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Abstract: We study the Cauchy problem associated to a family of nonautonomous semilinear equations in

the space of bounded and continuous functions over ℝd and in Lp-spaces with respect to tight evolution

systems of measures. Here, the linear part of the equation is a nonautonomous second-order elliptic operator

with unbounded coefficients defined in I × ℝd, (I being a right-halfline). To the above Cauchy problem we

associate a nonlinear evolution operator, which we study in detail, proving some summability improving

properties. We also study the stability of the null solution to the Cauchy problem.
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1 Introduction
This paper is devoted to continuing the analysis started in [5]. We consider a family of linear second-order

differential operatorsA(t) acting on smooth functions ζ as

(A(t)ζ)(x) =
d
∑
i,j=1

qij(t, x)Dijζ(x) +
d
∑
i=1
bi(t, x)Diζ(x), t ∈ I, x ∈ ℝd , (1.1)

where I is either an open right halfline or the whole ℝ. Then, given T > s ∈ I, we are interested in studying

the nonlinear Cauchy problem

{
Dtu(t, x) = (A(t)u)(t, x) + ψu(t, x), (t, x) ∈ (s, T] × ℝd ,
u(s, x) = f(x), x ∈ ℝd ,

(1.2)

where ψu(t, x) = ψ(t, x, u(t, x), ∇xu(t, x)). We assume that the coefficients qij and bi (i, j = 1, . . . , d), pos-
sibly unbounded, are smooth enough, the diffusion matrix Q = [qij]i,j=1,...,d is uniformly elliptic and there

exists a Lyapunov function φ for A(t) (see Hypothesis 2.1 (iii)). These assumptions yield that the linear part

A(t) generates a linear evolution operator {G(t, s) : t ≥ s ∈ I} in Cb(ℝd). More precisely, for every f ∈ Cb(ℝd)
and s ∈ I, the function G( ⋅ , s)f belongs to Cb([s, +∞) × ℝd) ∩ C1,2((s, +∞) × ℝd), it is the unique bounded
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classical solution of the Cauchy problem (1.2), with ψu ≡ 0, and satisfies the estimate

‖G(t, s)f‖∞ ≤ ‖f‖∞, t > s ∈ I, f ∈ Cb(ℝd). (1.3)

We refer the reader to [9] for the construction of the evolution operator G(t, s) and for further details.
Classical arguments can be adapted to our case to prove the existence of a unique local mild solution uf

of problem (1.2) for any f ∈ Cb(ℝd), i.e., a function u : [s, τ] × ℝd → ℝ (for some τ > s) such that

u(t, x) = (G(t, s)f)(x) +
t

∫
s

(G(t, r)ψu(r, ⋅ ))(x) dr, t ∈ [s, τ], x ∈ ℝd . (1.4)

Under reasonable assumptions such a mild solution uf is classical, defined in the whole [s, +∞) and
satisfies the condition

‖uf ‖∞ + sup

t∈(s,T)
√t − s‖∇xuf (t, ⋅ )‖∞ < +∞

for any T > s. Hence, settingN(t, s)f = uf (t, ⋅ ) for any t > s we deduce thatN(t, s)maps Cb(ℝd) into C1b(ℝ
d)

and, from the uniqueness of the solution to (1.2), it follows that it satisfies the evolution law

N(t, s)f = N(t, r)N(r, s)f
for any r ∈ (s, t) and f ∈ Cb(ℝd).

As in the linear case we are also interested to set problem (1.2) in an Lp-context. However, as it is already
known from the linear case, the most natural Lp-setting where problems with unbounded coefficients can

be studied is that related to the so-called evolution systems of measures [6], that is one-parameter families of

Borel probability measures {μt : t ∈ I} such that

∫

ℝd

G(t, s)f dμt = ∫
ℝd

f dμs , f ∈ Cb(ℝd), t > s ∈ I. (1.5)

When they exist, evolution families of measures are in general infinitely many, even the tight ones,

where, roughly speaking, tight means that all the measures of the family are essentially concentrated on

the same large ball (see Section 2 for a rigorous definition of tightness). Under additional assumptions on

the coefficients of the operatorA(t) (see Section 2), there exists a unique tight evolution system of measures

{μt : t ∈ I}, which has the peculiarity to be the unique system related to the asymptotic behavior of G(t, s)
as t tends to +∞. We also mention that, typically, even if for t ̸= s, the measures μt and μs are equivalent
(being equivalent to the restriction of the Lebesgue measure to the Borel σ-algebra inℝd), the corresponding
Lp-spaces differ.

Formula (1.5) and the density of Cb(ℝd) in Lp(ℝd , μs) allow to extend G(t, s) to a contraction from

Lp(ℝd , μs) to Lp(ℝd , μt) for any t > s and any p ∈ [1, +∞) and to prove very nice properties of G(t, s) in these
spaces.

In view of these facts, it is significant to extend N(t, s) to an operator from Lp(ℝd , μs) to Lp(ℝd , μt) for
any I ∋ s < t. This can be done if p ≥ p

0
(see Hypothesis 2.1 (v)), ψ(t, x, ⋅ , ⋅ ) is Lipschitz continuous in ℝd+1

uniformly with respect to (t, x) ∈ (s, T] × ℝd and, in addition, supt∈(s,T]√t − s‖ψ(t, ⋅ , 0, 0)‖Lp(ℝd ,μt) < +∞. In
particular, each operatorN(t, s) is continuous from Lp(ℝd , μs) toW1,p(ℝd , μt).

We stress that the first condition on ψ may seem too restrictive, but in fact it is not. Indeed, the Sobolev

embedding theorems fail to hold, in general, when the Lebesgue measure is replaced by any of the mea-

sures μt. This can be easily seen in the particular case of the one-dimensional Ornstein–Uhlenbeck oper-

ator, where the evolution system of measures is replaced by a time-independent measure μ (the so-called

invariant measure), which is the Gaussian centered at zero with covariance 1/2. For any ε > 0, the function
x 󳨃→ exp(2(2p + ε)−1|x|2) belongs toWk,p(ℝ, μ) for any k ∈ ℕ but it does not belong to Lp+ε(ℝd , μ).

Under the previous assumptions, for any f ∈ Lp(ℝd , μs), N( ⋅ , s) can be identified with the unique mild

solution to problem (1.2) which belongs to Lp((s, T) × ℝd , μ) ∩W0,1

p (J × ℝd , μ), for any J ⋐ (s, T], such that

uf (t, ⋅ ) ∈ W1,p(ℝd , μt) for almost every t ∈ (s, T]. Here, μ is the unique Borel measure on the σ-algebra of all
the Borel subsets of I × ℝd which extends the map defined on the product of a Borel set A ⊂ I and a Borel set
B ⊂ ℝd by

μ(A × B) := ∫
A

μt(B) dt.
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Since, as it has been stressed, in this context the Sobolev embedding theorems fail to hold in general,

the summability improving properties of the nonlinear evolution operatorN(t, s) are not immediate and true

in all the cases. For this reason in Section 4 we investigate properties such as hypercontractivity, supercon-

tractivity, ultraboundedness of the evolution operator N(t, s) and its spatial gradient. Differently from [5],

where ψ = ψ(t, u) and the hypercontractivity of N(t, s) is proved assuming ψ(t, 0) = 0 for any t > s, here
we consider a more general case. More precisely we assume that there exist ξ

0
≥ 0 and ξ

1
, ξ

2
∈ ℝ such that

uψ(t, x, u, v) ≤ ξ
0
|u| + ξ

1
u2 + ξ

2
|u||v| for any t ≥ s, x, v ∈ ℝd, u ∈ ℝ. Under someother technical assumptions

on the growth of the coefficients qij and bi (i, j = 1, . . . , d) as |x| → +∞, we show that as in the linear case,

(see [3, 4]), the hypercontractivity and the supercontractivity of N(t, s) and ∇xN(t, s) are related to some

logarithmic Sobolev inequalities with respect to the tight system {μt : t ∈ I}. These estimates are the natural

counterpart of the Sobolev embedding theorems in the context of invariant measures and evolution systems

of measures.

For what concerns the ultraboundedness ofN(t, s) and∇xN(t, s)we first prove anHarnack-type estimate

which establishes a pointwise estimate of |N(t, s)f|p in terms ofG(t, s)|f|p for any f ∈ Cb(ℝd), p > p0 and t > s.
This estimate, together with the evolution law and the ultraboundedness of G(t, s), allow us to conclude that,

for any f ∈ Lp(ℝd , μs) and any t > s, the functionN(t, s)f belongs toW1,∞(ℝd , μt) and to prove an estimate

of ‖N(t, s)f‖W1,∞(ℝd ,μt) in terms of ‖f‖Lp(ℝd ,μs).
Finally, assuming that ψ(t, x, 0, 0) = 0 for every t ∈ (s, +∞) and x ∈ ℝd, we prove that the trivial solution

to the Cauchy problem (1.2) is exponentially stable both in W1,p(ℝd , μt) and in C1b(ℝ
d). This means that

‖uf (t, ⋅ )‖X ≤ CXe−ωX t as t → +∞ for some constants CX > 0 and ωX < 0, both when X = W1,p(ℝd , μt) and
X = C1b(ℝ

d). In the first case, the space X depends itself on t. We stress that, under sufficient conditions on the

coefficients of the operatorsA(t), which include their convergence at infinity, in [2, 11] it has beenproved that
themeasure μt weakly∗ converges to ameasure μ, which turns out the invariant measure of the operatorA∞,

whose coefficients are the limit as t → +∞ of the coefficients of the operatorA(t). This givesmore information

on the convergence to zero of ‖uf (t, ⋅ )‖W1,p(ℝd ,μt) at infinity. We refer the reader also to [12] for the case of

T-time periodic coefficients.

To get the exponential stability of the trivial solution in Cb(ℝd), differently from [5] where a nonauto-

nomous version of the principle of linearized stability is used and more restrictive assumptions on ψ are

required, we let p tend to +∞ in the decay estimate of ‖uf (t, ⋅ )‖W1,p(ℝd ,μt), since all the constants appearing in

this estimate admit finite limit as p tends to +∞. In particular, we stress that we do not need any additional
assumptions on the differentiability of ψ but, on the other hand, we require that the mild solution uf of (1.2)
is actually classical.

Notations

For k ≥ 0, by Ckb(ℝ
d)wemean the space of the functions in Ck(ℝd)which are bounded together with all their

derivatives up to the [k]-th order. Ckb(ℝ
d) is endowed with the norm

‖f‖Ckb(ℝd) = ∑
|α|≤[k]
‖Dα f‖∞ + ∑

|α|=[k]
[Dα f]Ck−[k]b (ℝ

d),

where [k] denotes the integer part of k. When k ∉ ℕ, we use the subscript “loc” to denote the space of all
f ∈ C[k](ℝd) such that the derivatives of order [k] are (k − [k])-Hölder continuous in any compact subset ofℝd.
Given an interval J, we denote by B(J × ℝd; Lip(ℝd+1)) and Cα/2,α(J × ℝd) (α ∈ (0, 1)), respectively, the set of
all functions f : J × ℝd × ℝ × ℝd → ℝ such that f(t, x, ⋅ , ⋅ ) is Lipschitz continuous in ℝd+1, uniformly with

respect to (t, x) ∈ J × ℝd, and the usual parabolic Hölder space. The subscript “loc” has the same meaning

as above.

We use the symbols Dt f , Di f and Dij f to denote respectively the time derivative

∂f
∂t and the spatial deriva-

tives

∂f
∂xi and

∂2 f
∂xi∂xj for any i, j = 1, . . . , d.

The open ball inℝd centered at 0 with radius r > 0 and its closure are denoted by Br and Br, respectively.
For any measurable set A, contained inℝ or inℝd, we denote by 𝟙A the characteristic function of A. Finally,
we write A ⋐ B when A is compactly contained in B.
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2 Assumptions and preliminary results
Let {A(t) : t ∈ I} be the family of linear second-order differential operators defined by (1.1).

Hypotheses 2.1. Our standing assumptions on the coefficients of the operatorsA(t) are as follows.
(i) The coefficients qij , bi belong to Cα/2,1+α

loc

(I × ℝd) for any i, j = 1, . . . , d and some α ∈ (0, 1).
(ii) For every (t, x) ∈ I × ℝd, the matrix Q(t, x) = [qij(t, x)]ij is symmetric and there exists a function

κ : I × ℝd → ℝ,

with positive infimum κ
0
, such that

⟨Q(t, x)ξ, ξ⟩ ≥ κ(t, x)|ξ|2

for any (t, x) ∈ I × ℝd and any ξ ∈ ℝd.
(iii) There exists a nonnegative function φ ∈ C2(ℝd), diverging to +∞ as |x| → +∞, such that

(A(t)φ)(x) ≤ a − cφ(x)

for any (t, x) ∈ I × ℝd and some positive constants a and c.
(iv) There exists a locally bounded function ρ : I → ℝ+ such that

|∇xqij(t, x)| ≤ ρ(t)κ(t, x)

for any (t, x) ∈ I × ℝd and any i, j = 1, . . . , d, where κ is defined in (ii).
(v) There exists a function r : I × ℝd → ℝ such that

⟨∇xb(t, x)ξ, ξ⟩ ≤ r(t, x)|ξ|2

for any ξ ∈ ℝd and (t, x) ∈ I × ℝd. Further, there exists p
0
∈ (1, 2] such that

+∞ > σp
0

= sup

(t,x)∈I×ℝd
(r(t, x) + d

3(ρ(t))2κ(t, x)
4min{p

0
− 1, 1}
). (2.1)

Under Hypotheses 2.1 (i)–(iii) (actually even under weaker assumptions) it is possible to associate an evolu-

tion operator {G(t, s) : t ≥ s ∈ I} to the operatorA(t) in Cb(ℝd), as described in the Introduction. The function
G( ⋅ , ⋅ )f is continuous in {(s, t, x) ∈ I × I × ℝd : s ≤ t} and

(G(t, s)f)(x) = ∫
ℝd

f(y)p(t, s, x, dy), I ∋ s < t, x ∈ ℝd , (2.2)

where p(t, s, x, dy) are probability measures for any I ∋ s < t, x, y ∈ ℝd. This implies that

|G(t, s)f|p ≤ G(t, s)(|f|p)

for any I ∋ s < t, f ∈ Cb(ℝd) and p ≥ 1. Moreover, Hypotheses 2.1 (iv) and (v) yield the pointwise gradient

estimates

|(∇xG(t, s)f)(x)|p ≤ epσp(t−s)(G(t, s)|∇f|p)(x), f ∈ C1b(ℝ
d), (2.3)

|(∇xG(t, s)f)(x)|p ≤
{
{
{

Cpε ep(σp+ε)(t−s)(t − s)−
p
2 (G(t, s)|f|p)(x), if σp < 0,

Cp
0

(1 + (t − s)−
p
2 )(G(t, s)|f|p)(x), otherwise,

(2.4)

for any f ∈ Cb(ℝd), t > s, x ∈ ℝd, p ∈ [p0, +∞), ε > 0 and some positive constants C
0
and Cε, where σp is

given by (2.1), with p instead of p
0
. We stress that the pointwise estimates (2.3) and (2.4) have been proved

with the constants C
0
and Cε also depending of p. Actually, these constants may be taken independent of p.

