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Abstract: This paper deals with the existence of periodic solutions of fractional differential equations with
periodic impulses. The first part of the paper is devoted to the uniqueness, existence and asymptotic stabil-
ity results for periodic solutions of impulsive fractional differential equations with varying lower limits for
standard nonlinear cases as well as for cases of weak nonlinearities, equidistant and periodically shifted
impulses. We also apply our result to an impulsive fractional Lorenz system. The second part extends the
study to periodic impulsive fractional differential equations with fixed lower limit. We show that in general,
there are no solutions with long periodic boundary value conditions for the case of bounded nonlinearities.
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1 Introduction
It is well known that fractional differential equations (FDE) have no nonconstant periodic solutions [7]. Then
asymptotically periodic solutions are shown [1, 2, 15]. This paper is devoted to this problem. We first study
impulsive FDE (IFDE)with Caputo derivativeswhen the lower limits are periodically varying at each impulses.
We show that such kind of IFDE do may possess periodic solutions. We present several particular cases of
IFDE along with nonexistence results. For completeness of the paper, we also discuss IFDE when the lower
limit of the Caputo derivative is fixed, which is introduced in [5, 14]. Then there is also a problem on the
definition of solutions for such kind of IFDE; this is mentioned in [16]. Here we just study periodic boundary
value conditions on finite intervals. For more development, methods, and the current research on impulsive
and functional fractional differential equations, we refer to [12].

The paper is organized as follows: Section 2 is devoted to the study of IFDE with varying lower lim-
its for Caputo derivatives. First, in Section 2.1, we deal with general IFDE to show uniqueness, existence
and asymptotic stability results for periodic solutions. In Section 2.2, we study IFDE with weak nonlinear-
ities leading to the averaging theory for IFDE like in [11]. Section 2.3 is devoted to IFDE with equidistant
and periodically shifted impulses. This specific form allows us to obtain a nonexistence result for periodic
solutions which is applied to an impulsive fractional Lorenz system. Then we obtain Landesman–Lazer-type
existence results for periodic solutions. Section 2.4 continues the investigation of IFDE with equidistant and
periodically shifted impulses, but all are small. The corresponding limiting ODE is derived and, by using
known results from numerical dynamics, the relationship between dynamics of the limiting ODE and origi-
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nal IFDE is studied. For completeness of the paper, Section 3 deals with IFDEwith fixed lower limit of Caputo
derivative. We extend some results of Section 2 to that case. Several concrete examples are given in the paper
for illustration of theoretical results. Section 4 briefly outlines further possible ways for studies.

2 FDE with Caputo derivatives with varying lower limits

2.1 General impulses

Letℕ0 = {0, 1, . . . ,∞}. We consider

{{{
{{{
{

cDq
tk ,tx(t) = f(t, x(t)), t ∈ (tk , tk+1), k ∈ ℕ0,
x(t+k ) = x(t

−
k ) + ∆k(x(t

−
k )), k ∈ ℕ,

x(0) = x0,
(2.1)

where q ∈ (0, 1), cDq
tk ,tx(t) is the generalized Caputo fractional derivative with lower limit at tk. We suppose

the following conditions:
(i) f : ℝ × ℝm → ℝm is continuous and T-periodic in t.
(ii) There are constants K > 0, Lk > 0 such that

‖f(t, x) − f(t, y)‖ ≤ K‖x − y‖ and ‖x + ∆k(x) − y − ∆k(y)‖ ≤ Lk‖x − y‖

for any t ∈ ℝ, x, y ∈ ℝm and any k ∈ ℕ.
(iii) There is N ∈ ℕ such that T = tN+1, tk+N+1 = tk + T and ∆k+N+1 = ∆k for any k ∈ ℕ.
It is well known [8] that under assumptions (i) and (ii), (2.1) has a unique solution onℝ+. So we can consider
the Poincaré mapping

P(x0) = x(T−) + ∆N+1(x(T−)).

Clearly fixed points of P determine T-periodic solutions of (2.1) (see [4, Lemma 2.2]).

Lemma 2.1. Under assumptions (i) and (ii), there holds

‖P(x) − P(y)‖ ≤ Θ‖x − y‖ for all x, for all y ∈ ℝm

for Θ = ∏N
k=0 Lk+1Eq(K(tk+1 − tk)q), where Eq is the Mittag-Leffler function (see [8, p. 40]).

