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Abstract:We derive the uniqueness of weak solutions to the Shigesada–Kawasaki–Teramoto (SKT) systems

using the adjoint problem argument. Combining with [10], we then derive the well-posedness for the SKT

systems in space dimension d ≤ 4.
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1 Introduction
Uniqueness is an important issue to address when one considers the global well-posedness for a system of

differential equations. For systems of partial differential equations like cross diffusion systems, the unique-

ness has remained a challenge for solutions with mild regularity since the comparison/maximum principle

for the cross diffusion systems like SKT is not available. We also note here that in our recent work [10], we

showed a weak maximum principle for non-negativeness of solutions that allowed us to prove the existence

of positive weak solutions of SKT systems directly using finite difference approximations, a priori estimates,

and passage to the limit, which avoid the change of variables (or an entropy function) being used in other

works as in, e.g., [5–7]. Together with our existence result for weak solutions of SKT systems in [10], this

article provides the well-posedness for these systems in space dimension d ≤ 4.
The available uniqueness results for the SKT systems are rather scarce and require high regularity of the

solutions. In [12, Theorem 3.5], Yagi proved a uniqueness result for solutions in

C((0, T];H2(Ω)) ∩ C1((0, T]; L2(Ω))

using an abstract theory for parabolic equations in space dimension 2. In [1, 2], Amann proved global exis-

tence and uniqueness results for solutions of general systems of parabolic equations with high regularity in

space in the semigroup settings,W1,p(Ω) for p > n, which require Hölder a priori estimates when applied to

SKT equations.

In this work, we use the argument of adjoint problems to build specific test functions to show the unique-

ness for solutions in a more general space setting, in L∞(0, T;H1(Ω)2)with time derivatives in L4/3(ΩT)2 for
space dimension d ≤ 4; see Remark 2.1 below. This argument of using adjoint problems has been used to

show uniqueness results for scalar partial differential equations describing flows of gas or fluid in porous

media or the spread of a certain biological population; see, e.g., [3, 4]. It is also systematically used in the

context of linear equations in [9].
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Throughout our work, we denote by Ω an open bounded domain inℝd, d ≤ 4, andwe set ΩT = Ω × (0, T)
for any T > 0. We aim to show the uniqueness result and then combine this result with our previous global

existence results of weak solutions in [10] to show the global well-posedness for the following SKT system of

diffusion reaction equations (see [11]):

{{{
{{{
{

∂tu − ∆p(u) + q(u) = ℓ(u) in ΩT ,

∂νu = 0 on ∂Ω × (0, T) or u = 0 on ∂Ω × (0, T),
u(x, 0) = u

0
(x) ≥ 0 in Ω,

(1.1)

where u = (u, v) and

p(u) = (p1(u, v)
p
2
(u, v)
) = (
(d

1
+ a

11
u + a

12
v)u

(d
2
+ a

21
u + a

22
v)v
) ,

q(u) = (q1(u, v)
q
2
(u, v)
) = (
(b

1
u + c

1
v)u

(b
2
u + c

2
v)v
) ,

ℓ(u) = (ℓ1(u)
ℓ
2
(v)
) = (

a
1
u

a
2
v
) .

(1.2)

Here aij ≥ 0, bi ≥ 0, ci ≥ 0, ai ≥ 0, di ≥ 0 are such that

0 < a
12
a
21
< 64a

11
a
22
. (1.3)

It can be shown [13] that condition (1.3) is equivalent to

0 < a2
12

< 8a
11
a
21

and 0 < a2
21

< 8a
22
a
12
, (1.4)

as far as existence and uniqueness of solutions are concerned.

One of the difficulties with the SKT equations is that they are not parabolic equations. Whereas Amann

[1, 2] has proven the existence and uniqueness of regular solutions for general parabolic equations, which

can be applied to SKT equations using Lp estimates, we proved in [10] the existence of weak solutions (see

also [7]) to the SKT equations. It is important to validate this concept of weak solutions, to show that theweak

solutions are unique. This is precisely what we are doing in this article in dimension d ≤ 4.
Throughout the article, we often use the following alternate form of (1.1):

∂tu − ∇ ⋅ (P(u)∇u) + q(u) = ℓ(u),

where

P(u) = (p11(u, v) p
12
(u, v)

p
21
(u, v) p

22
(u, v)
) = (

d
1
+ 2a

11
u + a

12
v a

12
u

a
21
v d

2
+ a

21
u + a

22
v
) . (1.5)

When condition (1.4) is satisfied and u ≥ 0, v ≥ 0, we can prove that the matrix P(u) is (pointwise) posi-
tive definite and that

(P(u)ξ ) ⋅ ξ ≥ α(u + v)|ξ |2 + d
0
|ξ |2 for all ξ ∈ ℝ2, (1.6)

where d
0
= min(d

1
, d

2
) and

0 < α < min(a
11
, a

12
, a

21
, a

22
, δ

0
).