Indeed, consider for instance estimate (2.4). If p ≥ p
0
, then using the representation formula (2.2) we can
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estimate

|∇xG(t, s)f|p = (|∇xG(t, s)|p0 )
p
p
0 ≤ (Cp0p

0

(1 + (t − s)−
p
0

2 )G(t, s)|f|p0 )
p
p
0

≤ 2
p−p

0

p
0 Cpp

0

(1 + (t − s)−
p
2 )(G(t, s)|f|p0 )

p
p
0

≤ 2
p−p

0

p
0 Cpp

0

(1 + (t − s)−
p
2 )G(t, s)|f|p

for any t > s ∈ I and f ∈ Cb(ℝd), and, hence, estimate (2.4) holds true with a constant which can be taken

independent of p.

Remark 2.2. The case p = 1 in estimate (2.3) is much more delicate and requires stronger assumptions.

Indeed, as [1] shows, the algebraic condition Dhqij + Diqjh + Djqih = 0 in I × ℝd for any i, j, h ∈ {1, . . . , d}
with i ̸= j ̸= h is a necessary condition for (2.3) (with p = 1) to hold. For this reason, if the diffusion coeffi-

cients are bounded and independent of x, then the pointwise gradient estimate (2.3) holds true also with

p = 1 and σ
1
= r

0
, where r

0
is the supremum over I × ℝd of the function r in Hypothesis 2.1 (v).

Under Hypotheses 2.1 we can also associate an evolution system of measures {μt : t ∈ I} with the opera-

torsA(t). Such a family ofmeasures is tight, namely for every ε > 0 there exists r > 0 such that μs(ℝd \ Br) < ε
for any s ∈ I. The invariance property (1.5) and the density of Cb(ℝd) in Lp(ℝd , μs), s ∈ I, allows to extend
G(t, s) to a contraction from Lp(ℝd , μs) to Lp(ℝd , μt) for any t > s. As it has been stressed in the Introduction,
in general evolution systems of measures are infinitely many, but, under suitable assumptions, there exists

a unique tight evolution system of measures. This is, for instance, the case when Hypotheses 2.1 are satisfied

as well as the following two conditions:

(i) qij and bi belong to Cα/2,1+α
loc

([a, +∞) × ℝd) for any i, j = 1, . . . , d and some a ∈ I. Moreover, qij belongs
to Cb([a, +∞) × BR) and Dkqij , bj belong to Cb([a, +∞); Lp(BR)) for any i, j, k ∈ {1, . . . , d}, R > 0 and

some p > d + 2.
(ii) There exists a constant c > 0 such that either |Q(t, x)| ≤ c(1 + |x|)φ(x) and ⟨b(t, x), x⟩ ≤ c(1 + |x|2)φ(x)

for any (t, x) ∈ [a, +∞) × ℝd, or the diffusion coefficients are bounded in [a, +∞) × ℝd.
For more details and the proofs of the results that we have mentioned, we refer the reader to [9–11, 13].

3 The semilinear problem in a bounded time interval
Given I ∋ s < T, we are interested in studying the Cauchy problem (1.2) both in the case when f ∈ Cb(ℝd) and
in the case when f ∈ Lp(ℝd , μs).

Hypotheses 3.1. Our standing assumptions on ψ are as follows.

(i) The function ψ : [s, T] × ℝd × ℝ × ℝd → ℝ is continuous. Moreover, there exists β ∈ [0, 1) such that for

any R > 0 and some constant LR > 0

|ψ(t, x, u
1
, (t − s)−

1

2 v
1
) − ψ(t, x, u

2
, (t − s)−

1

2 v
2
)| ≤ LR(t − s)−β(|u1 − u2| + |v1 − v2|) (3.1)

for any t ∈ (s, T], x ∈ ℝd, u
1
, u

2
∈ [−R, R], v

1
, v

2
∈ BR.

(ii) The function ψ( ⋅ , ⋅, 0, 0) belongs to Cb([s, T] × ℝd).

Theorem 3.2. Under Hypotheses 2.1 and 3.1, for any f ∈ Cb(ℝd) there exist constants r0, δ ∈ (0, T − s] such
that, if f ∈ Cb(ℝd) and ‖f − f ‖∞ ≤ r0, then the nonlinear Cauchy problem (1.2) admits a unique mild solution
uf ∈ Cb([s, s + δ] × ℝd) ∩ C0,1((s, s + δ] × ℝd) which satisfies the estimate

‖uf ‖∞ + sup

t∈(s,s+δ]
√t − s‖∇xuf (t, ⋅ )‖∞ ≤ 2(1 + 2C0 + C0√δ)(‖f‖Cb(ℝd) + 2δ‖ψ( ⋅ , ⋅ , 0, 0)‖Cb([s,s+δ]×ℝd)), (3.2)

where C
0
is the constant in (2.4).Moreover, for any R > 0, θ ∈ (0, 1)and t ∈ (s, s+δ], uf (t, ⋅ )belongs to C1+θ(BR)

and there exists a positive constant CR,T−s such that

sup

t∈(s,s+δ]
(t − s)

1+θ
2 ‖uf (t, ⋅ )‖C1+θ(BR) ≤ CR,T−s‖f‖∞.
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Finally, if g ∈ Cb(ℝd) is such that ‖g − f ‖∞ ≤ r0, then

‖uf − ug‖∞ + sup

t∈(s,s+δ]
√t − s‖∇xuf (t, ⋅ ) − ∇xug(t, ⋅ )‖∞ ≤ 2(1 + C0 + C0√δ)‖f − g‖∞. (3.3)

Proof. Even if the proof is quite standard, for the reader’s convenience we provide some details.

Fix f ∈ Cb(ℝd). Let R0 > 0 be such that R0/(1+K0) ≥ 8‖f ‖∞, where K0 = C0(1+√T − s) and C0 is the con-
stant in (2.4). Further, for any δ ∈ (0, T − s], let Yδ be the set of all u ∈ Cb([s, s+ δ] ×ℝd) ∩C0,1((s, s+ δ) ×ℝd)
such that ‖u‖Yδ = ‖u‖Cb((s,s+δ]×ℝd) + supt∈(s,s+δ]√t − s‖∇xu(t, ⋅ )‖∞ < +∞.

Step 1. We prove that there exists δ > 0 such that, for any f ∈ Cb(ℝd) satisfying the condition

‖f − f ‖∞ ≤ r0 :=
R
0

4 + 4K
0

,

there exists a mild solution to problem (1.2) defined in the time interval [s, s + δ]. For this purpose, we con-
sider the operator Γ, defined by the right-hand side of (1.4) for any u ∈ BYδ (R0) (the ball of Yδ centered at zero
with radius R

0
). Clearly, the function ψu is continuous in (s, s + δ] × ℝd and ψu(t, ⋅ ) is bounded inℝd for any

t ∈ (s, s + δ]. Moreover, estimating |ψu(t, x)| ≤ |ψu(t, x) − ψ(t, x, 0, 0)| + |ψ(t, x, 0, 0)| and taking (3.1) into

account, we can easily show that the function t 󳨃→ (t − s)β‖ψu(t, ⋅ )‖∞ is bounded in (s, s + δ). Hence, Propo-
sition A.1 and estimates (1.3) and (2.4) show that Γ(u) ∈ Yδ for any t ∈ (s, s + δ] and u ∈ BYδ (R0). To show
that, for a suitable δ ∈ (0, 1], Γ is a 1/2-contraction in BYδ (R0), we observe that, using again (3.1), it follows
that

‖ψu(t, ⋅ ) − ψv(t, ⋅ )‖∞ ≤ LR
0

(t − s)−β‖u − v‖Yδ , t ∈ (s, s + δ], (3.4)

for any u, v ∈ BYδ (R0), where LR0 is the constant in Hypothesis 3.1 (i). From this inequality and estimates

(1.3) and (2.4) we conclude that ‖Γ(u) − Γ(v)‖Yδ ≤ c1δ1−β‖u − v‖Yδ for any u, v ∈ BYδ (R0), where c1, as the
forthcoming constants, is independent of δ and u, if not otherwise specified. Hence, choosing δ properly, we
can make Γ a 1/2-contraction in BYδ (R0).

It is also straightforward to see that Γ maps BYδ (R0) into itself, up to replacing δ with a smaller value if

needed. It suffices to split Γ(u) = (Γ(u) − Γ(0)) + Γ(0), use the previous result and estimate

‖Γ(0)‖Yδ ≤ (1 + C0 + C0√δ)‖f‖∞ + δ(1 + 2C0 + C0√δ)‖ψ( ⋅ , ⋅ , 0, 0)‖Cb([s,T]×ℝd).

As a consequence, Γ has a unique fixed point in BYδ (R0), which is a mild solution of (1.2) and satisfies (3.2).

Step 2. We prove the uniqueness of the mild solution uf . For this purpose, let u1, u2 ∈ Yδ be two mild

solutions. By Lemma A.2, the function r 󳨃→ h(r) := ‖u
1
(r, ⋅ ) − u

2
(r, ⋅ )‖∞ + √r − s‖∇xu1(r, ⋅ ) − ∇xu2(r, ⋅ )‖∞ is

measurable in (s, s + δ). Moreover, using (3.4), we easily deduce that

‖Djxu1(t, ⋅ ) − D
j
xu2(t, ⋅ )‖∞ ≤ c2(M)

t

∫
s

(t − r)−
j
2 (r − s)−βh(r) dr (3.5)

for j = 0, 1, any t ∈ [s, s + δ], where M = max{‖u
1
‖Yδ , ‖u2‖Yδ }. Estimating √t − s with √t − r + √r − s for any

r ∈ (s, t), from (3.5), with j = 1, it follows that

√t − s‖∇xu1(t, ⋅ ) −∇xu2(t, ⋅ )‖∞ ≤ c2(M)
t

∫
s

(r − s)−βh(r) dr + c
2
(M)

t

∫
s

(t − r)−
1

2 (r − s)
1

2

−β‖u
1
(r, ⋅ ) − u

2
(r, ⋅ )‖∞ dr

+ c
2
(M)

t

∫
s

(t − r)−
1

2 (r − s)1−β‖∇xu1(r, ⋅ ) − ∇xu2(r, ⋅ )‖∞ dr. (3.6)

Using (3.5), we estimate the last two integral terms in the right-hand side of (3.6), which we denote by I(t)
and J(t). Replacing (3.5), with j = 0, in I(t), we get

I(t) ≤ c
3
(M)δ1−β

t

∫
s

(σ − s)−βh(σ) dσ. (3.7)
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The samearguments show that J(t) canbe estimatedpointwise in [s, s + δ]by the right-hand side of (3.7),
with c

3
(M) being possibly replaced by a larger constant c

4
(M). Summing up, we have proved that

√t − s‖∇xu1(t, ⋅ ) − ∇xu2(t, ⋅ )‖∞ ≤ c5(M)δ1−β
t

∫
s

(σ − s)−βh(σ) dσ. (3.8)

From (3.5) and (3.8) we conclude that

h(t) ≤ c
6
(M, δ)

t

∫
s

(r − s)−βh(r) dr, t ∈ (s, s + δ].

The generalized Gronwall lemma (see [7]) yields h(t) ≡ 0 for any t ∈ (s, s + δ), i.e., u
1
≡ u

2
in (s, s + δ) × ℝd.

Step 3. We prove (3.2) and (3.3). Since uf = Γ(0) + (Γ(uf ) − Γ(0)) and Γ is a 1/2-contraction in BYδ (R0), we
conclude that ‖uf ‖Yδ ≤ 2‖Γ(0)‖Yδ and (3.2) follows from the estimate on ‖Γ(0)‖Yδ proved above. Estimate (3.3)

can be proved in the same way.

Step 4. We prove that uf (t, ⋅ ) ∈ C1+θ(BR) for any t ∈ (s, s + δ], R > 0, θ ∈ (0, 1), and

sup

t∈(s,s+δ]
(t − s)

1+θ
2 ‖uf (t, ⋅ )‖C1+θ(BR) ≤ c7‖f‖∞

for some constant c
7
, independent of f . For this purpose, we observe that the results in the previous steps

show that the functionψu satisfies the estimate (t − s)β‖ψu(t, ⋅ )‖∞ ≤ c8‖f‖∞ for any t ∈ (s, s + δ], the constant
c
8
being independent of f . Applying Proposition A.1 and estimate (A.5), we complete the proof.

Corollary 3.3. In addition to the assumption of Theorem 3.2 suppose that there exist β ∈ [0, 1) and γ ∈ (0, 1)
such that 2β + γ < 2 and

|ψ(t, x, u, (t − s)−
1

2 v) − ψ(t, y, u, (t − s)−
1

2 v)| ≤ CR(t − s)−β|x − y|γ (3.9)

for any t ∈ (s, T], x, y, v ∈ BR, u ∈ [−R, R], any R > 0 and some positive constant CR. Then, for any f ∈ Cb(ℝd),
the mild solution uf to problem (1.2) belongs to C1,2((s, s + δ] × ℝd) and it is a classical solution to (1.2).

Proof. Fix R > 0. Theorem 3.2 shows that uf (t, ⋅ ) belongs to C1+γ(BR) and

‖∇xuf (t, ⋅ )‖Cγ(BR) ≤ CR(t − s)−
1+γ
2 ‖f‖∞

for any t ∈ (s, s + δ]. Moreover, by interpolation from (3.2) it follows that ‖uf (t, ⋅ )‖Cγb(ℝd) ≤ C(t − s)
−γ/2‖f‖∞

for any t ∈ (s, s + δ]. From these estimates, adding and subtracting ψ(t, y, u(t, x), ∇xu(t, x)), we deduce

that |ψu(t, x) − ψu(t, y)| ≤ C‖f‖∞(t − s)−β−
γ
2 |x − y|γ for any t ∈ (s, s + δ], x, y ∈ ℝd such that |x − y| ≤ R and

some positive constant C, depending on R and u. As a byproduct, ‖ψu(t, ⋅ )‖Cγ(BR) ≤ C̃(t − s)−β−
γ
2 ‖f‖∞ for any

t ∈ (s, s + δ] and some positive constant C̃, depending on R and u. Now, using Proposition A.1, we conclude
that u ∈ C1,2((s, s + δ] × ℝd) ∩ C0,2+θ

loc

((s, s + δ] × ℝd) for any θ < γ if γ ≤ α, and for θ = γ otherwise.