Proof. On all intervals (tk , tk+1), k = 0, 1, . . . , N, equation (2.1) is equivalent to

x(t) = x(t+k ) +
1

Γ(q)

t

∫
tk

(t − s)q−1f(s, x(s)) ds. (2.2)

Consider two solutions x and y of (2.1) with x(0) = x0 and y(0) = y0, respectively. Then by (2.2), we get

‖x(t) − y(t)‖ ≤ ‖x(t+k ) − y(t
+
k )‖ +

1
Γ(q)

t

∫
tk

(t − s)q−1‖f(s, x(s)) − f(s, y(s))‖ ds

≤ ‖x(t+k ) − y(t
+
k )‖ +

K
Γ(q)

t

∫
tk

(t − s)q−1‖x(s) − y(s)‖ ds. (2.3)

Applying a Gronwall fractional inequality [17, Corollary 2] to (2.3), we obtain

‖x(t) − y(t)‖ ≤ ‖x(t+k ) − y(t
+
k )‖Eq(K(t − tk)

q), t ∈ (tk , tk+1). (2.4)

Then using (2.4) with (ii), we get

‖x(t+k+1) − y(t
+
k+1)‖ ≤ Lk+1Eq(K(tk+1 − tk)

q)‖x(t+k ) − y(t
+
k )‖, k = 0, 1, . . . , N,



484 | M. Fečkan and J. R. Wang, Periodic IFDE

which implies

‖P(x0) − P(y0)‖ ≤
N
∏
k=0

Lk+1Eq(K(tk+1 − tk)q)‖x0 − y0‖, (2.5)

as desired.

Now we can prove the following result.

Theorem 2.2. Suppose (i)–(iii) are satisfied. If Θ < 1, then (2.1) has a unique T-periodic solution, which is in
addition asymptotically stable.

Proof. Inequality (2.5) implies that P : ℝm → ℝm is a contraction, so applying the Banach fixed point theo-
rem yields that P has a unique fixed point x0. Moreover, since

‖Pn(x0) − Pn(y0)‖ ≤ Θn‖x0 − y0‖

for any y0 ∈ ℝm, we see that the corresponding periodic solution is asymptotically stable.

2.2 Systems with weak nonlinearities

Now we consider (2.1) with small nonlinearities of the form

{{{
{{{
{

cDq
tk ,tx(t) = εf(t, x(t)), t ∈ (tk , tk+1), k ∈ ℕ0,
x(t+k ) = x(t

−
k ) + ε∆k(x(t

−
k )), k ∈ ℕ,

x(0) = x0,
(2.6)

where ε is a small parameter. Then (2.6) has a unique solution x(ε, t) and the Poincaré mapping is given by

P(ε, x0) = x(ε, T−) + ε∆N+1(x(ε, T−)).

We suppose that
(C1) f and ∆k are C2-smooth.
Then P(ε, x0) is C2-smooth as well. Moreover, we have

x(ε, t) = x0 + εv(t) + O(ε2),

and thus

{
P(ε, x0) = x0 + εM(x0) + O(ε2),
M(x0) = v(T−) + ∆N+1(x0).

(2.7)

Note that v(t) solves

{{{
{{{
{

cDq
tk ,tv(t) = f(t, x0), t ∈ (tk , tk+1), k = 0, 1, . . . , N,
v(t+k ) = v(t

−
k ) + ∆k(x0), k = 1, 2, . . . , N + 1,

v(0) = 0,

so we easily derive

v(T−) =
N
∑
k=1

∆k(x0) +
1

Γ(q)

N
∑
k=0

tk+1
∫
tk

(tk+1 − s)q−1f(s, x0) ds.

Consequently, (2.7) gives

M(x0) =
N+1
∑
k=1

∆k(x0) +
1

Γ(q)

N
∑
k=0

tk+1
∫
tk

(tk+1 − s)q−1f(s, x0) ds.

Now we are ready to prove the following result.
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Theorem 2.3. Suppose assumptions (i) and (C1). If there is a simple zero x0 ∈ ℝm of M, i.e., M(x0) = 0 and
detDM(x0) ̸= 0, then (2.6) has a unique T-periodic solution located near x0 for any ε ̸= 0 small. Moreover,
if ℜσ(DM(x0)) < 0 then it is asymptotically stable, and if ℜσ(DM(x0)) ∩ (0,∞) ̸= 0, then it is unstable. If
M(x0) ̸= 0 for any x0 ∈ ℝm, then (2.6) has no T-periodic solution for ε ̸= 0 small.

Proof. To find a T-periodic solution of (2.6), we need to solve P(ε, x0) = x0, which by (2.7) is equivalent to

M(x0) + O(ε) = 0. (2.8)

If there is a simple zero x0 of M, then (2.8) can be solved by the implicit function theorem to get its solution
x0(ε) with x0(0) = x0. Moreover, DP(ε, x0(ε)) = 1 + εDM(x0) + O(ε2). Thus stability and instability results
follow directly by the known arguments (see [10]), so we omit details.