Here we refer the readers to a proof of (1.6) in our recent article [10].

We consider later on the mappings

P : u = (u, v) 󳨃→ p = (p
1
, p

2
), Q : u = (u, v) 󳨃→ q = (q

1
, q

2
)

and we observe that

P(u) = DP
Du
(u), Q(u) = DQ

Du
(u), (1.7)

and

∇p(u) = P(u)∇u.
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We see that the explicit form of P(u) is given in (1.5) and the one of Q(u) is

Q(u) = (2b1u + c1v c
1
u

b
2
v b

2
u + 2c

2
v
) .

Note that (1.6) implies that, for u, v ≥ 0, P(u) is invertible (as a 2 × 2matrix), and that, pointwise (i.e. for

a.e. x ∈ Ω),
|P(u)−1|L(ℝ2) ≤

1

d
0
+ α(u + v)

.

Our work is organized as follows: We show our main result in Section 2, where the uniqueness for weak

solutions to the SKT system is derived using solutions of adjoint problems. Since the proof of the unique-

ness relies on the existence of solutions to the adjoint problem, we show the existence for these problems

in Section 2.1, together with the a priori estimates in dimension d ≤ 4. We finally show in Section 3 that the

newly derived uniqueness result in Section 2 together with our existence result in [10] leads to the global

well-posedness for the SKT systems in space dimension d ≤ 4.

2 Uniqueness result for SKT systems
Asmentioned earlier, our uniqueness result is proven using an argument of an adjoint problem; see, e.g., [4],

see also [9] in the context of linear parabolic problems. The existence of solutions of our adjoint problemwill

be granted if the solution u of (1.1) enjoys the following regularity properties:

u ∈ L∞(0, T;H1(Ω)2) and ∂tu ∈ L
4

3 (ΩT)2.

Remark 2.1. Although this was not explicitly stated in [10], the solutions that we constructed in dimension

d ≤ 4 belong to L∞(0, T;H1(Ω)2) with ∂tu ∈ L2(0, T; L2(Ω)2); see Appendix A.3.

Introducing a test function φ which satisfies (2.2) below and the same boundary condition as u, we multi-

ply (1.1) by φ, integrate, integrate by parts, and obtain the variational weak form of (1.1):

{{{
{{{
{

⟨∂tu,φ⟩ − ⟨p(u), ∆φ⟩ + ⟨q(u),φ⟩ = ⟨ℓ(u),φ⟩,
∂νu = 0 on ∂Ω × (0, T) or u = 0 on ∂Ω × (0, T),
u(x, 0) = u

0
in Ω

(2.1)

for all test functions φ such that

{
φ ∈ L2(0, T;H2(Ω)2) ∩ L∞(0, T;H1(Ω)2) and ∂tφ ∈ L

4

3 (ΩT)2,

∂νφ = 0 or φ = 0 on ∂Ω (φ satisfies the same boundary condition as u).
(2.2)

Note that the boundary terms disappear because p(u) satisfies the same boundary condition as u. To show
that the solutions of (1.1) are unique,we introduce the difference of two solutionsu

1
,u

2
of (2.1), ū = u

1
− u

2
,

and we will eventually show that ū = 0 for a.e. x ∈ Ω and t > 0.
We first observe that ū satisfies

{{{
{{{
{

⟨∂tū,φ⟩ − ⟨p(u1) − p(u2), ∆φ⟩ + ⟨q(u1) − q(u2),φ⟩ = ⟨ℓ(u1) − ℓ(u2),φ⟩,
∂νū = 0 on ∂Ω × (0, T) or ū = 0 on ∂Ω × (0, T),
ū(x, 0) = 0 in Ω

(2.3)

for any test function φ that satisfies (2.2).

Using the notations P(⋆),Q(⋆) introduced earlier in (1.7) and the relations (A.1), (A.2) from Lemma A.1,

we find

⟨ū,φ⟩t − ⟨ū,φt⟩ − ⟨P(ũ)ū, ∆φ⟩ + ⟨Q(ũ)ū,φ⟩ = ⟨ℓ(ū),φ⟩,

where ũ = (u
1
+ u

2
)/2.