Remark 3.4. Suppose that (3.1) is replaced by the condition

|ψ( ⋅ , ⋅ , u
1
, v

1
) − ψ( ⋅ , ⋅ , u

2
, v

2
)| ≤ LR(|u1 − u2| + |v1 − v2|)

in [s, T] × ℝd, for any R > 0, u
1
, u

2
∈ [−R, R], v

1
, v

2
∈ BR and some positive constant LR. Then, the proof

of the previous theorem can be repeated verbatim with Yδ = C0,1b ([s, s + δ] × ℝ
d), endowed with the nat-

ural norm, and we can show that the mild solution to problem (1.2) belongs to C0,1b ([s, s + δ] × ℝ
d) and

‖uf ‖C0,1b ([s,s+δ]×ℝd) ≤ C̃δ‖f‖C1b(ℝd) for some positive constant C̃δ, independent of f .

We now provide some sufficient conditions for the mild solution to problem (1.2) to exist in the large.

Such conditions will be crucial to define the nonlinear evolution operator associated with the Cauchy

problem (1.2).
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Hypotheses 3.5. We introduce the following assumptions.

(i) For any R > 0 there exists a positive constant LR such that

|ψ(t, x, u
1
, v

1
) − ψ(t, x, u

2
, v

2
)| ≤ LR(|u2 − u1| + |v2 − v1|)

for any t ∈ [s, T], x ∈ ℝd, u
1
, u

2
∈ [−R, R] and v

1
, v

2
∈ ℝd.

(ii) For any τ > s ∈ I there exist positive constants k
0
, k

1
and a, and a function φ̃ ∈ C2(ℝd)with nonnegative

values and blowing up at infinity such that uψ(t, x, u, v) ≤ k
0
(1 + u2) + k

1
|u||v| and Aφ̃ + k

1
|∇φ̃| ≤ aφ̃

inℝd for any t ∈ [s, τ], x, v ∈ ℝd and u ∈ ℝ.

In the rest of this section, for any p ∈ [p
0
, +∞) and T > swe denote by [ψ]p,T the supremum over (s, T) of the

function√t − s ‖ψ(t, ⋅ , 0, 0)‖Lp(ℝd ,μt); [ψ]∞,T is defined similarly, replacing Lp(ℝd , μt) by Cb(ℝd).

Theorem 3.6. Assume that Hypotheses 2.1, 3.1 (ii), 3.5 and condition (3.9) are satisfied. Then, for any
f ∈ Cb(ℝd), the classical solution uf to problem (1.2) exists in [s, T]. If, further, the constant in Hypothesis 3.5 (i)
is independent of R, then for any p ∈ [p

0
, +∞],

sup

t∈(s,T)
(‖uf (t, ⋅ )‖Lp(ℝd ,μt) + √t − s ‖∇xuf (t, ⋅ )‖Lp(ℝd ,μt)) ≤ CT−s(‖f‖Lp(ℝd ,μs) + (√T − s + 1)[ψ]p,T), (3.10)

sup

t∈(s,T)
(‖uf (t, ⋅ ) − ug(t, ⋅ )‖Lp(ℝd ,μt) + √t − s ‖∇xuf (t, ⋅ ) − ∇xug(t, ⋅ )‖Lp(ℝd ,μt)) ≤ CT−s‖f − g‖Lp(ℝd ,μs) (3.11)

for every f, g ∈ Cb(ℝd), where Cτ = (√τ + 1)ed1τ
3/2+d

2 for some positive constants d
1
and d

2
.

Proof. We split the proof into two steps.

Step 1. We prove that, for any f ∈ Cb(ℝd), uf is defined in the whole [s, T]. To this end, we fix f ∈ Cb(ℝd),
denote by [s, τf ) the maximal time domain where uf is defined and assume, by contradiction, that τf < T.
We are going to prove that uf is bounded in [s, τf ) × ℝd. Once this is proved, we can use Hypotheses 3.5 (i)

to deduce, adding and subtracting ψ(t, x, 0, 0), that |ψ(t, x, uf (t, x), v)| ≤ C(1 + |v|) for t ∈ [s, T], x, v ∈ ℝd

and some constant C > 0, which depends on ‖uf ‖Cb([s,τf )×ℝd) and ‖ψ( ⋅ , ⋅ , 0, 0)‖Cb([s,T]×ℝd). Applying the same

arguments as inStep2of theproof of Theorem3.2,we can show that also the function t 󳨃→ √t − s‖∇xuf (t, ⋅ )‖∞
is bounded in [s, τf ) × ℝd. This is enough to infer that uf can be extended beyond τf , contradicting the

maximality of the interval [s, τf ).
To prove that uf is bounded in (s, τf ) × ℝd, we fix b ∈ (0, τf − s), λ > a + k0 and we set

vn(t, x) := e−λ(t−s)uf (t, x) − n−1φ̃(x)

for any (t, x) ∈ [s, s + b] × ℝd. A straightforward computation shows that

Dtvn −Avn = e−λ(⋅−s)ψ( ⋅ , ⋅ , eλ(⋅−s)(vn + n−1φ̃), eλ(⋅−s)(∇xvn + n−1∇φ̃)) − λ(vn + n−1φ̃) + n−1Aφ̃ (3.12)

in (s, s + b] × ℝd. Since uf is bounded in [s, s + b] × ℝd and φ̃ blows up at infinity, the function vn admits

amaximumpoint (tn , xn). If vn(tn , xn) ≤ 0 for any n, then uf ≤ 0 in [s, s + b] × ℝd. Assume that vn(tn , xn) > 0
for some n. If tn = s, then vn(tn , xn) ≤ supℝd f . If tn > s, then Dtvn(tn , xn) −A(tn)vn(tn , xn) ≥ 0, so that,

multiplying both the sides of (3.12) by vn(tn , xn) + n−1φ̃(xn) > 0 and using Hypotheses 3.5 (ii) we get

0 ≤ (−λ + k
0
+ a)(vn(tn , xn) + n−1φ̃(xn))2 + k0, which clearly implies that, also in this case, u is bounded

from above in [s, s + b] by a constant, independent of b.
Repeating the same arguments with uf being replaced by −uf , we conclude that uf is bounded also

from below by a positive constant independent of b. Since b is arbitrary, it follows that ‖uf ‖Cb((s,τf )×ℝd) < +∞
as claimed.

Step 2. Fix f, g ∈ Cb(ℝd), p ≥ p0 and let ||| ⋅ |||p be the norm defined by

|||v|||p = sup

t∈(s,T)
e−ω(t−s)(‖v(t, ⋅ )‖Lp(ℝd ,μt) + √t − s‖∇xv(t, ⋅ )‖Lp(ℝd ,μt))

on smooth functions v, where ω is a positive constant to be chosen later on and to fix the ideas we assume

that p < +∞. From Hypothesis 3.5 (i), where LR is replaced by a constant L, it follows that

‖ψug (r, ⋅ ) − ψuf (r, ⋅ )‖Lp(ℝd ,μr) ≤ L‖ug(r, ⋅ ) − uf (r, ⋅ )‖W1,p(ℝd ,μr)
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for any r ∈ (s, T]. Hence, recalling that each operator G(t, r) is a contraction from Lp(ℝd , μr) to Lp(ℝd , μt) and
using the second pointwise gradient estimate in (2.4) and the invariance property of the family {μt : t ∈ I},
we conclude that

|||uf − ug|||p ≤ |||G( ⋅ , s)(f − g)|||p + L|||uf − ug|||p sup

t∈(s,T)

t

∫
s

eω(r−t)(1 + 1

√r − s
) dr

+ LC
0
|||uf − ug|||p sup

t∈(s,T)
√t − s

t

∫
s

eω(r−t)(1 + 1

√t − r
)(1 +

1

√r − s
) dr

≤ [1 + C
0
(1 + √T − s)]‖f − g‖Lp(ℝd ,μs)

+ L|||uf − ug|||p[(1 + C0√T − s)(
1

ω
+

t

∫
s

eω(r−t)

√r − s
dr) +
√π
√ω

C
0

√T − s

+ C
0
sup

t∈(s,T)
√t − s

t

∫
s

eω(r−t) dr
√t − r√r − s

]. (3.13)

To estimate the integral terms in the last side of (3.13), we fix δ > 0 and observe that

t

∫
s

eω(r−t)

√r − s
dr =

s+δ

∫
s

eω(r−t)

√r − s
dr + (

t

∫
s+δ

eω(r−t)

√r − s
dr)
+

≤ 2√δ + 1

√δω
. (3.14)

Hence, minimizing over δ > 0, we conclude that the left-hand side of estimate (3.14) is bounded from above

by √8ω−1/2. Splitting √t − s ≤ √t − r + √r − s and arguing as above, also the last term in square brackets in

the last side of (3.13) can be estimated by (√8 + √π)ω−1/2. It thus follows that

|||uf − ug|||p ≤ [1 + C0(1 + √T − s)]‖f − g‖Lp(ℝd ,μs) + L(cT−sω
− 1
2 + (1 + C

0

√T − s)ω−1)|||uf − ug|||p ,

where cτ = (√8 + √π)C0(√τ + 1) + √8. Choosing ω such that cT−sω−1/2 + (1 + C0√T − s)ω−1 ≤ (2L)−1, we
obtain

|||uf − ug|||p ≤ 2[1 + C0(1 + √T − s)]‖f − g‖Lp(ℝd ,μs)

and estimate (3.11) follows at once.

Estimate (3.10) can be proved likewise. Hence, the details are omitted.

As a consequenceof Theorem3.6weprove the existenceof amild solution toproblem (1.2) in the timedomain

(s, T)when f ∈ Lp(ℝd , μs), that is a function uf ∈ Lp((s, T) × ℝd , μ) ∩W0,1

p (J × ℝd , μ), for any J ⋐ (s, T], such
that uf (t, ⋅ ) ∈ W1,p(ℝd , μt) for almost every t ∈ (s, T] and, for such values of t, the equality

uf (t, x) = (G(t, s)f)(x) +
t

∫
s

(G(t, r)ψu(r, ⋅ ))(x) dr

holds true in ℝd \ At, where At is negligible with respect to the measure μt (or, equivalently, with respect to
the restriction of the Lebesgue measure to the Borel σ-algebra inℝd).

Corollary 3.7. Under all the assumptions of Theorem 3.6, for any f ∈ Lp(ℝd , μs) (p ≥ p0) there exists a unique
mild solution to the Cauchy problem (1.2). The function uf satisfies estimates (3.10) and (3.11) with the supre-
mum being replaced by the essential supremum and, as a byproduct, uf ∈ W0,1

p ((s, T) × ℝd , μ) if p < 2, and
uf ∈ W0,1

q ((s, T) × ℝd , μ) for any q < 2 otherwise. Finally, if there exists γ ∈ (0, 1) such that

|ψ(t, x, ξ, η) − ψ(t, y, ξ, η)| ≤ CJ,R(1 + |ξ| + |η|)|x − y|γ (3.15)

for any t ∈ J, x, y ∈ BR, η ∈ ℝd, ξ ∈ ℝ, J ⋐ (s, T], R > 0 and a constant CJ,R > 0, then, for any f ∈ Lp(ℝd , μs)
and almost every t ∈ (s, T), uf (t, ⋅ ) belongs to W

2,p
loc

(ℝd). Moreover, uf ∈ W1,2

p,loc((s, T) × ℝ
d) and satisfies the

equation Dtuf = Auf + ψuf .
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Proof. Fix f ∈ Lp(ℝd , μs) and let (fn) ⊂ Cb(ℝd) be a sequence converging to f in Lp(ℝd , μs). By (3.11),

(ufn (t, ⋅ )) is a Cauchy sequence in W1,p(ℝd , μt) for any t ∈ (s, T]. Hence, there exists a function v such

that ufn (t, ⋅ ) converges to v(t, ⋅ ) in W1,p(ℝd , μt) for any t ∈ (s, T]. Moreover, writing (3.10), with f being
replaced by fn, and letting n tend to +∞ we deduce that v satisfies (3.10) as well.

Next, using (3.11) we can estimate

‖ufn − ufm‖
p
Lp((s,T)×ℝd ,μ) =

T

∫
s

‖ufn (t, ⋅ ) − ufm (t, ⋅ )‖
p
Lp(ℝd ,μt)

dt

≤ CpT−s(T − s)‖fn − fm‖
p
Lp(ℝd ,μs)

and

‖∇xufn − ∇xufm‖
q
Lq((s,T)×ℝd ,μ) =

T

∫
s

‖∇xufn (t, ⋅ ) − ∇xufm (t, ⋅ )‖
q
Lq(ℝd ,μt)

dt

≤
2CqT−s
2 − q
(T − s)1−

q
2 ‖fn − fm‖

q
Lq(ℝd ,μs)

for any q ∈ [1, 2) if p ≥ 2 and for p = q otherwise. Hence, recalling that Lp(ℝd , μt) 󳨅→ Lq(ℝd , μt) for any
t ∈ I, we conclude that the sequence (ufn ) converges in Lp((s, T) × ℝd , μ) ∩W

0,1

q ((s, T) × ℝd , μ) to a function,
which we denote by uf . Clearly, v(t, ⋅ ) = uf (t, ⋅ ) almost everywhere in ℝd for almost every t ∈ (s, T). Letting
n tend to +∞ in formula (1.4), with fn replacing f , we deduce that uf is a mild solution to problem (1.2). The

uniqueness follows, arguing as in the proof of Theorem 3.2 with the obvious changes.

Let us now prove the last part of the statement. We again use an approximation argument. Fix t > s ∈ I
and R > 0. At a first step, we estimate the norm of the operator G(t, r) in L(Lp(ℝd , μr), Lp(BR+1)) and in

L(Lp(ℝd , μr),W2,p(BR+1)), for any r ∈ [s, t). In the rest of the proof, we denote by c a positive constant, possi-
bly depending on R, but being independent of t, r and f ∈ Lp(ℝd , μr), whichmay vary from line to line. Since

there exists apositive and continuous function ρ : I × ℝd → ℝ such that μr = ρ(r, ⋅ )dx, the spaces Lp(BM)and
Lp(BM , μr) coincide and their norms are equivalent for anyM > 0. From this remark, the interior Lp-estimates

in Theorem A.3, with u = G( ⋅ , s)f and the contractiveness of G(t, r) from Lp(ℝd , μr) to Lp(ℝd , μt), imply that

‖G(t, r)f‖W2,p(BR+1) ≤ c(t − r)
−1‖f‖Lp(ℝd ,μr), s < r < t < T, (3.16)

first for any f ∈ Cb(ℝd), and then, by density, for any f ∈ Lp(ℝd , μr). Since, for θ ∈ (0, 1),

(Lp(ℝd , μr), Lp(ℝd , μr))θ,p = Lp(ℝd , μr) and (W1,p(BR+1),W2,p(BR+1))θ,p = W1+θ,p(BR+1),

with equivalence of the corresponding norms, by an interpolation argument and (3.16) we deduce that

‖G(t, r)‖L(Lp(ℝd ,μr),W1+θ,p(BR+1)) ≤ c(t − r)
− 1+θ

2 for any s < r < t < T. Hence, if for any n ∈ ℕ we consider the

function zn, which is the integral term in (1.4), with u being replaced by ufn , and use (3.11) and the fact that
ψ ∈ B([s, T] × ℝd; Lip(ℝd+1)), then we get

‖∇xzn(t, ⋅ ) − ∇xzm(t, ⋅ )‖Wθ,p(BR+1) ≤ c
t

∫
s

(t − r)−
1+θ
2 ‖ufn (r, ⋅ ) − ufm (r, ⋅ )‖Lp(ℝd ,μr) dr

+ c
t

∫
s

(t − r)−
1+θ
2 ‖∇xufn (r, ⋅ ) − ∇xufm (r, ⋅ )‖Lp(ℝd ,μr) dr

≤ c(t − s)−
θ
2 ‖fn − fm‖Lp(ℝd ,μs)

for any n ∈ ℕ. We have so proved that, for any θ ∈ (0, 1) and almost every t ∈ (s, T], the function uf (t, ⋅ )
belongs toW1+θ(BR+1) and

‖ufn (t, ⋅ ) − ufm (t, ⋅ )‖W1+θ,p(BR+1) ≤ c(t − s)
− 1+θ

2 ‖fn − fm‖Lp(ℝd ,μs), m, n ∈ ℕ.

