) for some constants 0 < A∗ ≤ A∗.

Remark 4.6. Suppose that h ∈ C(Ω) satisfies (h1), (h2) and (h3). If u is amaximal solution of (1.3), then there

exist constants A ≥ 1 and δ > 0 such that for any solution of u of (1.3),

u ≤ Au in Ωδ .

This follows from Theorem 4.3 with A := A∗/A∗ ≥ 1, and it was obtained in [9] for ∆u = |u|q−1u + h, q > 1,
under the assumption that h is bounded from above in Ω.

5 On uniqueness and existence of positive solutions to
problem (1.3)

In this section, we continue to assume that all the coefficients of L are bounded in Ω.

Our next result shows that problem (1.3) admits at most one non-negative solution even when h is

allowed to be unbounded in Ω.

Theorem 5.1. Assume that f satisfies (f4), and h ∈ C(Ω) satisfies (h1), (h2) and (h3). If f is convex on [0,∞),
then problem (1.3) has at most one non-negative solution in W2,n

loc

(Ω).

Theproof is omitted since it is similar to that of [18, Theorem4.4], see also [7–9, 17]. In particular,wemention

[8] in which the authors prove uniqueness to the boundary blow-up problem associated with ∆u = f(u) in
balls, where f is non-decreasing in (0,∞) and convex at infinity.

For our next result, we suppose that f ∈ C1(ℝ). If u ∈ W2,n
loc

(Ω), then f(u) ∈ W1,n(Ω). This follows from
[12, Theorem 7.8]. Furthermore, we suppose that the coefficients of L are Hölder continuous in Ω. If

u ∈ W2,n
loc

(Ω) is a solution of (1.3) with h ≡ 0, then, since f(u) ∈ W1,n
loc

(Ω), from the elliptic regularity theory,

we conclude that u ∈ C2(Ω), see [12, Theorem 9.19].

In Theorem 3.7 we showed that problem (1.3) has a solution. This solution may change sign in Ω. In the

next theorem, we consider the existence of a positive solution to (1.3). We use an adaptation of the argument

in [9].
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Theorem 5.2. Let 0 < β < 1. There exists a constant C > 0, depending on β and Ω, such that for every h ∈ C(Ω)
satisfying

sup

Ω

d2−β(x)h+(x) ≤ C, (5.1)

problem (1.3) admits a positive solution in W2,n
loc

(Ω).

Proof. Let U ∈ C2(Ω) be the maximal solution of (1.3) with h ≡ 0 on Ω (see the remark right after Theo-

rem5.1). By the tangencyprinciple (see [20, Theorem2.1.3]),wenote thatmin
Ω
U > 0. Letw ∈W2,n

loc

(Ω) ∩ C(Ω)
be the unique solution of Lw = h+ in Ω with w = 0 on ∂Ω. The existence of such a solution is justified

by [1, Theorem 4]. Moreover, w < 0 in Ω and there exists a positive constant Cβ > 0 such that (see [1,

Remark 6.2])

sup

Ω

|d−β(x)w(x)| ≤ Cβ sup
Ω

(d2−β(x)h+(x)).

Therefore, we have

|w(x)| = dβ(x)|d−β(x)w(x)| ≤ Cβ(diamΩ)β sup
Ω

d2−β(x)h+(x) ≤ CCβ(diamΩ)β for all x ∈ Ω.

We choose C > 0 in (5.1) so that
CCβ(diamΩ)β < min

Ω

U(x).

Thus, U + w > 0 in Ω, and

L(U + w) = f(U) + h+ ≥ f(U + w) + h in Ω.

Let {uj}be the sequence of solutions of (3.4) constructed in theproof of Theorem3.7. Then, by theComparison

Principle,wenote thatU + w ≤ uj inOj for all j. Therefore,U + w ≤ u in Ω, showing that u is a positive solution
of (1.3).

A Appendix
We use this appendix to prove two lemmas and make some remarks, which may be of independent interest.

Lemma A.1. Suppose that f satisfies (f1). If f satisfies the Keller–Osserman condition (f2), then

lim inf

t→∞

F(t)
tf(t)
≤
1

2

. (A.1)

Proof. Let
α := lim inf

t→∞

F(t)
tf(t)

.