500 | D. Pham and R. Temam, Uniqueness of weak solutions of the SKT equations

Thus

⟨ū,φ⟩t − ⟨ū,φt⟩ − ⟨ū, P(ũ)
T
∆φ⟩ + ⟨ū,Q(ũ)Tφ⟩ = ⟨ℓ(ū),φ⟩. (2.4)

We notice that ũ ∈ L∞(0, T;H1(Ω)2) because u
1
, u

2
∈ L∞(0, T;H1(Ω)2).

We now consider the test function φ to be a solution of the following backward adjoint problem:

{{{
{{{
{

−∂tφ − P(ũ)T∆φ + Q(ũ)Tφ = φ in ΩT ,

∂νφ = 0 or φ = 0 on ∂Ω × (0, T),
φ(T) = χ(x) in Ω,

(2.5)

where χ(x) = (χu(x), χv(x)) ∈ H1(Ω)2.
Before showing the uniqueness result of solutions of (1.1) using the test functionφ as a solution of (2.5),

we first show the existence of φ = (ϕu
, ϕv) ∈ L2(0, T;H2(Ω)2)with ∂tφ ∈ L4/3(ΩT) in the following section.

2.1 Existence of solutions for the adjoint systems

In this section, we continue to assume that d ≤ 4, and we show the existence of a solution φ of (2.5) satis-

fying (2.2) by building approximate systems where the classical existence theory can be applied to show the

existence of approximate solutions. We suppose throughout this section that the functions ũ ≥ 0 in the first
equation in (2.5) satisfies

ũ ∈ L∞(0, T;H1(Ω)2).

We observe that the diffusive matrix P(ũ) in (2.5) may not be uniformly parabolic¹ unless ũ ∈ L∞(ΩT)2.
Thus we can not directly apply the classical results for parabolic equations to show the existence of φ; see,
e.g., [8, Theorem 5.1]. We therefore use an approximation approach as in [4].

The existence of a solution φ of (2.5) is obtained in three steps:

∙ Define approximations φε of φ, which are solutions of the approximate systems (2.7) below.

∙ Derive a priori estimates for the functions φε.

∙ Pass to the limit as ε → 0 to show the existence of φ, a solution of (2.5).
We start now with the first step of building approximate solutions φε.

2.1.1 Approximate adjoint systems

We know that ũ = (u
1
+ u

2
)/2 ≥ 0 and ũ ∈ L∞(0, T;H1(Ω)2) (see Theorem A.2). We build approximations ũε

of ũ, as a sequence in L∞(ΩT)2, that converges to ũ in L4(ΩT)2. We can define such ũε as follows:

ũε = θε(ũ),

where θε is a smooth function with derivative bounded by a constant independent of ε, which we assume to

be 1, such that

θε(ũ) =
{
{
{

ũ for ũ ≤ 1

ε ,
1

ε for ũ ≥ 2

ε .

We easily see that uε ∈ L∞(ΩT)2. Furthermore, we have ũε → ũ a.e. and |ũε|L4 ≤ |ũ|L4 < ∞, and we obtain by
the Lebesgue dominated convergence that ũε converges to ũ in L4(ΩT)2. Finally, we easily see the following
by straightforward calculations:

‖ũε‖L∞(0,T;H1(Ω)2) ≤ κ‖ũ‖L∞(0,T;H1(Ω)2), (2.6)

where κ depends on the maximum value of θ󸀠ε, which is independent of ε.

1 A matrix P(⋆) is uniformly parabolic if κ
1
|ξ |2 ≤ (P(⋆)ξ ) ⋅ ξ ≤ κ

2
|ξ |2 for all ξ ∈ ℝ2d and some κ

1
, κ

2
> 0; see the definition in,

e.g., [8].
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We then let φε = (φε
u , φε

v) satisfy the following approximate system:

{{{
{{{
{

−∂tφε − P(ũε)
T
∆φε + Q(ũε)

Tφε = φε in ΩT ,

∂νφε = 0 or φε = 0 on ∂Ω × (0, T),
φε(T) = χ(x) in Ω.