Similarly,

‖ufn (t, ⋅ )‖W1+θ,p(BR+1) ≤ c(t − s)
− 1+θ

2 (‖f‖Lp(ℝd ,μs) + ‖ψ( ⋅ , ⋅ , 0, 0)‖∞), n ∈ ℕ.
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Using these estimates, we can now show that ψuf (r, ⋅ ) ∈ Wθ,p(BR+1), for any θ < γ. For this purpose, we
add and subtract ψ(t, y, ufn (t, x), ∇xufn (t, x)), use condition (3.15) and the Lipschitz continuity of ψ with

respect to the last two variables to infer that

|ψufn (t, x) − ψufn (t, y)| ≤ c|ufn (t, x) − ufn (t, y)| + c|∇xufn (t, x) − ∇xufn (t, y)|
+ c|x − y|γ(1 + |ufn (t, x)| + |∇xufn (t, x)|) (3.17)

and

|ψufn (t, x) − ψufm (t, x)| ≤ c(|ufn (t, x) − ufm (t, x)| + |∇xufn (t, x) − ∇xufm (t, x)|) (3.18)

for any t ∈ (s, T), x, y ∈ ℝd and m, n ∈ ℕ. Hence, using (3.17) we obtain

|ψufn (t, x) − ψufn (t, y) − ψufm (t, x) + ψufm (t, y)|
≤ c[|ufn (t, x) − ufn (t, y)| + |∇xufn (t, x) − ∇xufn (t, y)| + |ufm (t, x) − ufm (t, y)| + |∇xufm (t, x) − ∇xufm (t, y)|

+ |x − y|γ(1 + |ufn (t, x)| + |ufm (t, x)| + |∇xufn (t, x)| + |∇xufm (t, x)|)]
=: I(t, x, y)

and, using (3.18),

|ψufn (t, x) − ψufn (t, y) − ψufm (t, x) + ψufm (t, y)| ≤ c[|ufn (t, x) − ufm (t, x)| + |∇xufn (t, x) − ∇xufm (t, x)|
+ |ufn (t, y) − ufm (t, y)| + |∇xufn (t, y) − ∇xufm (t, y)|]

=: J(t, x, y).

From these two estimates we conclude that

|ψufn (t, x) − ψufn (t, y) − ψufm (t, x) + ψufm (t, y)|
p ≤ (I(t, x, y))βp(J(t, x, y))(1−β)p

for any (t, x) ∈ (s, T) × ℝd, any β ∈ (0, 1) and anym, n ∈ ℕ. Hence, for any θ < γ and β, such that (0, 1) ∋ θ󸀠 =
θ/β + d(1 − β)/(pβ), a long but straightforward computation reveals that

[ψufn (t, ⋅ ) − ψufm (t, ⋅ )]Wθ,p(BR+1)

≤ c‖ufn (t, ⋅ ) − ufm (t, ⋅ )‖
(1−β)
W1,p(ℝd ,μt)

(‖ufn (t, ⋅ )‖
β
W1+θ󸀠 ,p(BR+1)

+ ‖ufm (t, ⋅ )‖
β
W1+θ󸀠 ,p(BR+1)

+ 1)

and, consequently,

‖ψufn (t, ⋅ ) − ψufm (t, ⋅ )‖Wθ,p(BR+1) ≤ c(t − s)
β−θ󸀠
2

−1‖fn − fm‖
1−β
Lp(ℝd ,μs)

for any t ∈ (s, T). We are almost done. Indeed, by interpolation from Proposition A.3 we deduce that

‖G(t, r)‖L(Wθ,p(BR+1),W2,p(BR)) ≤ c(t − r)−1+θ/2. From this and the previous estimate we conclude that

‖zn(t, ⋅ ) − zm(t, ⋅ )‖W2,p(BR) ≤ c(t − s)
β+θ−θ󸀠

2

−1‖fn − fm‖
1−β
Lp(ℝd ,μs)

, m, n ∈ ℕ,

for any t ∈ (s, T] and β > θ󸀠, so that

‖ufn (t, ⋅ ) − ufm (t, ⋅ )‖W2,p(BR) ≤ c(t − s)
−1‖fn − fm‖

1−β
Lp(ℝd ,μs)

for any m, n ∈ ℕ, thanks to (3.16). From this estimate it is easy to deduce that (ufn ) is a Cauchy sequence
inW0,2

p,loc((s, T) × ℝ
d). Since ufn is a classical solution to problem (1.2), we conclude that (Dtufn ) is a Cauchy

sequence in Lp
loc

((s, T) × ℝd). It thus follows that uf ∈ W1,2

p,loc((s, T) × ℝ
d) and it solves the equation

Dtuf = Auf + ψuf

in (s, T) × ℝd.

The arguments in the proof of Theorem 3.6 and Corollary 3.7 allow us to prove the following result.
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Proposition 3.8. Under Hypotheses 2.1, the following properties are satisfied.
(i) Let ψ ∈ C((s, T] × ℝd × ℝ × ℝd) with [ψ]∞,T + sup(t,x)∈(s,T]×ℝd [ψ(t, x, ⋅ , ⋅ )]Lip(ℝd+1) < +∞. Then, for any

f ∈ Cb(ℝd), the Cauchy problem (1.2) admits a uniquemild solution uf ∈ C([s, T] × ℝd) ∩ C0,1((s, T] × ℝd)
which satisfies (3.10) and (3.11) for any p ∈ [p

0
, +∞].

(ii) Let ψ ∈ C((s, T] × ℝd × ℝ × ℝd) and [ψ]p,T + sup(t,x)∈(s,T]×ℝd [ψ(t, x, ⋅ , ⋅ )]Lip(ℝd+1) < +∞ for some p ≥ p
0
.

Then, for any f ∈ Lp(ℝd , μs), the Cauchy problem (1.2) admits a unique mild solution uf which belongs to
W0,1

p ((s, T) × ℝd), if p0 ≤ p < 2, and to W
0,1

p (J × ℝd) for any J ⋐ (s, T], if p ≥ 2. Further, uf satisfies (3.10)
and (3.11), with the supremum being replaced by the essential supremum.

Proof. To prove property (i), it suffices to apply the Banach fixed point theorem in the space of all the func-

tions v ∈ Cb([s, T] × ℝd) ∩ C0,1((s, T] × ℝd) such that |||v|||∞ < +∞, where ||| ⋅ |||∞ is defined in Step 2 of the

proof of Theorem 3.6, with p = +∞. The uniqueness of the so obtained solution follows from the condition

sup(t,x)∈(s,T]×ℝd [ψ(t, x, ⋅ , ⋅ )]Lip(ℝd+1) < +∞, in a standard way.
To prove property (ii), one can argue by approximation. We fix f ∈ Lp(ℝd , μs), approximate it by

a sequence (fn) ⊂ Cb(ℝd), converging to f in Lp(ℝd , μs), and introducing a standard sequence (ϑn) of cut-off
functions. If we set ψn = ϑnψ for any n ∈ ℕ, then each function ψn satisfies the assumptions in property (i)

and [ψn]p,T ≤ [ψ]p,T . Therefore, the Cauchy problem (1.2), with fn and ψn replacing f and ψ admits a unique

mild solution u ∈ Cb([s, T] × ℝd) ∩ C0,1((s, T] × ℝd), which satisfies (3.10) and (3.11) with fn replacing f .
The arguments in the first part of the proof of Corollary 3.7 allow us to prove the existence of a mild solution

uf to the Cauchy problem (1.2) with the properties in the statement of the proposition. The uniqueness of the

solution follows also in this case from the condition sup(t,x)∈(s,T]×ℝd [ψ(t, x, ⋅ , ⋅ )]Lip(ℝd+1) < +∞.

4 The evolution operator and its summability improving properties
Suppose that, besides Hypotheses 2.1, the assumptions on ψ in Theorem 3.6 hold true for any I ∋ s < T
or ψ ∈ C(I × ℝd × ℝ × ℝd) ∩ B(J × ℝd; Lip(ℝd+1)) for each J ⋐ I and ψ( ⋅ , ⋅ , 0, 0) ∈ Cb(ℝd+1). Then, for any
f ∈ Cb(ℝd) and s ∈ I the mild solution to problem (1.2) exists in the whole of [s, +∞). Hence, we can set

N(t, s)f = uf (t, ⋅ ) for any t > s. Each operator N(t, s) maps Cb(ℝd) into C1b(ℝ
d). Moreover, the unique-

ness of the solution to problem (1.2) yields the evolution law N(t, s)f = N(t, r)N(r, s)f for any r ∈ (s, t) and
f ∈ Cb(ℝd). Hence {N(t, s) : I ∋ s < t} is a nonlinear evolution operator in Cb(ℝd). It can be extended to the

Lp-setting, for any p ≥ p
0
, using the same arguments as in the first part of the proof of Corollary 3.7. Clearly,

if ψ(t, x, ⋅ , ⋅ ) is Lipschitz continuous in ℝd+1, uniformly with respect to (t, x) × J × ℝd, for any J ⋐ I, then
by density, we still deduce that N(t, s) satisfies the evolution law and, moreover, each operator N(t, s) is
bounded from Lp(ℝd , μs) toW1,p(ℝd , μt) and

‖N(t, s)f‖Lp(ℝd ,μt) + √t − s ‖∇xN(t, s)f‖Lp(ℝd ,μt) ≤ CT−s(‖f‖Lp(ℝd ,μs) + (T − s + 1)‖ψ( ⋅ , ⋅ , 0, 0)‖∞). (4.1)

4.1 Continuity properties of the nonlinear evolution operator

In the following theorem, assuming the above conditions on ψ, we prove an interesting continuity property
of the operatorN(t, s).

Theorem 4.1. Let (fn) ⊂ Cb(ℝd) be a bounded sequence converging to some function f ∈ Cb(ℝd) pointwise
in ℝd. Then, for any s ∈ I, N( ⋅ , s)fn and ∇xN( ⋅ , s)fn converge to N( ⋅ , s)f and ∇xN( ⋅ , s)f , respectively, locally
uniformly in (s, +∞) × ℝd.

Proof. Let (fn)and f beas in the statement. To ease thenotation,wewrite ufn and uf forN( ⋅ , s)fn andN( ⋅ , s)f ,
respectively. Moreover, we set hn(r, ⋅ ) = G(t, r)(|ufn (r, ⋅ ) − uf (r, ⋅ )|p + |∇x(ufn (r, ⋅ ) − uf (r, ⋅ ))|p) for any n ∈ ℕ,
t > s and r ∈ (s, t], and we denote by LR,T any constant such that

|ψ(t, x, u
2
, v

2
) − ψ(t, x, u

1
, v

1
)| ≤ LR,T(|u2 − u1| + |v2 − v1|) (4.2)
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for any t ∈ [s, s + T], x, v
1
, v

2
∈ ℝd, u

1
, u

2
∈ [−R, R] and T > 0. As a first step, formula (3.2) shows that, for

any T > 0, there exists a positive constant MT such that ‖uf ‖∞ + ‖ufn‖∞ ≤ MT . Fix p ∈ (1, 2). Using formula

(1.4), we can estimate

|Djxufn (t, x) − D
j
xuf (t, x)|p ≤ 2p−1|(D

j
xG(t, s)(fn − f))(x)|p + 2p−1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

t

∫
s

(DjxG(t, r)(ψufn (r, ⋅ ) − ψuf (r, ⋅ ))(x) dr
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

p

for any (t, x) ∈ (s, +∞) × ℝd and j = 0, 1. By the representation formula (2.2), Hölder inequality, estimates

(2.4) and (4.2), we deduce that

|ufn (t, ⋅ ) − uf (t, ⋅ )|p ≤ 2p−1G(t, s)|fn − f|p + (4T)p−1L
p
MT

t

∫
s

h(r, ⋅ ) dr

and

|∇xufn (t, ⋅ ) − ∇xuf (t, ⋅ )|p ≤ 2p−1(t − s)−
p
2 cTG(t, s)|fn − f|p + (4T)p−1cTL

p
MT ,T

t

∫
s

(t − r)−
p
2 h(r, ⋅ ) dr

inℝd, for any t ∈ (s, s + T) and some positive constant cT . Hence, the function hn( ⋅ , x) satisfies the differen-
tial inequality

hn(t, x) ≤ Cp,T(t − s)−
p
2 (G(t, s)|fn − f|p)(x) + Cp,T

t

∫
s

(t − r)−
p
2 hn(r, x) dr

for any t ∈ (s, s + T) and x ∈ ℝd. Since hn( ⋅ , x) is continuous in (s, t] and hn(r, x) ≤ C̃T(r − s)−p/2 for some

positive constant C̃T , independent of n, and any r ∈ (s, t), we can apply [8, Lemma 7.1] and conclude that

hn(t, x) ≤ Cp,T(t − s)−
p
2 (G(t, s)|fn − f|p)(x) + Cp,T

t

∫
s

(t − r)−
p
2 (r − s)−

p
2 (G(r, s)|fn − f|p)(x) dr

for any t ∈ (s, s + T). Hence,

‖hn(t, ⋅ )‖Cb(BR) ≤ Cp,T(t − s)−
p
2 ‖G(t, s)|fn − f|p‖Cb(BR) + Cp,T

t

∫
s

(t − r)−
p
2 (r − s)−p/2‖G(r, s)|fn − f|p‖Cb(BR) dr

for any R > 0. By [9, Proposition 3.1 (i)], ‖G(r, s)|fn − f|p‖Cb(BR) vanishes as n → +∞ for any r > s. Hence, by
dominated convergence, ‖hn(t, ⋅ )‖Cb(BR) vanishes as n → +∞ for any t ∈ (s, s + T), whichmeans that, for any

t ∈ (s, s + T), ufn (t, ⋅ ) and ∇xufn (t, ⋅ ) converge uniformly in BR to uf (t, ⋅ ) and ∇xufn (t, ⋅ ), respectively. The
arbitrariness of R and T yields the assertion.