2.3 Systems with equidistant and periodically shifted impulses

We consider
{{{
{{{
{

cDq
khx(t) = f(t, x(t)), t ∈ (kh, (k + 1)h), k ∈ ℕ0,
x(kh+) = x(kh−) + ∆k , k ∈ ℕ,
x(0) = x0,

(2.9)

where h > 0and q ∈ (0, 1).We consider thenorm ‖x‖ = maxi=1,...,m|xi| for x = (x1, . . . , xm) ∈ ℝm.We suppose
the following conditions:
(I) f : ℝ × ℝm → ℝm is continuous, locally Lipschitz in x and T-periodic in t, where T = (N + 1)h for some

N ∈ ℕ.
(II) There is a constant M > 0 such that ‖f(t, x)‖ ≤ M for any t, x ∈ ℝ.
(III) The ∆k ∈ ℝm satisfy ∆k+N+1 = ∆k for any k ∈ ℕ.
We are looking for T-periodic solutions of (2.9) on ℝ+. It is well known [8] that under above assumptions,
(2.9) has a unique solution x(x0, t) on ℝ+, which is continuous in x0 ∈ ℝm, t ∈ ℝ+ \ {kh | k ∈ ℕ} and left
continuous in t at impulsive points {kh | k ∈ ℕ}. So we can consider the Poincaré mapping

P(x0) = x(x0, T+).

Clearly fixed points of P determine T-periodic solutions of (2.9).

Lemma 2.4. Under assumptions (I)–(III), there holds

Pr(x0) = x0 +
r(N+1)
∑
k=1

∆k +
1

Γ(q)

rN
∑
k=0

(k+1)h

∫
kh

((k + 1)h − s)q−1f(s, x(x0, s)) ds (2.10)

and

‖x(x0, t) − x0‖ ≤
N
∑
k=1
‖∆k‖ +

M(N + 1)hq
Γ(q + 1) (2.11)

for t ∈ I and r ∈ ℕ, where Pr is the rth iteration of P.

Proof. On all intervals (kh, (k + 1)h), k ∈ ℕ0, equation (2.9) is equivalent to

x(x0, t) = x(kh+) +
1

Γ(q)

t

∫
kh

(t − s)q−1f(s, x(x0, s)) ds,

which implies

x(x0, t) = x0 +
n
∑
k=1

∆k +
1

Γ(q)

n−1
∑
k=0

(k+1)h

∫
kh

((k + 1)h − s)q−1f(s, x(x0, s)) ds +
1

Γ(q)

t

∫
nh

(t − s)q−1f(s, x(x0, s)) ds
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for t ∈ (nh, (n + 1)h). This implies (2.10) since Pr(x0) = x(x0, rT+). Moreover, we have

|x(x0, t) − x0| ≤
N
∑
k=1
‖∆k‖ +

M
Γ(q)

N
∑
k=0

(k+1)h

∫
kh

((k + 1)h − s)q−1 ds

=
N
∑
k=1
‖∆k‖ +

M(N + 1)hq
Γ(q + 1)

for t ∈ I. This implies (2.11).

Now we can prove the following result.

Theorem 2.5. Suppose assumptions (I)–(III). If
󵄩󵄩󵄩󵄩∑

N+1
k=1 ∆k󵄩󵄩󵄩󵄩
N + 1 >

Mhq

Γ(q + 1) , (2.12)

then (2.9) has no rT-periodic solution for any r ∈ ℕ.

Proof. We need to solve Pr(x0) = x0, which is equivalent to

−
r(N+1)
∑
k=1

∆k =
1

Γ(q)

rN
∑
k=0

(k+1)h

∫
kh

((k + 1)h − s)q−1f(s, x(x0, s)) ds. (2.13)

This gives

r
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

N+1
∑
k=1

∆k
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
≤

1
Γ(q)

rN
∑
k=0

(k+1)h

∫
kh

((k + 1)h − s)q−1|f(s, x(x0, s))| ds

≤
Mr(N + 1)hq
Γ(q + 1) .

This contradicts (2.12).

Example 2.6. We consider the Lorenz system

f(x1, x2, x3) = (a(x2 − x1), x1(b − x3) − x2, x1x2 − cx3), (2.14)

which for q = 0.995, a = 10, b = 120, c = 8
3 , and without impulses presents a chaotic attractor (see Fig. 1).

The utilized numerical scheme to integrate Lorenz’s system is the predictor-corrector Adams–Bashforth–
Moulton method for FDEs [3].

Take N = 1 and tk = kh, k ∈ ℕ0. Let

C = {(x1, x2, x3) ∈ ℝ3 : −50 ≤ x1 ≤ 50, −100 ≤ x2 ≤ 100, 50 ≤ x3 ≤ 200},

which embeds Lorenz’s attractor. To apply Theorem 2.5, we need to find

M = max
x∈C
‖f(x)‖

= max
x∈C

max{|a(x2 − x1)|, |x1(b − x3) − x2|, |x1x2 − cx3|} ≐ 533.333.

Let ∆k = (∆k1, ∆k2, ∆k3). For ∆11 = ∆21 = ∆̄1, ∆12 = 0, ∆22 = ∆̄2, and ∆31 = ∆32 = ∆̄3, condition (2.12) has the
form

max{|∆̄1|,
|∆̄2|
2 , |∆̄3|} >

Mhq

Γ(q + 1) ≐ 2.19767

for h = 0.004. Note that T = (N + 1)h = 0.008. Summarizing, we obtain the following proposition.
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Figure 1: Chaotic attractor of (2.14).