(2.7)

We know that ũε ∈ L∞(ΩT)2, which yields P(ũε) ∈ L∞(ΩT)4. This in turn implies that

(P(ũε)ξ ) ⋅ ξ ≤ κ(ε)|ξ |2,

where κ(ε) is a constant depending on ε. This bound from above of P(ũε) and its bound from below in (1.6)

give the uniformparabolic condition for the approximate system (2.5). The existence of a smooth functionφε
is hence given by the classical theory of the equations of parabolic type; see, e.g., [8, Theorem 5.1]. We now

bound the approximate solutions φε independently of ε.

Lemma 2.2. Assume that d ≤ 4 and ũ ∈ L∞(0, T;H1(Ω)2). We then have the following a priori bounds inde-
pendent of ε for the solution φε of (2.7):

sup

t∈[0,T]
‖φε‖H1(Ω)2 ≤ κ‖χ‖H1(Ω)2 , (2.8a)

T

∫
0

(1 + ũε + ṽε)|∆φε|
2 dt ≤ κ‖χ‖H1(Ω)2 (2.8b)

and
‖∂tφε‖L 4

3 (ΩT )
≤ κ‖χ‖. (2.8c)

Here, in this lemma, κ depends on ‖u‖L∞(0,T;H1(Ω)2) and on the coefficients but is independent of ε.

Proof of Lemma 2.2. Multiplying (2.7) by φε, we find

−
1

2

d
dt
|φε|

2 − ⟨P(ũε)T∆φε ,φε⟩ + ⟨Q(ũε)
Tφε ,φε⟩ = |φε|

2

. (2.9)

Multiplying (2.7) by −∆φε, we also find, after integration by parts,

−
1

2

d
dt
|∇φε|

2 + ⟨P(ũε)T∆φε , ∆φε⟩ − ⟨Q(ũε)
Tφε , ∆φε⟩ = |∇φε|

2

. (2.10)

Adding equations (2.9) and (2.10) and regrouping the terms, we find

−
1

2

d
dt (
|φε|

2 + |∇φε|
2) + ⟨P(ũε)T∆φε , ∆φε⟩

= ⟨(P(ũε) + Q(ũε)T)φε , ∆φε⟩ − ⟨Q(ũε)
Tφε ,φε⟩ + |φε|

2 + |∇φε|
2

. (2.11)

We bound the first two terms on the right-hand side of (2.11) as follows:

∙ We first bound the easier term ⟨Q(ũε)Tφε ,φε⟩ using the Hölder inequality for three functions with pow-
ers (2, 4, 4), the Sobolev embedding from H1

to L4 in dimension d ≤ 4, and (2.6):
󵄨󵄨󵄨󵄨⟨Q(ũε)

Tφε ,φε⟩
󵄨󵄨󵄨󵄨 ≤ c0|ũε|L2 |φε|

2

L4 ≤ c1‖ũε‖H1‖φε‖
2

H1
≤ κ

1
(‖ũ‖L∞(0,T;H1))‖φε‖

2

H1
.

Here κ
1
(‖ũ‖L∞(0,T;H1)) is a constant which depends on ‖ũ‖L∞(0,T;H1) but not on ε.

∙ We now bound the term ⟨(P(ũε) + Q(ũε)T)φε , ∆φε⟩ using Hölder’s inequality for three functions with
powers (4, 4, 2), the previously used Sobolev embedding from H1

to L4 which assumes d ≤ 4, the Young
inequality, and (2.6):

󵄨󵄨󵄨󵄨⟨(P(ũε) + Q(ũε)
T)φε , ∆φε⟩

󵄨󵄨󵄨󵄨 ≤ c0|ũε|L4 |φε|L4 |∆φε|L2

≤ c
1
‖ũε‖H1‖φε‖H1 |∆φε|L2

≤ c
1
‖ũε‖L∞(0,T;H1)‖φε‖H1 |∆φε|L2

≤ κ
2
(‖ũ‖L∞(0,T;H1))‖φε‖

2

H1
+
d
0

2

|∆φε|
2

L2 ,

where d
0
= min(d

1
, d

2
) and κ

2
(‖ũ‖L∞(0,T;H1)) is independent of ε.



502 | D. Pham and R. Temam, Uniqueness of weak solutions of the SKT equations

Using these two bounds in (2.11), we find

−
1

2

d
dt (
|φε|

2 + |∇φε|
2) + ⟨P(ũε)T∆φε , ∆φε⟩ ≤ κ(‖ũ‖L∞(0,T;H1))(|φε|

2 + |∇φε|
2) +

d
0

2

|∆φε|
2

L2 ,

where κ(‖ũ‖L∞(0,T;H1)) is a constant which depends on ‖ũ‖L∞(0,T;H1) but is independent of ε.
Thanks to the positivity of P(⋆) in (1.5), we have, using (1.6),

−
1

2

d
dt (
|φε|

2 + |∇φε|
2) + (

d
0

2

+ α(ũε + ṽε))|∆φε|
2 ≤ κ(‖ũ‖L∞(0,T;H1))(|φε|

2 + |∇φε|
2).