4.2 Hypercontractivity

Throughout this and the forthcoming subsections we set

F(ζ) = |√Q∇xζ|2, G(ζ) =
d
∑
i=1
|√Q∇xDiζ|2

for any smooth enough function ζ . To begin with, we recall the following crucial result.

Lemma 4.2 ([4, Lemma 3.1]). Assume that Hypotheses 2.1 hold true and fix [a, b] ⊂ I. If f ∈ C1,2b ([a, b] × ℝd)
and f(r, ⋅ ) is constant outside a compact set K for every r ∈ [a, b], then the function r 󳨃→ ∫ℝd f(r, ⋅ ) dμr is con-
tinuously differentiable in [a, b] and

Dr ∫
ℝd

f(r, ⋅ ) dμr = ∫
ℝd

Dr f(r, ⋅ ) dμr − ∫
ℝd

A(r)f(r, ⋅ ) dμr , r ∈ [a, b].
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Hypotheses 4.3. We introduce the following assumptions.

(i) ψ ∈ B(I × ℝd; Lip(ℝd+1)) ∩ C(I × ℝd × ℝ × ℝd), condition (3.9) is satisfied in [s, T], for any T > s ∈ I and
some constant which may depend also on s and T, and there exist two constants ξ

0
≥ 0 and ξ

1
such that

uψ(t, x, u, v) ≤ ξ
0
|u| + ξ

1
u2 + ξ

2
|u||v| for any t ≥ s, x, v ∈ ℝd and u ∈ ℝ.

(ii) There exists anonnegative function φ̃ : ℝd → ℝ, blowingupat infinity such thatAφ̃ + k
1
|∇φ̃| ≤ aφ̃ inℝd

for some locally bounded functions a, k
1
.

(iii) There exist locally bounded functions C
0
, C

1
, C

2
: I → ℝ+ such that

|Q(t, x)x| ≤ C
0
(t)|x|3φ̃(x), Tr(Q(t, x)) ≤ C

1
(t)(1 + |x|2)φ̃(x), ⟨b(t, x), x⟩ ≤ C

2
(t)|x|2φ̃(x)

for any t ∈ I and any x ∈ ℝd.
(iv) There exists a positive constant K such that

∫

ℝd

|f|q log(|f|) dμt ≤ ‖f‖
q
Lq(ℝd ,μt)

log(‖f‖Lq(ℝd ,μt)) + Kq ∫
ℝd

|f|q−2|∇f|2𝟙{f ̸=0} dμt (4.3)

for any t > s, f ∈ C1b(ℝ
d) and q ∈ (1, +∞).

Remark 4.4. (i) Hypothesis 4.3 (i) implies that ψ( ⋅ , ⋅ , 0, 0) is bounded in [s, +∞) × ℝd and

‖ψ( ⋅ , ⋅ , 0, 0)‖Cb([s,+∞)×ℝd) ≤ ξ0.

(ii) Sufficient conditions for (4.3) to hold are given in [4]. In particular, (4.3) holds true when (2.3) is

satisfied with p = 1 (see Remark 2.2).

We can now prove the main result of this subsection.

Theorem 4.5. Let Hypotheses 2.1 and 4.3 be satisfied. Then, for any f ∈ Lp(ℝd , μs) (p ≥ p0) and t > s, the
functionN(t, s)f belongs to W1,pγ(t)(ℝd , μt) and satisfies the estimates

‖N(t, s)f‖Lpγ (t)(ℝd ,μt) ≤ e
ωp,γ(t−s)[‖f‖Lp(ℝd ,μs) + ξ0(t − s)], (4.4)

‖∇xN(t, s)f‖Lpγ (t)(ℝd ,μt) ≤ c0(t − s)e
ωp,√γ(t−s)[‖f‖Lp(ℝd ,μs) + ξ0(t − s)] + c1(t − s)ξ0, (4.5)

where pγ(t) := γ−1(p − 1)(eκ0K
−1(t−s) − 1) + p for any γ > 1, κ

0
being the ellipticity constant inHypothesis 2.1 (ii)

and K being the constant in (4.3), ωp,σ = ξ1+(ξ+
2

)2σ[(σ−1)(p−1)κ
0
]−1 and the functions c

0
, c

1
: (0, +∞) → ℝ+

are continuous and blow up at zero.

Proof. To begin with, we observe that it suffices to prove (4.4) and (4.5) for functions f ∈ C1b(ℝ
d). Indeed, in

the general case, the assertion follows approximating f with a sequence (fn) ⊂ C1b(ℝ
d) which converges to f

in Lp(ℝd , μs). By (3.10),N(t, s)fn converges toN(t, s)f inW1,p(ℝd , μt) for almost every t > s. Hence, writing
(4.4) and (4.5) with f being replaced by fn and letting n tend to +∞, the assertion follows at once by applying
Fatou lemma.

We split the rest of the proof into two steps. In the first one we prove (4.4) and in the latter one (4.5).

Step 1. Fix f ∈ C1b(ℝd), n ∈ ℕ, ε > 0 and set
βn,ε(t) := ‖vn,ε(t, ⋅ )‖pγ(t)

for any t > s, where vn,ε = (ϑ2nN( ⋅ , s)f + ε)1/2 and ϑn = ζ(n−1|x|) for any x ∈ ℝd and n ∈ ℕ. Here, ζ is a smooth

function such that 𝟙B
1

≤ ζ ≤ 𝟙B
2

. Moreover, we set

φ
1,n =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
ζ 󸀠( | ⋅ |n )

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
φ̃, φ

2,n =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
ζ 󸀠󸀠( | ⋅ |n )

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
φ̃

for any n ∈ ℕ. We recall that in [9, Theorem 5.4] it has been proved that supt∈I ‖φ̃‖L1(ℝd ,μt) < +∞. Hence, the
functions t 󳨃→ ‖φj,n‖Lp(ℝd ,μt) (j = 1, 2) are bounded in I and pointwise converge to zero as n → +∞.

Bydefinition, the function u = N( ⋅ , s)f belongs to C0,1b ([s, τ] × ℝ
d) for any τ > s and is a classical solution

to problem (1.2). Moreover, Lemma 4.2 shows that βn,ε is differentiable in (s, +∞) and a straightforward

computation reveals that

β󸀠n,ε(t) = −
p󸀠γ(t)
pγ(t)

βn,ε(t) log(βn,ε(t)) +
1

pγ(t)
(βn,ε(t))1−pγ(t) ∫

ℝd

{Dt[(vn,ε(t, ⋅ ))pγ(t)] −A(t)[(vn,ε(t, ⋅ )pγ(t)]} dμt .
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Taking into account that

Dt[(vn,ε(t, ⋅ ))pγ(t)] −A[(vn,ε(t, ⋅ )pγ(t)] = p󸀠γ(t)(vn,ε(t, ⋅ ))pγ(t) log(vn,ε(t, ⋅ ))

− pγ(t)(pγ(t) − 1)(vn,ε(t, ⋅ ))pγ(t)−2(F(vn,ε))(t, ⋅ )

+ pγ(t)(vn,ε(t, ⋅ ))pγ(t)−1(Dtvn,ε(t, ⋅ ) −A(t)vn,ε(t, ⋅ ))

and

Dtvn,ε −Avn,ε = ϑ2nv−1n,εuψu − εϑ2nF(u)v−3n,ε − Tr(QD2ϑn)v−1n,εϑnu2 − εu2v−3n,εF(ϑn)

− ⟨b, ∇ϑn⟩v−1n,εϑnu2 − 2(2εu + ϑ2nu3)⟨Q∇ϑn , ∇xu⟩ϑnv−3n,ε
=: ϑ2nv−1n,εuψu − εϑ2nF(u)v−3n,ε + gn,ε(t, ⋅ ),

we deduce

β󸀠n,ε(t) = (βn,ε(t))1−pγ(t) ∫
ℝd

(vn,ε(t, ⋅ ))pγ(t)−1gn,ε(t, ⋅ ) dμt −
p󸀠γ(t)
pγ(t)

βn,ε(t) log(βn,ε(t))

− (pγ(t) − 1)(βn,ε(t))1−pγ(t) ∫
ℝd

(vn,ε(t, ⋅ ))pγ(t)−2(F(vn,ε))(t, ⋅ ) dμt

+
p󸀠γ(t)
pγ(t)
(βn,ε(t))1−pγ(t) ∫

ℝd

(vn,ε(t, ⋅ ))pγ(t) log(vn,ε(t, ⋅ )) dμt

+ (βn,ε(t))1−pγ(t) ∫
ℝd

(vn,ε(t, ⋅ ))pγ(t)−2ϑ2nu(t, ⋅ )ψu(t, ⋅ ) dμt

− ε(βn,ε(t))1−pγ(t) ∫
ℝd

ϑ2n(vn,ε(t, ⋅ ))pγ(t)−4(F(u))(t, ⋅ )) dμt .

Using Hypotheses 4.3 (i), (iv), the expression of the function t 󳨃→ pγ(t) and Hypothesis 2.1 (ii), we can

estimate

β󸀠n,ε(t) ≤ (βn,ε(t))1−pγ(t) ∫
ℝd

(vn,ε(t, ⋅ ))pγ(t)−1gn,ε(t, ⋅ ) dμt

+ ξ
0
(βn,ε(t))1−pγ(t) ∫

ℝd

ϑ2n|u(t, ⋅ )|(vn,ε(t, ⋅ ))pγ(t)−2 dμt + ξ1βn,ε(t)

− εξ
1
(βn,ε(t))1−pγ(t) ∫

ℝd

(vn,ε(t, ⋅ ))pγ(t)−2 dμt

− (p − 1)(1 − γ−1)(βn,ε(t))1−pγ(t) ∫
ℝd

(vn,ε(t, ⋅ ))pγ(t)−2(F(vn,ε))(t, ⋅ ) dμt

+ ξ+
2

(βn,ε(t))1−pγ(t) ∫
ℝd

ϑ2n(vn,ε(t, ⋅ ))pγ(t)−2|u(t, ⋅ )||∇xu(t, ⋅ )| dμt

− ε(βn,ε(t))1−pγ(t) ∫
ℝd

ϑ2n(vn,ε(t, ⋅ ))pγ(t)−4F(u(t, ⋅ )) dμt . (4.6)

Further, since F(vn,ε) = ϑ2nF(ϑn)u4v−2n,ε + ϑ4nu2F(u)v−2n,ε + 2ϑ2nu3v−2n,ε⟨Q∇xu, ∇ϑn⟩ and

∫

ℝd

(v(t, ⋅ ))pγ(t)−4ϑ2n(u(t, ⋅ ))3⟨Q(t, ⋅ )∇xu(t, ⋅ ), ∇ϑn⟩ dμt

≤ δ ∫
ℝd

(v(t, ⋅ ))pγ(t)−4ϑ4n(u(t, ⋅ ))2(F(u))(t, ⋅ ) dμt +
1

δ ∫
ℝd

(v(t, ⋅ ))pγ(t)−4(u(t, ⋅ ))4(F(ϑn))(t, ⋅ ) dμt ,
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it follows that

∫

ℝd

(vn,ε(t, ⋅ ))pγ(t)−2(F(vn,ε))(t, ⋅ ) dμt

≥ (1 − δ) ∫
ℝd

ϑ4n(u(t, ⋅ ))2(vn,ε(t, ⋅ ))pγ(t)−4(F(u))(t, ⋅ ) dμt − Cε,δ(t) ∫
ℝd

φ
1,n dμt

for any δ > 0 and some continuous function Cε,δ : [s, +∞) → ℝ+. Moreover, applying Hölder and Young

inequalities and Hypothesis 2.1 (ii) we can infer that

∫

ℝd

ϑ2n(vn,ε(t, ⋅ ))pγ(t)−2|u(t, ⋅ )||∇xu(t, ⋅ )|dμt

≤
δ
1

κ
0

∫

ℝd

ϑ4n(vn,ε(t, ⋅ ))pγ(t)−4|u(t, ⋅ )|2(F(u))(t, ⋅ ) dμt +
1

4δ
1

(βn,ε(t, ⋅ ))pγ(t)

for any δ
1
> 0 and

∫

ℝd

ϑ2nu(t, ⋅ )(vn,ε(t, ⋅ ))pγ(t)−2 dμt ≤ ∫
ℝd

(vn,ε(t, ⋅ ))pγ(t)−1 dμt ≤ (βn,ε(t, ⋅ ))pγ(t)−1.