Proposition 2.7. Consider (2.9) for N = 1, h = 0.004, q = 0.995 and with (2.14) for a = 10, b = 120 and
c = 8

3 . Let ∆11 = ∆21 = ∆̄1, ∆12 = 0, ∆22 = ∆̄2, and ∆31 = ∆32 = ∆̄3. If either |∆̄1| > 2.19767 or |∆̄2| > 4.39535
or |∆̄3| > 2.19767, then our system has no 0.008r periodic solution in C for any r ∈ ℕ.

Now we present existence results. Let f(t, x) = (f1(t, x), . . . , fm(t, x)), ∆k = (∆k1, . . . , ∆km) and set

x̂i = (x1, . . . , xi−1, xi+1, . . . , xm) ∈ ℝm−1

for any i = 1, . . . ,m. Now we are ready to prove the following result.

Theorem 2.8. Suppose (I)–(III) and, in addition, there are constants f i± ∈ ℝ, i = 1, . . . ,m, such that either

lim inf
xi→∞

fi(t, x) ≥ f i+ > f i− ≥ lim sup
xi→−∞

fi(t, x) (C1)

uniformly with respect to t ∈ I and x̂i ∈ ℝm−1 for all i = 1, . . . ,m, or

lim sup
xi→∞

fi(t, x) ≤ f i+ < f i− ≤ lim inf
xi→−∞

fi(t, x) (C2)

uniformly with respect to t ∈ I and x̂i ∈ ℝm−1 for all i = 1, . . . ,m. If

−
∑N+1k=1 ∆ki
N + 1 ∈

hq

Γ(q + 1) (f
i
−, f i+) (2.15)

for all i = 1, . . . ,m, then (2.9) has a T-periodic solution.

Proof. We need to solve (2.13). For simplicity, we set

F(x0) =
1

Γ(q)

N
∑
k=0

(k+1)h

∫
kh

((k + 1)h − s)q−1f(s, x(x0, s)) ds.

So we need to solve

−
N+1
∑
k=1

∆k = F(x0). (2.16)
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Let F(x0) = (F1(x0), . . . , Fm(x0)). By (2.11), there holds limx0i→±∞ xi(x0, t) = ±∞ uniformly with respect to
t ∈ I and x̂0i ∈ ℝm−1, where x0 = (x01, . . . , x0m) and x(x0, t) = (x1(x0, t), . . . , xm(x0, t)). So by the first pos-
sibility (C1), for any ε > 0, there is mε > 0 such that

fi(s, x(x0, s)) > f i+ − ε for all x0i > mε ,
fi(s, x(x0, s)) < f i− + ε for all x0i < −mε

uniformly with respect to s ∈ I and x̂0i ∈ ℝm−1 for all i = 1, . . . ,m. This implies

Fi(x0) ≥
1

Γ(q)

N
∑
k=0

(k+1)h

∫
kh

((k + 1)h − s)q−1(f i+ − ε) ds =
(f i+ − ε)(N + 1)hq

Γ(q + 1)

for any x0i ≥ mε and x̂0i ∈ ℝm−1, ‖x̂0i‖ ≤ mε, while

Fi(x0) ≤
(f i− + ε)(N + 1)hq

Γ(q + 1)

for any x0i ≤ −mε, x̂0i ∈ ℝm−1, ‖x̂0i‖ ≤ mε, and for all i = 1, . . . ,m. Further, let us take G : ℝm → ℝm and
H : [0, 1] × ℝm → ℝm given by

Gi(x0) =
(f i+ − ε)(N + 1)hq
2Γ(q + 1)mε

(x0i + mε) −
(f i− + ε)(N + 1)hq
2Γ(q + 1)mε

(x0i − mε),

H(λ, x0) = (1 − λ)F(x0) + λG(x0).

Note that H(0, x0) = F(x0) and H(1, x0) = G(x0). It is easy to check that by fixing ε > 0 sufficiently small,
(2.15) implies

Hi(λ, x0) ̸= −
N+1
∑
k=1

∆ki (2.17)

for any x0i = ±mε, x̂0i ∈ ℝm−1, ‖x̂0i‖ ≤ mε. Similarly, we verify that (2.17) holds also in the second possibil-
ity (C2). Consequently, we derive

Hi(λ, x0) ̸= −
N+1
∑
k=1

∆ki

for any λ ∈ [0, 1] and x0 ∈ ∂Ω for Ω = {x0 ∈ ℝm | ‖x0‖ ≤ mε}, where ∂Ω is the border of Ω. This gives

deg(F, Ω, −
N+1
∑
k=1

∆k) = deg(G, Ω, −
N+1
∑
k=1

∆k),

where deg is the Brouwer topological degree. On the other hand, a linear equation G(x0) = −∑N+1k=1 ∆k has the
only solution x̄0, which by (2.15) is located in Ω. Moreover, the linearization DG(x̄0) is a nonsingular matrix,
so deg(G, Ω, −∑N+1k=1 ∆k) = ±1, and thus deg(F, Ω, −∑N+1k=1 ∆k) = ±1 ̸= 0. Summarizing, we see that (2.16) has
a solution in Ω, and so (2.13) is solvable.