This implies

−
d
dt (
|φε|

2 + |∇φε|
2) + α(1 + ũε + ṽε)|∆φε|

2 ≤ κ(|φε|
2 + |∇φε|

2), (2.12)

where again κ = κ(‖ũ‖L∞(0,T;H1)).
Recall thatφ(T) = χ ∈ H1(Ω)2. Multiplying (2.12) by e2t and integrating over [t, T] for t ∈ [0, T], we infer

(2.8a) and (2.8b).

Now, to derive the bound independent of ε for ∂tφε, we write using the first equation in (2.7):

‖∂tφε‖L 4

3

= 󵄩󵄩󵄩󵄩P(ũε)
T
∆φε − Q(ũε)

Tφε + φε
󵄩󵄩󵄩󵄩L 4

3

. (2.13)

We bound the most challenging norm term ‖P(ũε)T∆φε‖L4/3 on the right-hand side of (2.13). We consider

a function z ∈ L4(ΩT)2 and write

∫
ΩT

P(ũε)T∆φεz dx dt ≤ (max

i=1,2
di|Ω|

1

4 + 2 max

i,j=1,2
aij(‖uε‖L4 + ‖vε‖L4 ))(‖∆φu

ε ‖L2 + ‖∆φv
ε‖L2)‖z‖L4 .

Observing that ‖uε‖L4 ≤ ‖u‖L4 ≤ ‖u‖L∞(0,T;H1), a similar bound for ‖vε‖L4 , and using (2.8b), we find the follow-
ing bound for any z ∈ L4(ΩT):

∫
ΩT

P(ũε)T∆φεz dx dt ≤ κ(‖u‖L4 )|∆φε|‖z‖L4 ≤ κ(‖u‖L∞(0,T;H1))‖χ‖‖z‖L4 ,

where κ depends on ‖u‖L∞(0,T;H1) and on the coefficients di, aij but is independent of ε. This gives the a priori
bound (2.8c).

2.1.2 Passage to the limit for the solutions of the approximate systems

We now pass to the limit as ε → 0 in the approximate adjoint system (2.7). From the a priori estimates

(2.8a)–(2.8c) we have that there exists a subsequence of φε, still denoted by φε, such that as ε → 0,

{{{
{{{
{

φε ⇀ φ in L∞(0, T;H1(Ω)2) weak-star,

∆φε ⇀ ∆φ in L2(ΩT)2 weakly,

∂tφε ⇀ ∂tφ in L
4

3 (ΩT)2 weakly.

(2.14)

We then pass to the limit term by term in (2.7), where the most challenging product term P(ũε)∆φε is treated

as follows: for any z ∈ L4(ΩT)2, we write

∫
ΩT

(P(φ̃ε)
T
∆φε − P(φ̃)T∆φ)z dx dt

= ∫
ΩT

∆φε(P(ũε) − P(ũ))z dx dt
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

T1ε

+ ∫
ΩT

(∆φε − ∆φ)P(ũ)z dx dt
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

T2ε

.
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∙ We first deal with the easier term T2ε . We easily see that T2ε → 0 as ε → 0 thanks to (2.14) and the facts

that P(ũ) ∈ L4(ΩT)4 and z ∈ L4(ΩT)2, which gives P(ũ)z ∈ L2(ΩT)2.
∙ For T1ε , as ε → 0,weknow that ũε → ũ in L4(ΩT)2 strongly,which givesP(ũε) → P(ũ) in L4(ΩT)4 strongly.

Thus (P(ũε) − P(ũ))z converges to 0 in L2(ΩT)2 strongly. Since ∆φε is bounded in L2(ΩT)2 (thanks

to (2.8b)), we conclude that T1ε → 0 as ε → 0.

We hence have P(ũε)∆φε ⇀ P(ũ)∆φ weakly in L4/3(ΩT)2 as ε → 0. We thus conclude that φ is a weak solu-

tion of (2.5) as below.