Hence,

β󸀠n,ε(t) ≤ ξ0 + (ξ1 +
ξ+
2

4δ
1

)βn,ε(t) + (βn,ε(t))1−pγ(t) ∫
ℝd

(vn,ε(t, ⋅ ))pγ(t)−1gn,ε(t, ⋅ ) dμt

− [(p − 1)(1 − γ−1)(1 − δ) − κ−1
0

ξ+
2

δ
1
](βn,ε(t))1−pγ(t) ∫

ℝd

ϑ4n|u(t, ⋅ )|2(vn,ε(t, ⋅ ))pγ(t)−4(F(u))(t, ⋅ ) dμt

+ C̃ε,δ,p,γ(t)(βn,ε(t))1−pγ(t) ∫
ℝd

φ
1,n dμt

− ε(βn,ε(t))1−pγ(t) ∫
ℝd

ϑ2n(vn,ε(t, ⋅ ))pγ(t)−4(F(u))(t, ⋅ ) dμt

− εξ
1
(βn,ε(t))1−pγ(t) ∫

ℝd

(vn,ε(t, ⋅ ))pγ(t)−2 dμt

for some continuous function C̃ε,δ,p,γ : [s, +∞) → ℝ+. Now, we estimate the integral term containing gn. We

begin by observing that

− 2 ∫

ℝd

(2εu(t, ⋅ ) + ϑ2n(u(t, ⋅ ))3)⟨Q(t, ⋅ )∇ϑn , ∇xu⟩ϑn(vn,ε(t, ⋅ ))p(t)−4 dμt

≤ 4εδ
2
∫

ℝd

ϑ2n(vn,ε(t, ⋅ ))pγ(t)−4(F(u))(t, ⋅ ) dμt + εδ−12 ∫
ℝd

|u(t, ⋅ )|2(vn,ε(t, ⋅ ))pγ(t)−4(F(ϑn))(t, ⋅ ) dμt

+ δ
2
∫

ℝd

ϑ4n|u(t, ⋅ )|2(vn,ε(t, ⋅ ))pγ(t)−4(F(u))(t, ⋅ ) dμt

+ δ−1
2

∫

ℝd

ϑ2n|u(t, ⋅ )|4(vn,ε(t, ⋅ ))pγ(t)−4(F(ϑn))(t, ⋅ ) dμt

≤ 4εδ
2
∫

ℝd

ϑ2n(vn,ε(t, ⋅ ))pγ(t)−4(F(u))(t, ⋅ ) dμt + C̃ε,δ2 (t) ∫
ℝd

φ
1,n dμt

+ δ
2
∫

ℝd

ϑ4n|u(t, ⋅ )|2(vn,ε(t, ⋅ ))pγ(t)−4(F(u))(t, ⋅ ) dμt
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for some continuous function C̃ε,δ
2

: [s, +∞) → ℝ+. Moreover,

− ∫

ℝd

(vn,ε(t, ⋅ ))pγ(t)−4u(t, ⋅ )[ϑnA(t)ϑn − εu(t, ⋅ )(F(ϑn))(t, ⋅ )] dμt ≤ Cε(t) ∫
ℝd

(φ
1,n + φ2,n) dμt

for some positive and continuous function Cε : [s, +∞) → ℝ+. Hence, replacing these estimates in (4.6), we

get

β󸀠n,ε(t) ≤ ξ0 + (ξ1 +
ξ+
2

4δ
1

)βn,ε(t) + Ĉε,δ,δ
2
,p(t)(βn,ε(t))1−pγ(t) ∫

ℝd

(φ
1,n + φ2,n) dμt

− [(p − 1)(1 − γ−1)(1 − δ) − κ−1
0

ξ+
2

δ
1
− δ

2
](βn,ε(t))1−pγ(t)

× ∫

ℝd

ϑ4n|u(t, ⋅ )|2(vn,ε(t, ⋅ ))pγ(t)−4(F(u))(t, ⋅ ) dμt

− ε(1 − 4δ
2
)(βn,ε(t))1−pγ(t) ∫

ℝd

ϑ2n(vn,ε(t, ⋅ ))pγ(t)−4(F(u))(t, ⋅ ) dμt

− εξ
1
(βn,ε(t))1−pγ(t) ∫

ℝd

(vn,ε(t, ⋅ ))pγ(t)−2 dμt , (4.7)

where, again, Ĉε,δ,δ
2
,p : (s, +∞) → ℝ+ is a continuous function. Choosing δ = 1

2

, δ
1
= (p − 1)(1 − γ−1) κ0

4ξ
2

if

ξ
2
> 0, δ

1
= 0 otherwise, and then δ

2
small enough we obtain

β󸀠n,ε(t) ≤ ξ0 + ωp,γβn,ε(t) + Ĉε,1/2,δ2 ,p(t)(βn,ε(t))1−pγ(t)‖φ1,n + φ2,n‖L1(ℝd ,μt)

− εξ
1
(βn,ε(t))1−pγ(t) ∫

ℝd

(vn,ε(t, ⋅ ))pγ(t)−2 dμt . (4.8)

Hence, integrating (4.8) between s and t and letting first n → +∞ and then ε → 0

+
, by dominated conver-

gence we get

‖u(t, ⋅ )‖Lpγ (t)(ℝd ,μt) ≤ ‖f‖Lp(ℝd ,μs) + ξ0(t − s) + ωp,γ
t

∫
s

‖u(r, ⋅ )‖Lp(r)(ℝd ,μr) dr.

Applying the Gronwall lemma, we conclude the proof of (4.4).

Step 2. To check estimate (4.5), we arbitrarily fix γ ∈ (1, +∞), t > s and we take

ε = K
2κ

0

log(
γeκ0K−1(t−s)

γ + eκ0K−1(t−s) − 1
), γ󸀠 = γ e

κ
0
K−1(t−s−ε) − 1

eκ0K−1(t−s) − 1
. (4.9)

With these choices of ε and γ󸀠, we have
pγ󸀠 (t − ε) = pγ(t).

From Step 1, we know thatN(t − ε, s)f ∈ Lpγ󸀠 (t−ε)(ℝd , μt−ε) and

‖N(t − ε, s)f‖Lpγ (t)(ℝd ,μt−ε) ≤ e
ωp,γ󸀠 (t−s−ε)(‖f‖Lp(ℝd ,μs) + ξ0(t − s)). (4.10)

By the evolution law and estimates (4.10) and (4.1) we get

sup

τ∈(t−ε,T)
√τ − t + ε ‖∇xN(τ, s)f‖Lpγ (t)(ℝd ,μτ)

≤ CT−t+ε{eωp,γ󸀠 (t−s−ε)(‖f‖Lp(ℝd ,μs) + ξ0(t − s)) + (T − t + ε + 1)‖ψ( ⋅ , ⋅ , 0, 0)‖∞}

for any T > t − ε. In particular, taking T = t and using Remark 4.4 (i) to estimate ‖ψ( ⋅ , ⋅ , 0, 0)‖∞ ≤ ξ0, we get

‖∇xN(t, s)f‖Lpγ (t)(ℝd ,μt) ≤
Cε
√ε

e−εωp,γ󸀠 eωp,γ󸀠 (t−s)[‖f‖Lp(ℝd ,μs) + ξ0(t − s)] + (√ε +
1

√ε
)Cεξ0. (4.11)
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Replacing the value of ε in the expression of γ󸀠 (see (4.9)), we deduce that

γ󸀠 ≥ inf
δ≥1

γ(δ − 1)−1[( δ(γ + δ − 1)γ )
1/2
− 1] = √γ

and, since the function σ 󳨃→ ωp,σ is decreasing, ωp,γ󸀠 ≤ ωp,√γ. Finally, observing that e−εωp,γ󸀠 is bounded in
(s, +∞), ε < (2κ

0
)−1K log(γ) (which follows from (4.9) recalling that γ󸀠 ≥ √γ) and ε ∼ (2γ)−1(γ − 1)(t − s) as

t − s → 0

+
, formula (4.5) follows immediately replacing in (4.11) the value of ε given by (4.9).

Remark 4.6. As the proof of Theorem 4.5 shows, if ξ
2
≤ 0, then we can take γ = 1 and ωp,1 = ξ1 in (4.4).

4.3 Supercontractivity

In the next theorem we prove a stronger result than Theorem 4.5, i.e., we prove that the nonlinear evo-

lution operator N(t, s) satisfies a supercontractivity property. For this purpose, we introduce the following
additional assumption.

Hypothesis 4.7. There exists a decreasing function ν : (0, +∞) → ℝ+ blowing up as σ tends to 0+ such that

∫

ℝd

|f|p log(|f|) dμr − ‖f‖
p
Lp(ℝd ,μr)

log(‖f‖Lp(ℝd ,μr)) ≤
ν(σ)
p
‖f‖pLp(ℝd ,μr) + σp ∫

ℝd

|f|p−2|∇f|2𝟙{f ̸=0} dμr (4.12)

for any r ∈ I, σ > 0 and f ∈ C1b(ℝ
d).

Remark 4.8. Sufficient conditions for (4.12) to hold are given in [3]. In particular, it holds true when (2.3) is

satisfied with p = 1 (see Remark 2.2) and there exist K > 0 and R > 1 such that ⟨b(t, x), x⟩ ≤ −K|x|2 log |x| for
any t ∈ I and |x| ≥ R.

Theorem 4.9. Let Hypotheses 2.1, 4.3 (i)–(iii) and 4.7 be satisfied. Then, for any t > s ∈ I, p
0
≤ p < q < +∞

and any f ∈ Lp(ℝd , μs),N(t, s)f belongs to W1,q(ℝd , μt) and

‖N(t, s)f‖Lq(ℝd ,μt) ≤ c2(t − s)(‖f‖Lp(ℝd ,μs) + ξ0(t − s)), (4.13)

‖∇xN(t, s)f‖Lq(ℝd ,μt) ≤ c3(t − s)‖f‖Lp(ℝd ,μs) + c4(t − s)ξ0. (4.14)

Here, c
2
, c

3
, c

4
: (0, +∞) → ℝ+ are continuous functions such that limr→0+ ck(r) = +∞ (k = 2, 3, 4).

Proof. The proof of this result follows the same lines of the proof of Theorem 4.5. For this reason we use the

notation therein introduced and we limit ourselves to sketching it in the case when f ∈ C1b(ℝ
d).

Step 1. Here, we prove (4.13). For any σ > 0 and any t ≥ s, we set

p(t) = eκ0(2σ)−1(t−s)(p − 1) + 1, m(t) = ν(σ)(p−1 − (p(t))−1), ζn,ε(t) = e−m(t)βn,ε(t).

The function ζn,ε is differentiable in (s, +∞) and arguing as in the proof of the quoted theorem, using (4.12)

instead of (4.3) and the definition of m(t) and p(t), we deduce that

ζ 󸀠n,ε(t) = [(βn,ε(t))1−p(t) ∫
ℝd

(vn,ε(t, ⋅ ))p(t)−1gn,ε(t, ⋅ ) dμt

−
p − 1
2

(βn,ε(t))1−p(t) ∫
ℝd

(vn,ε(t, ⋅ ))p(t)−2(F(vn,ε))(t, ⋅ ) dμt

+ (βn,ε(t))1−p(t) ∫
ℝd

(vn,ε(t, ⋅ ))p(t)−2ϑ2nu(t, ⋅ )ψu(t, ⋅ ) dμt

− ε(βn,ε(t))1−p(t) ∫
ℝd

ϑ2n(vn,ε(t, ⋅ ))p(t)−4(F(u))(t, ⋅ ) dμt]e−m(t)
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and the same arguments used to prove (4.7) show that, if δ
2
< 1

4

, then

ζ 󸀠n,ε(t) ≤ ξ0e−m(t) + (ξ1 +
ξ+
2

4δ
1

)ζn,ε(t) + (Ĉε,δ,δ
2
,p(t)(βn,ε(t))1−p(t) ∫

ℝd

(φ
1,n + φ2,n) dμt

− [2−1(p − 1)(1 − δ) − κ−1
0

ξ+
2

δ
1
− δ

2
](βn,ε(t))1−p(t) ∫

ℝd

ϑ4n|u(t, ⋅ )|2(vn,ε(t, ⋅ ))p(t)−4(F(u))(t, ⋅ ) dμt

− εξ
1
(βn,ε(t))1−p(t) ∫

ℝd

(vn,ε(t, ⋅ ))p(t)−2 dμt)e−m(t).

Choosing δ = 1

2

, δ
1
= (p − 1)κ

0
(8ξ

2
)−1 if ξ

2
> 0, δ

1
= 0 otherwise, and δ

2
= [(p − 1) ∧ 2]/8 we get

ζ 󸀠n,ε(t) ≤ ω̃pζn,ε(t) + e−m(t)[ξ0 + Ĉε,δ2 ,p(t)(βn,ε(t))1−p(t)‖φ1,n + φ2,n‖L1(ℝd ,μt)

− εξ
1
(βn,ε(t))1−p(t) ∫

ℝd

(vn,ε(t, ⋅ ))p(t)−2 dμt], (4.15)

where ω̃p = ξ1 + 2(ξ+
2

)2(κ
0
(p − 1))−1. Hence, integrating (4.15) between s and t and letting first n → +∞ and

then ε → 0

+
, by dominated convergence we get

e−m(t)‖uf (t, ⋅ )‖Lp(t)(ℝd ,μt) ≤ ξ0(t − s) + ‖f‖Lp(ℝd ,μs) + ω̃p
t

∫
s

e−m(r)‖u(r, ⋅ )‖Lp(r)(ℝd ,μr) dr,

which yields

‖uf (t, ⋅ )‖Lp(t)(ℝd ,μt) ≤ e
ω̃p(t−s)+m(t)(ξ

0
(t − s) + ‖f‖Lp(ℝd ,μs)).

Now, for any q > p and t > s, we fix σ = κ
0
(t − s)(2 log(q − 1) − 2 log(p − 1))−1. We get p(t) = q and from the

previous inequality the claim follows with

c
2
(r) = exp(ω̃pr + (p−1 − q−1)ν(κ0r(2 log(q − 1) − 2 log(p − 1))−1)).

Step 2. Fix q > p. By Step 1,N((t + s)/2, s)f belongs to Lq(ℝd , μ(t+s)/2) and
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
N(

t + s
2

, s)f
󵄩󵄩󵄩󵄩󵄩󵄩󵄩Lq(ℝd ,μ(t+s)/s)

≤ c
2
(
t − s
2

)(‖f‖Lp(ℝd ,μs) + ξ0
t − s
2

).

The same arguments used in Step 2 of the proof of Theorem 4.5 show that N(t, s)f ∈ W1,q(ℝd , μτ) for any
τ > t+s

2

and

√ t − s
2

‖∇xN(t, s)f‖Lq(ℝd ,μτ) ≤ C(t−s)/2[c2(
t − s
2

)(‖f‖Lp(ℝd ,μs) + ξ0
t − s
2

) + (
t − s
2

+ 1)ξ
0
].

Estimate (4.14) follows with c
3
(r) = √ 2

r Cr/2c2(
2

r ), c4(r) = Cr/2[c2(
2

r )√
2

r + √
2

r + √
2

r ].

4.4 Ultraboundedness

To begin with, we prove a sort of Harnack inequality, which besides the interest in its own will be crucial to

prove the ultraboundedness of the nonlinear evolution operatorN(t, s).

Proposition 4.10. Let Hypotheses 2.1 (i)–(iii) and 4.3 (i)–(iii) be satisfied. Further, suppose that estimate (2.3)
holds, with p = 1 and some constant σ

1
∈ ℝ. Then, for any f ∈ Cb(ℝd), p > 1, t > s and x, y ∈ ℝd, the following

estimate holds true:

|(N(t, s)f)(x)|p ≤ exp(p(1 + ξ+
1

)(t − s) + pΘ(t − s)
(|x − y| + ξ+

2

(t − s))2

4κ
0
(t − s)2(p − 1)

)[(G(t, s)|f|p)(y) + ξ p
0

], (4.16)

where Θ(r) = (e2σ1r − 1)/(2σ
1
) if σ

1
> 0 and Θ(r) = r otherwise.
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Proof. To beginwith, we observe that it suffices to prove (4.16) for functions in C1b(ℝ
d). Indeed, if f ∈ Cb(ℝd),

we candetermine a sequence (fn) ⊂ C1b(ℝ
d), boundedwith respect to the sup-normand converging to f locally

uniformly in ℝd. Writing (4.16) with f replaced by fn and using Theorem 4.1 and [9, Proposition 3.1 (i)], we

can let n tend to +∞ and complete the proof.