Following the proof of Theorem 2.8, we have a modified result.

Theorem 2.9. Suppose (I)–(III) and, in addition, there are constants f i± ∈ ℝ, i = 1, . . . ,m and a permutation
σ : {1, . . . ,m} → {1, . . . ,m} such that

either lim inf
xi→∞

fσ(i)(t, x) > f σ(i)+ > f
σ(i)
− > lim sup

xi→∞
fσ(i)(t, x)

or lim sup
xi→∞

fσ(i)(t, x) < f σ(i)+ < f
σ(i)
− < lim inf

xi→∞
fσ(i)(t, x)

(C3)

uniformly with respect to t ∈ I and x̂i ∈ ℝm−1 for all i = 1, . . . ,m. If (2.15) holds for all i = 1, . . . ,m, then (2.9)
has a T-periodic solution.
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Clearly, either (C1) or (C2) implies (C3). Of course, assumptions (2.12) and (2.15) are complementary since

(f i−, f i+) ⊂ (−M,M)

for all i = 1, . . . ,m. Now we consider concrete examples.

Example 2.10. Consider a system

fi(t, x) = Ai tanh xi + Bi cos t cos xi sin(
m
∑
k=1

xk)

for Ai > Bi > 0 and all i = 1, . . . ,m. Then we take

f i+ = Ai − Bi , f i− = −Ai + Bi , M = max
i=1,...,m
{Ai + Bi}, T = 2π, h = 2π

N + 1 .

Hence, assumption (2.12) has the form

󵄩󵄩󵄩󵄩∑
N+1
k=1 ∆k󵄩󵄩󵄩󵄩
N + 1 >

maxi=1,...,m{Ai + Bi}hq

Γ(q + 1) ,

and assumption (2.15) has the form

−
∑N+1k=1 ∆ki
N + 1 ∈

hq

Γ(q + 1) (−Ai + Bi , Ai − Bi)

for all i = 1, . . . ,m, respectively. Consequently, Theorem 2.8 can be applied.

2.4 Systems with small equidistant and shifted impulses

We consider
{{{
{{{
{

cDq
khx(t) = f(x(t)), t ∈ (kh, (k + 1)h), k ∈ ℕ0,
x(kh+) = x(kh−) + ∆̄hq , k ∈ ℕ,
x(0) = x0,

(2.18)

where h > 0, q ∈ (0, 1), ∆̄ ∈ ℝm, and f : ℝm → ℝm is Lipschitz. Under above assumptions [8], equation (2.18)
has a unique solution x(x0, t) on ℝ+, which is continuous in x0 ∈ ℝm, t ∈ ℝ+ \ {kh | k ∈ ℕ} and left continu-
ous in t at impulsive points {kh | k ∈ ℕ}. So we can consider the Poincaré mapping

Ph(x0) = x(x0, h+).

On all intervals (kh, (k + 1)h), k ∈ ℕ0, equation (2.18) is equivalent to

x(x0, t) = x(kh+) +
1

Γ(q)

t

∫
kh

(t − s)q−1f(x(x0, s)) ds

= x(kh+) + 1
Γ(q)

t−kh

∫
0

(t − kh − s)q−1f(x(x(kh+), s)) ds. (2.19)

Hence
x((k + 1)h+) = Ph(x(kh+)) (2.20)

and

Ph(x0) = x(x0, h+) = x0 + ∆̄hq +
1

Γ(q)

h

∫
0

(h − s)q−1f(x(x0, s)) ds. (2.21)
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Inserting
x(x0, t) = x0 + hqy(x0, t), t ∈ [0, h],

into (2.19), we get

y(x0, t) =
1

Γ(q)hq

t

∫
0

(t − s)q−1f(x0 + hqy(x0, s)) ds

=
1

Γ(q + 1) f(x0) +
1

Γ(q)hq

t

∫
0

(t − s)q−1(f(x0 + hqy(x0, s)) − f(x0)) ds

=
1

Γ(q + 1) f(x0) + O(h
q)

since

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

t

∫
0

(t − s)q−1(f(x0 + hqy(x0, s)) − f(x0)) ds
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
≤

t

∫
0

(t − s)q−1‖f(x0 + hqy(x0, s)) − f(x0)‖ ds

≤ hq max
t∈[0,h]
‖y(x0, t)‖Lloc

tq

q

≤ h2q max
t∈[0,h]
‖y(x0, t)‖

Lloc
q

,

where Lloc is a local Lipschitz constant of f . Then

x(x0, t) = x0 +
hq

Γ(q + 1) f(x0) + O(h
2q), t ∈ [0, h],

and (2.21) gives
Ph(x0) = x0 + ∆̄hq +

hq

Γ(q + 1) f(x0) + O(h
2q).