Proposition 2.3. Under the assumptions that d ≤ 4 and ũ ∈ L∞(0, T;H1(Ω)2), the adjoint system (2.5) admits
a solution φ in L∞(0, T;H1(Ω)) ∩ L2(0, T;H2(Ω)2) such that ∂tφ ∈ L4/3(ΩT)2.

We now resume the work of showing the uniqueness of the solution u of (1.1).

2.2 Uniqueness result for the SKT system

We recall that u
1
, u

2
are two solutions of (2.1), andwe havewritten ū = u

1
− u

2
; wewill eventually show that

ū = 0 for a.e. x ∈ Ω and t > 0. We also recall that ū satisfies (2.3).

Using the existence result of the adjoint problem in Theorem 2.3, we have a solution

φ = (ϕu
, ϕv) ∈ L2(0, T;H2(Ω)2)

of (2.5) with ∂tφ ∈ L4/3(ΩT).
We henceforth infer from (2.4) and (2.5) that

⟨ū,φ⟩t + ⟨ū,φ⟩ = ⟨ℓ(ū),φ⟩. (2.15)

We look at the first component in (2.15):

⟨u
1
(t) − u

2
(t), φu⟩t = (a1 − 1)⟨u1(t) − u2(t)), φu⟩.

Multiplying the equation by e−(a1−1)t and integrating over the time interval [0, T], we find

⟨u
1
(T) − u

2
(T), χu⟩ = 0.

This is true for any χu ∈ H1(Ω), and we thus find u
1
(T) = u

2
(T) for a.e. x ∈ Ω. The argument is also valid for

any other time t < T which gives u
1
(t) = u

2
(t) a.e. Similarly, we have v

1
(t) = v

2
(t) a.e.

We have thus shown the following result.

Theorem 2.4 (Uniqueness). In space dimension d ≤ 4, the SKT system (1.1) admits at most one weak solution
u ≥ 0 such that

u ∈ L∞(0, T;H1(Ω)2) and ∂tu ∈ L
4

3 (ΩT)2.

3 Global well-posedness for the SKT system
In this section, we assume that d ≤ 4 and show that our uniqueness result in Section 2 yields the global

well-posedness for solutions of the SKT system (1.1) with the following initial datum conditions:

u
0
∈ L2(Ω)2 and ∇p(u

0
) ∈ L2(Ω)4. (3.1)

Remark 3.1. Thanks to the existence result in our prior work [10], whose main result is stated as Theo-

rem A.2, we see that for all T > 0, under the assumptions that the space dimension d ≤ 4 and the initial data
satisfies (3.1), the SKT system (1.1) possesses solutions u ∈ L∞(0, T;H1(Ω)2)with ∂tu ∈ L4/3(ΩT)4/3 as con-
sequences of (A.3c) and (A.4a). Theorem 2.4 thus applies and gives the uniqueness of such a solution u
of (1.1). We then conclude that the solution u exists globally and uniquely.
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Our main result in this section is as follows.

Theorem 3.2. Suppose that d ≤ 4, thatu
0
satisfies (3.1), and that the coefficients satisfy (1.4). System (1.1)pos-

sesses a unique global solution u ∈ L∞(0,∞;H1(Ω)2) with ∂tu ∈ L2(Ω × (0,∞))2. Furthermore, the mapping
u
0
󳨃→ u is continuous from Lq(Ω) into L2(Ω) endowed with the norm |⋆|w

|⋆|w = sup
v∈H1

⟨⋆, v⟩
‖v‖

.

Here q = max(2d/(6 − d), 4d/(d + 2)).

To show the continuous dependance on the initial data, we suppose that u
1
and u

2
are two solutions with

initial data u
1
(0), u

2
(0) satisfying (3.1). We proceed as in Section 2 by denoting ū = u

1
− u

2
, ũ = (u

1
+ u

2
)/2,

and recall from (2.4) that

⟨ū,φ⟩t − ⟨ū,φt⟩ − ⟨ū, P(ũ)
T
∆φ⟩ + ⟨ū,Q(ũ)Tφ⟩ = ⟨ℓ(ū),φ⟩, (3.2)

where φ solves the following adjoint problem:

{{{
{{{
{

−∂tφ − P(ũ)T∆φ + Q(ũ)Tφ = ℓ(φ) in Ωτ = Ω × (0, τ),
∂νφ = 0 or φ = 0 on ∂Ω × (0, τ),
φ(τ) = χ in Ω,

(3.3)

for χ(x) = (χu(x), χv(x)) ∈ H1(Ω)2 (arbitrary) with appropriate compatible boundary conditions.