So, let us fix f ∈ C1b(ℝ
d) and set Φn(r) := [G(t, r)(ϑ2nvε(r, ⋅ ))](ϕ(r)) + ξ

p
0

for any n ∈ ℕ and r ∈ (s, t), where
vε = (u2f + ε)

p/2
, uf = N( ⋅ , s)f (see Theorem 3.6), ϕ(r) = (r − s)(t − s)−1x + (t − r)(t − s)−1y and (ϑn) is a stan-

dard sequence of cut-off functions. We note that Φn(r) ≥ CΦ > 0 for any r ∈ [s, t] and any n ≥ n0. This is clear
if ξ

0
> 0. Suppose that ξ

0
= 0. If r < t, then Φn(r) is positive since vε > 0. If r = t, then Φn(t) = (ϑn(x))2vε(t, x)

which is positive if we choose n ∈ ℕ large enough such that x ∈ supp(ϑn). Moreover, Φn ∈ C1((s, t)). Hence
log(Φn) ∈ C1((s, t)) and we have

d
dr

log(Φn(r)) =
1

Φn(r)
{[G(t, r)(ϑ2nDtvε(r, ⋅ )) −A(ϑ2nvε(r, ⋅ )))](ϕ(r))

+ (t − s)−1⟨[∇xG(t, r)(ϑ2nvε(r, ⋅ ))](ϕ(r)), x − y⟩}.

We observe that

Dt(ϑ2nvε) −A(ϑ2nvε) = pϑ2n(u2f + ε)
p
2

−1ufψuf − pϑ2nv
1− 4p
ε ((p − 1)u2f + ε)F(uf )

− 4pv
1− 2p
ε ϑnuf ⟨Q∇ϑn , ∇xuf ⟩ − 2ϑnvεAϑn − 2vεF(ϑn),

and

|∇xG(t, r)(ϑ2nvε(r, ⋅ ))| ≤ eσ1(t−r)G(t, r)|∇x(ϑ2nvε(r, ⋅ ))|

≤ peσ1(t−r)G(t, r)(ϑ2n(vε(r, ⋅ ))
1− 2p |uf (r, ⋅ )|κ

− 1
2

0

((F(uf ))(r, ⋅ ))
1

2 )

+ eσ1(t−r)G(t, r)(2ϑn|∇ϑn|vε(r, ⋅ )).

Hence, we get

d
dr

log Φn(r) ≤
1

Φn(r)
{p |x − y|t − s

eσ1(t−r)G(t, r)[ϑ2n(vε(r, ⋅ ))
1− 2p |uf (r, ⋅ )|κ

− 1
2

0

((F(uf ))(r, ⋅ ))
1

2 ]

− G(t, r)ζn,ε(r, ⋅ ) +
|x − y|
t − s

eσ1(t−r)G(t, r)(2ϑn|∇ϑn|vε(r, ⋅ ))}(ϕ(r)),

where

ζn,ε = 2ϑn(Aϑn)vε + 2F(ϑn)vε + 4pϑnv
1− 2p
ε uf ⟨Q∇ϑn , ∇xuf ⟩ − pϑ2nv

1− 2p
n,ε ufψuf + pϑ2nv

1− 4p
ε ((p − 1)uf + ε)F(uf ).

From Hypothesis 4.3 (i) it follows that

d
dr

log Φn(r) ≤
1

Φn(r)
G(t, r){−2ϑn(A(r)ϑn)vε(r, ⋅ ) + pξ0ϑ2nv

1− 1p
ε + ξ+

1

ϑ2npvε(r, ⋅ )

+ 4p(vε(r, ⋅ ))1−
2

p ϑn|uf (r, ⋅ )||⟨Q(r, ⋅ )∇ϑn , ∇xuf (r, ⋅ )⟩|

− pϑ2nvε(r, ⋅ )[((p − 1)(uf (r, ⋅ ))2 + ε)(hε(r, ⋅ ))2

− |uf (r, ⋅ )|hε(r, ⋅ )
eσ1(t−r)|x − y| + ξ+

2

(t − s)
√κ

0
(t − s)

]}(ϕ(r))

+
|x − y|
t − s

eσ1(t−r){G(t, r)[|∇ϑn|vε(r, ⋅ )]}(ϕ(r)), (4.17)

where hε = (u2f + ε)
−1√F(uf ). Using the Cauchy–Schwarz inequality, we can estimate

v
1− 2p
ε ϑn|uf ||⟨Q∇ϑn , ∇xuf ⟩| ≤ v

1− 2p
ε ϑn|uf |√F(ϑn)√F(uf )

≤ δϑ2nvεh2εu2f +
1

4δ
vεF(ϑn).
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Moreover, using formula (2.2), we can estimate

(G(t, r)(ϑ2nv
1−1/p
ε ))(ϕ(r)) ≤ ((G(t, r)(ϑ2nvε))(ϕ(r)))

1− 1p ((G(t, r)ϑn)(ϕ(r))p

≤ ((G(t, r)(ϑ2nvε))(ϕ(r)))
1− 1p ≤ (Φn(r))1−

1

p
.

These two estimates replaced in (4.17) give

d
dr

log Φn(r) ≤
1

Φn(r)
(G(t, r){[pδ−1(F(ϑn))(r, ⋅ ) − 2ϑnA(r)ϑn]vε(r, ⋅ ) + ξ+

1

ϑ2npvε(r, ⋅ )

− pϑ2nvε(r, ⋅ )[((p − 1 − δ)(uf (r, ⋅ ))2 + ε)(hε(r, ⋅ ))2

− |uf (r, ⋅ )|hε(r, ⋅ )
eσ1(t−r)|x − y| + ξ+

2

(t − s)
√κ

0
(t − s)

]})(ϕ(r))

+
|x − y|
t − s

eσ1(t−r){G(t, r)[|∇ϑn|vε(r, ⋅ )]}(ϕ(r)) + p. (4.18)

Straightforward computations show thatA(r)ϑn and (F(ϑn))(r, ⋅ ) vanish pointwise inℝd as n → +∞, for
any r ∈ (s, t) and there exists a positive constant C such that |A(r)ϑn| + (F(ϑn))(r, ⋅ ) ≤ Cφ̃ inℝd for any n ∈ ℕ,
thanks to Hypothesis 4.3 (iii). By [9, Lemma 3.4] the function G(t, ⋅ )φ̃ is bounded in (s, t) × BR for any R > 0.
Hence, by dominated convergence we conclude that G(t, r)(ϑn(A(r)ϑn)vε(r, ⋅ )) vanishes as n → +∞, point-
wise inℝd, for any r ∈ (s, t) and

‖G(t, r)[pδ−1(F(ϑn))(r, ⋅ ) − 2ϑnA(r)ϑn]‖Cb(BR) ≤ Cδ,p,‖uf ‖∞ sup

r∈(s,t)
‖G(t, r)φ̃‖Cb(BR), (4.19)

where R > max{|x|, |y|}. Similarly, the last but one term in (4.18) vanishes pointwise in ℝd as n → +∞, for
any r ∈ (s, t) and

|(G(t, r)[|∇ϑn|vε(r, ⋅ )])(ϕ(r))| ≤ Cp,‖uf ‖∞ sup

r∈(s,t)
‖G(t, r)φ̃‖Cb(BR). (4.20)

Moreover, using the inequality αβ2 − γβ ≥ − γ
2

4α for any α > 0 and β, γ ∈ ℝ, and that G(t, s)g1 ≤ G(t, s)g2
for any t > s and any g

1
≤ g

2
, we deduce

d
dr

log(Φn(r)) ≤
1

Φn(r)
(G(t, r)[pδ−1(F(ϑn))(r, ⋅ ) − 2ϑnA(r)ϑn]vε(r, ⋅ ))(ϕ(r)) + p(1 + ξ+

1

+ e2σ
+
1

(t−r)χδ)

+
eσ1(t−r)|x − y|
(t − s)Φn(r)

(G(t, r)[|∇ϑn|vε(r, ⋅ )])(ϕ(r)),

where χδ = (|x − y| + ξ+
2

(t − s))2(4κ
0
(t − s)2(p − 1 − δ))−1. Integrating both sides of the previous inequality in

(s, t) and taking (4.19) and (4.20) into account to let n → +∞, we get

log(
((uf (t, x))2 + ε)

p
2 + ξ p

0

(G(t, s)((f 2 + ε)
p
2 ))(y) + ξ p

0

) ≤ p[(1 + ξ+
1

)(t − s) + Θ(t − s)χδ],

or even

((uf (t, x))2 + ε)p/2 ≤ exp[p(1 + ξ+
1

)(t − s) + pΘ(t − s)χδ][(G(t, s)((f 2 + ε)
p
2 ))(y) + ξ p

0

].

By formula (2.2) we can let ε and δ tend to zero on both sides of the previous inequality and this yields the

assertion.

We can now prove the main result of this subsection. For this purpose, we set φλ(x) = eλ|x|
2

for any x ∈ ℝd

and λ > 0, and introduce the following additional assumption.

Hypothesis 4.11. For any I ∋ s < t and λ > 0, the function G(t, s)φλ belongs to L∞(ℝd) and, for any δ > 0,
+∞ > Mδ,λ := supt−s≥δ ‖G(t, s)φλ‖∞.

Remark 4.12. A sufficient condition for Hypothesis 4.11 to hold is given in [3, Theorem 4.3]. More precisely,

it holds when (2.3) holds with p = 1 and there exists K > 0, β, R > 1 such that ⟨b(t, x), x⟩ ≤ −K|x|2(log(|x|))β

for any t ∈ I and x ∈ ℝd \ BR.
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Theorem 4.13. Assume that Hypothesis 4.11 and the conditions in Proposition 4.10 are satisfied. Then, for any
I ∋ s < t, f ∈ Lp(ℝd , μs) (p ∈ [p0, +∞)), the functionN(t, s)f belongs to W1,∞(ℝd) and

‖N(t, s)f‖∞ ≤ c5(t − s)‖f‖Lp(ℝd ,μs) + c6(t − s)ξ0, (4.21)

‖∇xN(t, s)f‖∞ ≤ c7(t − s)‖f‖Lp(ℝd ,μs) + c8(t − s)ξ0 (4.22)

for some continuous functions ck : (0, +∞) → ℝ+ (k = 5, 6, 7, 8) which blow up at zero.

Proof. As usually, we prove the assertion for functions in C1b(ℝ
d).

Step 1. We prove (4.21). So, let us fix f ∈ C1b(ℝ
d) and x ∈ ℝd. By the invariance property of the family

{μt : t ∈ I} and inequality (4.16), we can estimate

‖f‖pLp(ℝd ,μs) = ∫
ℝd

(G(t, s)|f|p)(y)μt(dy)

≥ ∫
BR

[(G(t, s)|f|p)(y) + ξ p
0

]μt(dy) − ξ
p
0

≥ |(N(t, s)f)(x)|pe−pϕ(t−s) ∫
BR

exp(−pΘ(t − s)
(|x − y| + ξ+

2

(t − s))2

4κ
0
(t − s)2(p − 1)

)μt(dy) − ξ
p
0

≥ |(N(t, s)f)(x)|pe−pϕ(t−s) exp(−pΘ(t − s)
(|x| + R + ξ+

2

(t − s))2

4κ
0
(t − s)2(p − 1)

)μt(BR) − ξ
p
0

,

where ϕ = 1 + ξ+
1

. By the tightness of the family {μt : t ∈ I} we can fix R > 0 such that μt(BR) ≥ 2−p for any
t ≥ s and, from the previous chain of inequalities, we conclude that

|(N(t, s)f)(x)|p ≤ 2p(C̃(t − s))pφpΛ(t−s)(x)(‖f‖
p
Lp(ℝd ,μs)

+ ξ p
0

), (4.23)

where

Λ(r) = exp( Θ(r)
2κ

0
r2(p − 1)

), C̃(r) = exp(ϕr + Θ(r)
(ξ+

2

r + R)2

2κ
0
r2(p − 1)

).

Now, using the evolution law and again (4.16), we can write

|(N(t, s)f)(x)|p =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(N(t, t + s

2

)N(
t + s
2

, s))(x)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

p

≤ [(G(t, t + s
2

)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
N(

t + s
2

, s)f
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

p
)(y) + ξ p

0

]

× exp(pϕ t − s
2

+ pΘ( t − s
2

)
(2|x − y| + ξ+

2

(t − s))2

4κ
0
(t − s)2(p − 1)

) (4.24)

for any y ∈ ℝd. From (2.2) and (4.23) we obtain

(G(t, t + s
2

)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
N(

t + s
2

, s)f
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

p
)(y) ≤ 2p(C̃( t − s

2

))
p
(‖f‖pLp(ℝd ,μs) + ξ

p
0

)(G(t, t + s
2

)φpΛ(t−s)/2)(y)

≤ 2p(C̃( t − s
2

))
p
(‖f‖pLp(ℝd ,μs) + ξ

p
0

)M(t−s)/2,pΛ(t−s)/2. (4.25)

From (4.24), (4.25), choosing y = x in the exponential term, we get

|(N(t, s)f)(x)| ≤ [2C̃( t − s
2

)(‖f‖Lp(ℝd ,μs) + ξ0)M
1/p
(t−s)/2,pΛ(t−s)/2 + ξ0] exp(ϕ

t − s
2

+ Θ(
t − s
2

)
(ξ+

2

)2

4κ
0
(p − 1))

and (4.21) follows with

c
5
(r) = 2C̃( r

2

)M1/p
r/2,pΛr/2 exp[(1 + ξ

+
1

)
r
2

+ Θ(
r
2

)(ξ+
2

)2(4κ
0
(p − 1))−1],

c
6
(r) = (2C̃( r

2

)M1/p
r/2,pΛr/2 + 1) exp[(1 + ξ

+
1

)
r
2

+ Θ(
r
2

)(ξ+
2

)2(4κ
0
(p − 1))−1].
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Step 2. We fix t > s, f ∈ C1b(ℝ
d). By Theorem 3.2,N(t, s)f ∈ C1b(ℝ

d) and, by Step 1,
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
N(

t + s
2

, s)f
󵄩󵄩󵄩󵄩󵄩󵄩󵄩∞
≤ c

5
(
t − s
2

)‖f‖Lp(ℝd ,μs) + c6(
t − s
2

)ξ
0
.

Hence, from (4.1) we get

√ t − s
2

‖∇xN(t, s)f‖∞ ≤ C̃(t−s)/2[c5(
t − s
2

)‖f‖Lp(ℝd ,μs) + c6(
t − s
2

)ξ
0
+
t − s
2

ξ
0
+ ξ

0
].

Taking T = t, estimate (4.22) followswith c
7
(r) = √2r−1/2C̃r/2c5( r

2

) and c
8
(r) = C̃r/2[c6( r

2

)√ 2

r +√
r
2

+√ 2

r ].

5 Stability of the null solution
In this section we study the stability of the null solution to problem (1.2) both in the Cb- and Lp-settings. For
this reason, we assume that ψ( ⋅ , ⋅ , 0, 0) = 0.