Hence (2.20) becomes

x((k + 1)h+) = x(kh+) + hq(∆̄ + 1
Γ(q + 1) f(x(kh

+))) + O(h2q). (2.22)

We note that (2.19) implies
‖x(x0, t) − x(kh+)‖ = O(hq) (2.23)

for t ∈ [kh, (k + 1)h]. We see that (2.22) is leading to its approximation

z((k + 1)h+) = z(kh+) + hq(∆̄ + 1
Γ(q + 1) f(z(kh

+))),

which is the Euler numerical approximation of

z󸀠(t) = ∆̄ + 1
Γ(q + 1) f(z(t)). (2.24)

Using (2.23) and the known results about the Euler approximation method [6], we arrive at the following
result.

Theorem 2.11. Let z(t) be a solution of (2.24) with z(0) = x0 on [0, T]. Then the solution x(x0, t) of (2.18)
exists on [0, T] and satisfies

x(x0, t) = z(thq−1) + O(hq)

for t ∈ [0, Th1−q]. If z(t) is a stable (hyperbolic) periodic solution of (2.24), then there is a stable (hyperbolic)
invariant curve of Poincaré mapping Ph of (2.18) in a O(hq) neighborhood of z(t). Of course, h is sufficiently
small.
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Now we extend (2.18) for periodic impulses of the form

{{{
{{{
{

cDq
khx(t) = f(x(t)), t ∈ (kh, (k + 1)h), k ∈ ℕ0,
x(kh+) = x(kh−) + ∆̄khq , k ∈ ℕ,
x(0) = x0,

(2.25)

where the ∆̄k ∈ ℝm satisfy ∆̄k+N+1 = ∆̄k for any k ∈ ℕ and some N ∈ ℕ. So we can consider the Poincaré
mapping

Ph(x0) = x(x0, (N + 1)h+),

which has a form
Ph = PN+1,h ∘ ⋅ ⋅ ⋅ ∘ P1,h (2.26)

for
Pk,h(x0) = ∆̄khq + x(x0, h).

We already know

Pk,h(x0) = ∆̄khq + x(x0, h) = x0 + ∆̄khq +
hq

Γ(q + 1) f(x0) + O(h
2q).

Then (2.26) implies

Ph(x0) = x0 + hq
N+1
∑
k=1

∆̄k +
(N + 1)hq
Γ(q + 1) f(x0) + O(h

2q).

On the other hand, the ODE

z󸀠(t) =
∑N+1k=1 ∆̄k
N + 1 +

1
Γ(q + 1) f(z(t)) (2.27)

has the Euler numerical approximation

x0 + hq(
∑N+1k=1 ∆̄k
N + 1 +

1
Γ(q + 1) f(x0))

with the step size hq, and its N + 1 iteration has a form

x0 + hq
N+1
∑
k=1

∆̄k +
(N + 1)hq
Γ(q + 1) f(x0) + O(h

2q),

the same one as of Ph. Hence instead of (2.24) we have (2.27), and Theorem 2.11 is directly extended to
(2.25) with (2.27).

3 FDE with Caputo derivatives with fixed lower limits
Let T = (N + 1)h for a N ∈ ℕ and h > 0. We consider

{{{
{{{
{

cDq
0x(t) = f(t, x(t)), t ∈ [0, T],

x(kh+) = x(kh−) + ∆k , k ∈ {1, . . . , N},
x(0) = x0,

(3.1)

where q ∈ (0, 1), cDq
0x(t) is the generalized Caputo fractional derivative with lower limit at 0. We suppose the

following conditions
(ci) f : [0, T] × ℝm → ℝm is continuous and locally Lipschitz in x uniformly for t ∈ [0, T].
(cii) There is a constant M > 0 such that |f(t, x)| ≤ K for any t ∈ [0, T] and x ∈ ℝm.
We are looking for solutions of (3.1) satisfying x(0) = x(T). Following [16], by a solution of (3.1) we mean
a function x(t) which is continuous in x0 ∈ ℝm, t ∈ [0, T] \ {kh | k = 1, . . . , N} and left continuous in t at
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impulsive points kh, and satisfying

x(t) = x0 +
k
∑
i=1

∆i +
1

Γ(q)

t

∫
0

(t − s)q−1f(s, x(s)) ds, t ∈ (tk , tk+1]. (3.2)

It is known that under above assumptions, (3.2) has a unique solution x(x0, t) on [0, T]
Now we can prove the following result.

Theorem 3.1. Suppose assumptions (ci)–(cii). If

󵄩󵄩󵄩󵄩∑
N
k=1 ∆k
󵄩󵄩󵄩󵄩

(N + 1)q >
Mhq

Γ(q + 1) , (3.3)

then (3.1) has no solution satisfying x(0) = x(T). Note that T = (N + 1)h for some N ∈ ℕ.