The existence of a solution that satisfies the following a priori estimates was proven in Lemma 2.2.

Lemma 3.3 (A priori estimates). Assume that d ≤ 4 and ũ = (ũ, ṽ) ∈ L∞(0, T;H1(Ω)2). We then have the fol-
lowing a priori bounds independent of τ ∈ [0, T] for the solutions φ of (3.3):

sup

t∈[0,τ]
‖φ‖H1(Ω)2 ≤ κ‖χ‖H1(Ω)2 , (3.4a)

τ

∫
0

(1 + ũ + ṽ)|∆φ|2 dt ≤ κ‖χ‖H1(Ω)2 . (3.4b)

Here, κ depends on ‖ũ‖L∞(0,T;H1(Ω)2), T, and on the coefficients but is independent of τ.

Wenow continue to show the continuous dependance ofu on the data.We find from equations (3.2) and (3.3)

that

⟨ū,φ⟩t = 0.
Thus

⟨ū(τ), χ⟩ = ⟨ū(0),φ(0)⟩,
where we have used φ(τ) = χ.

We now use the first equation in (3.3) and find

⟨ū(τ), χ⟩ = ⟨ū(0), χ +
τ

∫
0

[P(ũ)T∆φ − Q(ũ)φ + ℓ(φ)] dt⟩

= ⟨ū(0), χ⟩ + ⟨ū(0),
τ

∫
0

[P(ũ)T∆φ − Q(ũ)φ + ℓ(φ)] dt⟩ (3.5)

We next bound the typical terms on the right-hand side of (3.5):

∙ We first bound a typical term ⟨ū(0), ũ∆ϕu⟩ in ⟨ū(0), PT(ũ)∆φ⟩ as follows:

⟨ū(0), ũ∆ϕu⟩ = ⟨ ū(0)⏟⏟⏟⏟⏟⏟⏟
∈L

4d
d+2 , ũ

1

2⏟⏟⏟⏟⏟⏟⏟

∈L
4d
d−2 ũ

1

2
∆ϕu⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
∈L2
⟩

≤ |ū(0)|
L

4d
d+2 |ũ| 12L 2d

d−2 |ũ 1

2
∆ϕu|L2

≤ c|ū(0)|
L

4d
d+2 |ũ| 12L∞(0,T;H1)|ũ

1

2
∆ϕu|L2 .
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Thus, by (3.4b), we find

⟨ū(0),
τ

∫
0

ũ∆φ dt⟩ ≤ c|ū(0)|
L

4d
d+2 |ũ| 12L∞(0,T;H1)

τ

∫
0

|ũ
1

2
∆φ|L2 ≤ cT

1

2 |ū(0)|
L

4d
d+2 |ũ| 12L∞(0,T;H1)‖χ‖

1

2

H1
. (3.6)

∙ We now bound the term ⟨ū(0), ∫τ
0

Q(ũ)φ dt⟩ by bounding its typical term ∫τ
0

⟨ū(0), ũ2ϕu⟩ dt:

⟨ ū(0)⏟⏟⏟⏟⏟⏟⏟
∈L

2d
6−d , ũ2⏟⏟⏟⏟⏟⏟⏟
∈L

d
d−2 ϕu⏟⏟⏟⏟⏟⏟⏟

∈L
2d
d−2 ⟩ ≤ |ū(0)|L 2d

6−d |ũ|2L 2d
d−2 |ϕu|

L
2d
d−2 ≤ c|ū(0)|L 2d

6−d ‖ũ‖2L∞(0,T;H1)‖ϕ
u‖L∞(0,T;H1).

Therefore, by (3.4a), we find

⟨ū(0),
τ

∫
0

Q(ũ)φ dt⟩ ≤ cT|ū(0)|
L

2d
6−d ‖ũ‖2L∞(0,T;H1)‖χ‖H1 . (3.7)

∙ We finally bound

⟨ū(0),
τ

∫
0

ℓ(φ) dt⟩ ≤ c|ū(0)|
τ

∫
0

|φ| dt ≤ cT
1

2 |ū(0)|‖χ‖
1

2
. (3.8)