Given τ
0
> 0, we see that

ln(
F(t)
F(τ

0
)
) =

t

∫
τ
0

f(s)
F(s)

ds, t > τ
0
.

That is,

F(t) = F(τ
0
) exp(

t

∫
τ
0

f(s)
F(s)

ds), t > τ
0
. (A.2)

Now assume, contrary to (A.1), that α > 1/2. We choose τ
0
> 0 so that

F(t)
tf(t)
≥
1

2

for all t ≥ τ
0
. (A.3)

Using (A.3) in (A.2), we obtain

F(t) ≤ F(τ
0
) exp(2

t

∫
τ
0

ds
s )
= F(τ

0
)τ−2

0

t2 for all t ≥ τ
0
.

This shows that (f2) fails.
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Remark A.2. (i) We remark that if t 󳨃→ t−1f(t) is non-decreasing at infinity, then

lim sup

t→∞

F(t)
tf(t)
≤
1

2

.

To see this, suppose t 󳨃→ t−1f(t) is non-decreasing on (τ
0
,∞) for some τ

0
> 0. Then

F(t) = F(τ
0
) +

t

∫
τ
0

f(s) ds ≤ F(τ
0
) +

f(t)
t

t

∫
0

s ds = F(τ
0
) +

1

2

tf(t), t > τ
0
.

Therefore, we have

F(t)
tf(t)
≤
F(τ

0
)

tf(t)
+
1

2

, t > τ
0
,

from which the claim follows.

(ii) The converse of Lemma A.1 is false, as the example f(t) = t log2(t + 1) shows.

Lemma A.3. Suppose that f satisfies (f1) and (f3). Then Ξ∗ ≤ 0.

Proof. Let α be as in the proof of Lemma A.1. By (f3), we have α > 0. Let us fix ρ so that 0 < ρ < α. Then there
exists τ

0
:= τ(ρ) > 0 such that

F(t)
tf(t)
≥ ρ for all t ≥ τ

0
. (A.4)

If 0 < κ < 1, then, using (A.4) in (A.2), we find

F(κt)
F(t)
= exp(−

t

∫
κt

f(s)
F(s)

ds) ≥ κ1/ρ for all t ≥ τ0
κ
. (A.5)

As a consequence of (A.5), for 0 < κ < 1, we find

κ1/ρ ≤ F(κt)
F(t)
≤
2κf(κt)
f(t/2)

, t > τ0
κ
. (A.6)

Therefore, for 0 < κ < 1, we have shown that

f(2κt)
f(t)
≥
1

2

κ(1−ρ)/ρ , t ≥ τ0
2κ

. (A.7)

For an arbitrary, but fixed 0 < ξ < 2, we take κ := ξ/2 in (A.7) to find

f(ξt)
f(t)
≥
1

2

(
ξ
2

)
(1−ρ)/ρ

, t ≥ τ0
ξ
.

Therefore,

lim inf

t→∞

f(ξt)
f(t)
≥
1

2

(
ξ
2

)
(1−ρ)/ρ

, 0 < ξ < 2.

Consequently, we get

g∗(ξ ) ≤ Λξ −
1

2

(
ξ
2

)
(1−ρ)/ρ

, 0 < ξ < 2.

Therefore, since 0 < ρ < 1, we note that the right-hand side tends to 0 as ξ → 0. This shows that

Ξ∗ = inf
ξ>0

g∗(ξ ) ≤ 0,

and the proof is complete.
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We complement the above lemma with the following remark.

Remark A.4. Suppose that f satisfies (f1) and

lim sup

t→∞

F(t)
tf(t)
<
1

2

.

Then Ξ∗ = −∞. To see this let

lim sup

t→∞

F(t)
tf(t)
< σ < 1

2

. (A.8)

Let κ > 1. Again, using (A.8) in (A.2), we can find some τ
0
> 0 such that

F(κt)
F(t)
≥ κ1/σ , t > τ

0
.

Proceeding as in (A.6) we find

f(2κt)
f(t)
≥
1

2

κ(1−σ)/σ , t ≥ τ
0
.

That is,

f(ξt)
f(t)
≥ 2−1/σξ (1−σ)/σ , t > τ

0
.

Consequently, we have

g∗(ξ ) ≤ Λξ − 2−1/σξ (1−σ)/σ .

Recalling that 1/σ > 2, the assertion follows on letting ξ →∞.
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