Proof. We need to solve

x(0) = x(T) = x0 +
N
∑
i=1

∆i +
1

Γ(q)

T

∫
0

(T − s)q−1f(s, x(s)) ds,

which is equivalent to

−
N
∑
k=1

∆k =
1

Γ(q)

(N+1)h

∫
0

((N + 1)h − s)q−1f(s, x(x0, s)) ds.

This gives

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

N
∑
k=1

∆k
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
≤

1
Γ(q)

(N+1)h

∫
0

((N + 1)h − s)q−1|f(s, x(x0, s))| ds

≤
M(N + 1)qhq
Γ(q + 1) .

This contradicts (3.3).

Remark 3.2. Note that (3.3) is equivalent to

󵄩󵄩󵄩󵄩∑
N
k=1 ∆k
󵄩󵄩󵄩󵄩

Tq
>

M
Γ(q + 1) . (3.4)

Now we suppose that
(ciii) ∆k+p = ∆k for all k ∈ ℕ and some p ∈ ℕ.
Then we have the following corollary.

Corollary 3.3. Suppose assumptions (ci)–(ciii). Then there hold the following assertions:
(i) If

󵄩󵄩󵄩󵄩∑
p
k=1 ∆k
󵄩󵄩󵄩󵄩

(p + 1)q >
Mhq

Γ(q + 1) , (3.5)

then (3.1) has no solution satisfying x(0) = x(T) with T = (rp + 1)h for any r ∈ ℕ.
(ii) If

p
∑
k=1

∆k ̸= 0, (3.6)

then there is no solution of (3.1) satisfying x(0) = x(T) with T = (rp + 1)h for any r ∈ ℕ such that

r > 1−q
√

M(p + 1)qhq
󵄩󵄩󵄩󵄩∑

p
k=1 ∆k
󵄩󵄩󵄩󵄩Γ(q + 1)

. (3.7)
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Proof. We need to verify (3.3) for N = rp. First, we note that
󵄩󵄩󵄩󵄩∑

N
k=1 ∆k
󵄩󵄩󵄩󵄩

(N + 1)q =
󵄩󵄩󵄩󵄩∑

rp
k=1 ∆k
󵄩󵄩󵄩󵄩

(rp + 1)q ≥ r
1−q
󵄩󵄩󵄩󵄩∑

p
k=1 ∆k
󵄩󵄩󵄩󵄩

(p + 1)q (3.8)

since r ≥ 1. Assuming (3.5), we have that (3.8) implies (3.3). This proves (i). Next, assuming (3.6) and (3.7),
we obtain that (3.8) implies (3.3). This proves (ii).

Of course, (ii) implies (i). Next, supposing h > 0 as a small variable, we consider

{{{
{{{
{

cDq
0x(t) = f(x(t)), t ∈ (kh, (k + 1)h), k ∈ ℕ0,

x(kh+) = x(kh−) + ∆̄khq , k ∈ ℕ,
x(0) = x0,

(3.9)

where q ∈ (0, 1), f : ℝm → ℝm satisfies (ci), (cii) and the ∆̄k ∈ ℝm satisfy
(civ) ∆̄k+p = ∆̄k for all k ∈ ℕ and some p ∈ ℕ.
Then condition (3.5) becomes

󵄩󵄩󵄩󵄩∑
p
k=1 ∆̄k
󵄩󵄩󵄩󵄩

(p + 1)q >
M

Γ(q + 1) ,

condition (3.6) becomes
p
∑
k=1

∆̄k ̸= 0,

and (3.7) becomes

r > 1−q
√

M(p + 1)q
󵄩󵄩󵄩󵄩∑

p
k=1 ∆̄k
󵄩󵄩󵄩󵄩Γ(q + 1)

. (3.10)

Summarizing, we have the following result.

Corollary 3.4. Under assumptions (ci), (cii) and (civ), there is no solution of (3.9) satisfying x(0) = x(T) for any
T = (rp + 1)h with r ∈ ℕ satisfying (3.10).

Corollary 3.4 states that under assumptions (ci), (cii) and (civ), (3.9) has no "periodic" solutions with large
periods.

Example 3.5. We consider system (2.14) for a = 10, b = 120 and c = 8
3 . Motivated by [9, Theorem 2], for the

sphere

S = {(x1, x2, x3) ∈ ℝ3 : x21 + x
2
2 + (x3 − a − b)

2 ≤ R2}

with

R = (a + b)c
√4(c − 1)

= 134.263,

we find

M = max
x∈S
‖f(x)‖ = max

x∈S2
max{|a(x2 − x1)|, |x1(b − x3) − x2|, |x1x2 − cx3|} ≐ 8077.26.