We therefore infer from (3.5)–(3.8) that

⟨ū(τ), χ⟩ ≤ ⟨ū(0), χ⟩ + κ([|ũ|
1

2

L∞(0,T;H1) + 1]‖χ‖
1

2

H1
+ ‖ũ‖2L∞(0,T;H1)‖χ‖H1)|ū(0)|Lq(Ω)2 ,

where κ = κ(T) is independent of τ and q = max(2d/(6 − d), 4d/(d + 2)).
Taking the supremum over χ with ‖χ‖ = ‖χ‖H1(Ω)2 ≤ 1, we conclude that

sup

χ∈H1

:‖χ‖≤1
⟨u

1
(τ) − u

2
(τ), χ⟩ ≤ |u

1
(0) − u

2
(0)| + κ|u

1
(0) − u

2
(0)|Lq(Ω)2 ,

where κ = κ(T, ‖u
1
+ u

2
‖L∞(0,T;H1)).

A Appendices

A.1 A technical lemma

Lemma A.1. Suppose that p, q are as in (1.2) and P, Q are as in (1.7). We then have

p(u
1
) − p(u

2
) = P(ũ)ū (A.1)

and
q(u

1
) − q(u

2
) = Q(ũ)ū, (A.2)

where ũ = (u
1
+ u

2
)/2 and ū = u

1
− u

2
.

Proof. We write

p(u
1
) − p(u

2
) = p(u

2
+ ū) − p(u

2
) =

1

∫
0

d
dt
p(u

2
+ tū) dt =

1

∫
0

DP
Du
(u

2
+ tū) ⋅ ū dt

=
1

∫
0

(
d
1
+ 2a

11
(u

2
+ tū) + a

12
(v

2
+ tv̄) a

12
(u

2
+ tū)

a
21
(v

2
+ tv̄) d

2
+ a

21
(u

2
+ tū) + 2a

22
(v

2
+ tv̄)
) ⋅ ū dt

= (
d
1
+ a

11
(u

1
+ u

2
) + a

12
(v

1
+ v

2
)/2 a

12
(u

1
+ u

2
)/2

a
21
(v

1
+ v

2
)/2 d

2
+ a

21
(u

1
+ u

2
)/2 + a

22
(v

1
+ v

2
)
) ⋅ ū

= P(ũ) ⋅ ū.

We thus proved (A.1) and we can derive (A.2) in the same fashion.
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A.2 Existence result for SKT systems

In [10, Theorem 3.1], we proved the following existence result for the SKT system (1.1).

Theorem A.2 (Existence of solutions for the SKT).
(i) We assume that d ≤ 4, that conditions (1.4) hold, and that u

0
is given, u

0
∈ L2(Ω)2, u

0
≥ 0. Then equa-

tion (1.1) possesses a solution u ≥ 0 such that, for every T > 0,

u ∈ L∞(0, T; L2(Ω)) ∩ L2(0, T;H1(Ω)2), (A.3a)

(√u + √v)(|∇u| + |∇v|) ∈ L2(0, T; L2(Ω)), (A.3b)

u ∈ L4(0, T; L4(Ω)), (A.3c)

with the norms in these spaces bounded by a constant depending on T, on the coefficients, and on the norms
in L2(Ω) of u

0
and v

0
.

(ii) If, in addition, ∇p(u
0
) ∈ L2(Ω)4, then the solution u also satisfies

∇p(u) ∈ L∞(0, T; L2(Ω)4), (1 + |u| + |v|)
1

2 (|∂tu| + |∂tv|) ∈ L2(0, T; L2(Ω)), (A.4a)

∆p(u) ∈ L2(0, T; L2(Ω)2), (A.4b)

with the norms in these spaces bounded by a constant depending on the norms of u
0
and ∇p(u

0
) in L2 (and

on T and the coefficients).

A.3 Additional regularity of weak solutions

Although this was not explicitly stated in [10], the solutions that we constructed in dimension d ≤ 4 belong
to L∞t (H1) with ∂tu in L2t (L2):
∙ From (A.3a) and (A.4a) we have u, ∇p(u) ∈ L∞(0, T; L2(Ω)2). To show that ∇u ∈ L∞(0, T; L2(Ω)2), we

note that (1.6) implies, for u, v ≥ 0, that P(u) is invertible (as a 2 × 2matrix), and that, pointwise (i.e. for

a.e. x ∈ Ω)
|P(u)−1|L(ℝ2) ≤

1

d
0
+ α(u + v)

.

We thus find ∇u ∈ L∞(0, T; L2(Ω)2) which says that u ∈ L∞(0, T;H1(Ω)2).
∙ From (A.4a) we have ∂tu ∈ L2(ΩT)2.
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