By Corollary 3.3, for x1, ∆̄1 applied at 3kh, for x2, ∆̄2 applied at kh, and for x3, ∆̄3 applied at 2kh, now
condition (3.5) has the form

max{|∆̄1|, 3|∆̄2|, |∆̄3|} > (p + 1)q
Mhq

Γ(q + 1) ≐ 132.214

for h = 0.004 and q = 0.995.
For the cuboid from Example 2.6,

C = {(x1, x2, x3) ∈ ℝ3 : −50 ≤ x1 ≤ 50, −100 ≤ x2 ≤ 100, 50 ≤ x3 ≤ 200},
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we have
M = max

x∈C
‖f(x)‖ ≐ 533.333.

Now condition (3.5) has the form

max{|∆̄1|, 3|∆̄2|, |∆̄3|} > (p + 1)q
Mhq

Γ(q + 1) ≐ 8.72997

again for h = 0.004 and q = 0.995.

Finally, for the completeness of the paper, we present the following existence result, whose proof is similar
to Theorem 2.9, so we omit it.

Theorem 3.6. Suppose (ci), (cii) and (C3). If

−
∑Nk=1 ∆ki

Tq
∈

1
Γ(q + 1) (f

i
−, f i+) (3.11)

holds for all i = 1, . . . ,m, then (3.9) has a solution satisfying x(0) = x(T).

Again, assumptions (3.4) and (3.11) are complementary. More related achievements are given in [16] and the
references therein.

4 Conclusions
In this paper, fractional differential equations with periodic impulses are investigated. We establish new
criteria for the uniqueness, existence and asymptotic stability of periodic solutions for impulsive fractional
differential equations with either varying or fixed lower limits.

To conclude this paper, we roughly outline a possible further progress on this topic. Firstly, one can
consider a nonhomogeneous linear case

{{{
{{{
{

cDq
tk ,tx(t) = Ax(t) + f(t), t ∈ (tk , tk+1), k = 0, 1, . . . , N,
x(t+k ) = (𝕀 + Bk)x(t−k ) + ∆k , k = 1, 2, . . . , N + 1,
x(0) = x0,

(4.1)

where A, Bk : ℝm → ℝm arematrices, ∆k ∈ ℝ, 𝕀 : ℝm → ℝm is the unitmatrix, and then consider a semilinear
case

{{{
{{{
{

cDq
tk ,tx(t) = Ax(t) + f(t, x(t)), t ∈ (tk , tk+1), k = 0, 1, . . . , N,
x(t+k ) = (𝕀 + Bk)x(t−k ) + ∆k(x(t

−
k )), k = 1, 2, . . . , N + 1,

x(0) = x0

(4.2)

for achieving more specific results similar to the ones for impulsive ODEs [11] in the finite-dimensional
case. Of course, we can extend (4.1) and (4.2) to an infinite-dimensional space, that is, we consider the
associated impulsive fractional evolution equation by setting A as a generator of a C0-semigroup on an
infinite-dimensional Banach space, and then using the theory of semigroups with nonlinear functional anal-
ysis. In addition, the investigation of the existence of almost periodic solutions for (4.1) and (4.2) may be
more interesting.

Secondly, one can also extend our recent results in [13] to consider linear and semilinear differential
equations with periodic noninstantaneous impulses as follows:

{{{{{{
{{{{{{
{

x󸀠(t) = Ax(t), t ∈ (sk , tk+1], k = 0, 1, 2, . . . ,
x(t+i ) = (𝕀 + Bk)x(t−k ) + Bkx(t−k ), k = 1, 2, . . . ,
x(t) = (𝕀 + Bk)x(t−k ) + Bkx(t−k ), t ∈ (tk , sk], k = 1, 2, . . . ,

x(s+k ) = x(s
−
k ), k = 1, 2, . . . ,

(4.3)
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and

{{{{{{
{{{{{{
{

x󸀠(t) = Ax(t) + f(t, x(t)), t ∈ (sk , tk+1], k = 0, 1, 2, . . . ,
x(t+i ) = (𝕀 + Bk)x(t−i ) + Bkx(t−k ), k = 1, 2, . . . ,
x(t) = (𝕀 + Bk)x(t−k ) + Bkx(t−k ), t ∈ (tk , sk], k = 1, 2, . . . ,

x(s+k ) = x(s
−
k ), k = 1, 2, . . . ,

(4.4)

respectively, where tk acts as an impulsive point and sk acts as a junction point satisfying the condi-
tions t0 = s0 < t1 < s1 < t2 < ⋅ ⋅ ⋅ < tk < sk < tk+1 ⋅ ⋅ ⋅ , tk →∞ and periodicity conditions tk+N+1 = tk + T and
sk+N+1 = sk + T. In addition, one can study the associated fractional order and infinite-dimensional cases
for (4.3) and (4.4). The issues on the existence and stability of almost periodic solutions would be another
interesting branch.

Finally, one can consider controllability and iterative learning control for the above equations with
impulsive periodic controls arising from some real problems in engineering.
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