Theorem 5.1. The following properties are satisfied.
(i) Let Hypotheses 2.1, 4.3 (i)–(iii) hold true. Further, suppose that the constant ωp = ξ1 + (ξ+

2

)2(4κ
0
(p − 1))−1

is negative, where ξ
1
and ξ

2
are defined in Hypothesis 4.3 (ii). Then, for any p ≥ p

0
, there exists a positive

constant Kp such that, for any s ∈ I, f ∈ Lp(ℝd , μs) and j = 0, 1,

‖DjxN(t, s)f‖Lp(ℝd ,μt) ≤ K
j
peωp(t−s)‖f‖Lp(ℝd ,μs), t > s + j. (5.1)

(ii) Suppose that the assumptions of Theorem 3.6 are satisfied. Further, assume that Hypotheses 4.3 (i)–(iii)
hold with ξ

1
< 0. Then (5.1) holds true for any f ∈ Cb(ℝd) with p = +∞ and ωp and Kp being replaced,

respectively, by ξ
1
and C

1
e−ξ1 .

Proof. (i) Estimate (5.1) can be obtained arguing as in the proof of Theorem 4.5, where now p(t) = p for any
t ≥ s. As far as the gradient ofN(t, s)f is concerned, we fix t > s + 1 and observe that

N(t, s)f = N(t, t − 1)N(t − 1, s)f .

Hence, from (4.1) we obtain

‖∇xN(t, s)f‖Lp(ℝd ,μt) ≤ C1‖N(t − 1, s)f‖Lp(ℝd ,μt−1) ≤ Kpe
ωp(t−s)‖f‖Lp(ℝd ,μs),

where Kp = C1e−ωp .
(ii) The assertion follows easily letting p tend to +∞ in (5.1).

6 Examples
Here, we exhibit some classes of nonautonomous elliptic operators and some classes of nonlinear functions

ψ which satisfy the assumptions of this paper.

Throughout this section, we fix a right-halfline I and assume that {A(t) : t ∈ I} is defined by (1.1) with

qij(t, x) = (1 + |x|2)mq0ij(t), bi(t, x) = −xib(t)(1 + |x|2)r , (t, x) ∈ I × ℝd ,

for any i, j = 1, . . . , d, where r > m, the function b ∈ Cα/2
loc

(I) is bounded with positive infimum b
0
and q0ij(t)

are the entries of a symmetric and positive definite matrix Q0(t), for any t ∈ I, which satisfies the estimate

⟨Q0(t)ξ, ξ⟩ ≥ λ
0
for any t ∈ I, ξ ∈ ∂B(0, 1) ⊂ ℝd and some positive constant λ

0
. Then Hypotheses 2.1 are

satisfied with φ(x) = 1 + |x|2 for any x ∈ ℝd.

Example 6.1 (Local existence and regularity). Fix T > s ∈ I and let us consider as nonlinear term the function

ψ : [s, T] × ℝd × ℝ × ℝd → ℝ defined by

ψ(t, x, u, v) = −ϕ(t)g(x)u(1 + |v|2)α , t ∈ [s, T], x, v ∈ ℝd , u ∈ ℝ.
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Here, ϕ : [s, T] → ℝ and g : ℝd → ℝ are bounded and continuous functions with positive infimum,

|ϕ(t)| ≤ M
0
(t − s)η

for any t ∈ [s, T] and some positive constants M
0
and η, and α ∈ (0, η + 1). We claim that ψ satisfies Hypo-

theses 3.1 so that Theorem 3.2 can be applied to deduce that for any f ∈ Cb(ℝd) there exists a unique local
mild solution uf to the Cauchy problem (1.2) with these choices of ψ and A. Hypothesis 3.1 (ii) is trivially

satisfied. To prove Hypothesis 3.1 (i), we fix R > 1, u
1
, u

2
∈ [−R, R] and v

1
, v

2
∈ B(0, R) ⊂ ℝd. Then, for any

t ∈ (s, (s + 1) ∧ T] and x ∈ ℝd, we can estimate

|ψ(t, x, u
1
, (t − s)−

1

2 v
1
) − ψ(t, x, u

2
, (t − s)−

1

2 v
2
)|

= ϕ(t)g(x)|u
1
(1 + (t − s)−1|v

1
|2)α − u

2
(1 + (t − s)−1|v

2
|2)α|

≤ ‖g‖∞ϕ(t){(1 + (t − s)−1R2)α|u1 − u2| + R|(1 + (t − s)−1|v1|2)α − (1 + (t − s)−1|v2|2)α|}
≤ C‖g‖∞(t − s)η−α{(1 + R2)α|u1 − u2| + R2(1 ∨ (1 + R2)α−1)|v1 − v2|}

for some positive constant C, independent of t, x, uj and vj (j = 1, 2). Hence, Hypothesis 3.1 (i) is satisfied
with β = α − η and

LR = C‖g‖∞max{(1 + R2)α , R2(1 ∨ (1 + R2)α−1)}.

If, in addition, g is γ- Hölder continuous for some γ ∈ (0, 1) and 2α − 2η + γ < 2, then, by Corollary 3.3, uf is
actually a classical solution to the Cauchy problem (1.2).

Example 6.2 (Global existence and stability). Fix s ∈ I and let ψ : [s, +∞) × ℝd × ℝ × ℝd → ℝ be the func-
tion defined by

ψ(t, x, u, v) = ϕ(t)g(x)(−h(u) + χ(v)), t ≥ s, x, v ∈ ℝd , u ∈ ℝ,

where ϕ ∈ Cb((s, +∞)) has positive infimum ϕ
0
and g ∈ Cγb(ℝ

d), for some γ ∈ (0, 1), has positive infimum

g
0
. The function h : ℝ → ℝ is nonnegative, locally Lipschitz continuous in ℝ and satisfies the conditions

h(0) = 0 and uh(u) ≥ γ
1
u2 − γ

0
|u| for some positive constants γ

0
and γ

1
. Finally, the function χ : ℝd → ℝ is

Lipschitz continuous and vanishes at 0. As it is easily seen, ψ satisfies Hypotheses 3.5, condition (3.9) and,

clearly, ψ( ⋅ , ⋅ , 0, 0) is a bounded function. Moreover, if we take φ̃(x) = 1 + |x|2 for any x ∈ ℝd, then also the
condition Aφ̃ + k

1
|∇φ̃| ≤ aφ̃ in I × ℝd is satisfied with some suitable positive constants a and k

1
. Hence, by

Theorem 3.6, problem (1.2) admits a unique global classical solution defined in the whole [s, T] × ℝd.
If h is globally Lipschitz continuous, then ψ satisfies Hypotheses 4.3 (i) with

ξ
0
= ‖ϕ‖∞‖g‖∞γ0, ξ

1
= −ϕ

0
g
0
γ
1
, ξ

2
= [χ]

Lip(ℝd)‖ϕ‖∞‖g‖∞.

For any σ > max{m − 1, 0}, the function φ̃ : ℝd → ℝ, defined by φ̃(x) = (1 + |x|2)σ for any x ∈ ℝd, satisfies
Hypotheses 4.3 (ii)–(iii) for some suitable locally bounded functions a, k

1
and Cj (j = 0, 1, 2). Hence, Theo-

rem 5.1 can be applied to deduce that, if

−ϕ
0
g
0
γ
1
+ [s]2

Lip(ℝd)‖ϕ‖
2

∞‖g‖2∞(4λ0(p − 1))−1 < 0,

then the functions t 󳨃→ ‖uf (t, ⋅ )‖Lp(ℝd ,μt) and t 󳨃→ ‖∇xuf (t, ⋅ )‖Lp(ℝd ,μt) exponentially decay to zero as t → +∞
for any f ∈ Lp(ℝd , μs) and p ≥ p0, where λ0 is the constant introduced at the beginning of this section. The
same result holds for any f ∈ Cb(ℝd) if we replace the Lp(ℝd , μt)-norm by the L∞-norm.

Example 6.3 (Summability improving properties). We take the same function ψ as in Example 6.2. In view of

Remark 4.4, we assume that the diffusion coefficients are independent of x. Since ⟨∇xb(t, x)ξ, ξ⟩ ≤ −b0|ξ|2

for any t ∈ I and x, ξ ∈ ℝd, and b
0
is positive, by [4, Theorem 3.3] Hypothesis 4.3 (iv) is satisfied. Then, by

Theorem 4.5, estimates (4.4) and (4.5) are satisfied.

If, in addition, the power r in the drift coefficients is positive, then (4.12) holds true, by Remark 4.12.

Indeed, in such a case we can estimate ⟨b(t, x), x⟩ = −b(t)|x|2(1 + |x|2)r ≤ −b
0
|x|2(1 + |x|2)r ≤ −b

0
|x|2+2r for

any t ∈ I and x ∈ ℝd, so that, by Theorem 4.13, the nonlinear evolution operator N(t, s) satisfies estimates

(4.21) and (4.22).
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A Technical results
Proposition A.1. Let Hypotheses 2.1 hold and let g ∈ C((a, b] × ℝd) satisfy

[g]γ,∞ := sup

r∈(a,b)
(r − a)γ‖g(r, ⋅ )‖∞ < +∞

for some γ ∈ [0, 1) and some I ∋ a < b. Then the function z : [a, b] × ℝd → ℝ, defined by

z(t, x) :=
t

∫
a

(G(t, r)g(r, ⋅ ))(x) dr, t ∈ [a, b], x ∈ ℝd ,

belongs to Cb([a, b] × ℝd) ∩ C0,1+θ((a, b] × ℝd) for any θ ∈ (0, 1),

‖z‖∞ ≤
(b − a)1−γ

1 − γ
[g]γ,∞, ‖∇xz(t, ⋅ )‖∞ ≤ cγ,a,b(t − a)

1

2

−γ[g]γ,∞ (A.1)

and
‖∇xz(t, ⋅ )‖Cθ(BR) ≤ CR[g]γ,∞(t − a)

1−2γ−θ
2

(A.2)

for any t ∈ (a, b], R > 0 and some positive constants cγ,a,b and CR. In particular, if γ ≤ 1

2

, then ∇xz is bounded
in (a, b] × ℝd.

Finally, if [g]γ,θ,R := supt∈(a,b](t − a)γ‖g(t, ⋅ )‖Cθb(BR) < +∞ for some θ ∈ (0, 1) and any R > 0, then one has
z ∈ C0,2+θ

loc

((a, b] × ℝd) ∩ C1,2((a, b] × ℝd). Moreover,

‖z(t, ⋅ )‖C2b(BR) ≤ c(t − a)
θ
2

−γ[g]γ,θ,R+1, t ∈ (a, b], (A.3)

and

‖z(t, ⋅ )‖C2+ρb (BR)
≤ c(t − a)

θ−ρ
2

−γ[g]γ,θ,R+1, t ∈ (a, b], (A.4)

where ρ = α if θ > α, whereas ρ can be arbitrarily fixed in (0, θ) otherwise

Proof. Throughout the proof, we will make use of [5, Proposition 2.7], where it has been shown that,

for any I ∋ a < b, R > 0, η ∈ (0, 1] and β ∈ [η, 2 + α], there exist positive constants Cβ = Cβ(a, b, R) and
Cη,β = Cη,β(a, b, R) such that for any f ∈ Cb(ℝd) ∩ C

η
loc

(ℝd),

‖G(t, s)f‖Cβ(BR) ≤
{
{
{

Cβ(t − s)−
β
2 ‖f‖∞,

Cη,β(t − s)−
β−η
2 ‖f‖Cη(BR+1),

a ≤ s < t ≤ b. (A.5)

To begin with, we observe that, for any t ∈ (a, b] and x ∈ ℝd, the function r 󳨃→ (G(t, r)g(r, ⋅ ))(x) is mea-

surable in (a, t]. If g is bounded and uniformly continuous in ℝd+1, this is clear. Indeed, as it has been
recalled in Section 2, the function (t, s, x) 󳨃→ (G(t, s)f)(x) is continuous in {(t, s, x) ∈ I × I × ℝd : t ≥ s} for any
f ∈ Cb(ℝd). Hence, taking (1.3) into account and adding and subtracting (G(t, r)g(r0, ⋅ ))(x), we can estimate

|(G(t, r)g(r, ⋅ ))(x) − (G(t, r
0
)g(r

0
, ⋅ ))(x

0
)| ≤ ‖g(r, ⋅ ) − g(r

0
, ⋅ )‖∞ + |(G(t, r)g(r0, ⋅ ))(x) − (G(t, r0)g(r0, ⋅ ))(x0)|

for any (r, x), (r
0
, x

0
) ∈ [a, t] × ℝd, and the last side of the previous chain of inequalities vanishes as (r, x)

tends to (r
0
, x

0
).

If the function g is as in the statement of the proposition, thenwe can approximate it by a sequence (gn) of
boundedanduniformly continuous functions inℝd+1which converge to g pointwise in (a, b) × ℝd and satisfy
‖gn(r, ⋅ )‖ ≤ ‖g(r, ⋅ )‖∞ for any r ∈ (a, b).¹ Since the sequence (gn) is bounded and pointwise converges to g
in (a, t] × ℝd, by [9, Proposition3.1 (i)] (G(t, ⋅ )gn(r, ⋅ ))(x) converges to (G(t, ⋅ )g(r, ⋅ ))(x)as n → +∞pointwise

in (a, t]. Hence, the function r 󳨃→ (G(t, r)g(r, ⋅ ))(x) is measurable in (a, t].

1 This canbedone, for instance, setting gn(t, x) = ϑn(t)(g(t, ⋅ ) ⋆ ρn)(x) for any (t, x) ∈ ℝd+1, n ∈ ℕ,where g : (a, +∞) × ℝd → ℝ
equals g in (a, b) × ℝd and g(t, ⋅ ) = g(b, ⋅ ) for any t > b, (ϑn) ⊂ C∞(ℝ) is a sequence of smooth functions such that 𝟙[a+2/n,+∞) ≤
ϑn ≤ 𝟙[a+1/n,+∞) for any n ∈ ℕ and “⋆” denotes convolution with respect to the spatial variables.



250 | D. Addona, L. Angiuli and L. Lorenzi, Hypercontractivity, supercontractivity, ultraboundedness

Using again (1.3), we obtain ‖G(t, r)g(r, ⋅ )‖∞ ≤ ‖g(r, ⋅ )‖∞ ≤ (r − a)−γ[g]γ,∞ for any r ∈ (a, t]. It thus fol-
lows that z is bounded and the first estimate in (A.1) follows.

Proving that z is continuous in [a, b] × ℝd is an easy task, based on estimate (1.3) and the dominated

convergence theorem. Hence, the details are omitted.

Fix θ ∈ (0, 1). The first estimate in (A.5) with β = 1 + θ and the assumptions on g allow to differenti-

ate z with respect to xj (j = 1, . . . , d), under the integral sign, and obtain that Djz(t, ⋅ ) is locally θ-Hölder
continuous inℝd, uniformly with respect to t ∈ (a, b), and

‖Djz(t, ⋅ )‖Cθ(BR) ≤ CR[g]γ,∞(t − a)
1−2γ−θ

2
, t ∈ (a, b]. (A.6)

To conclude that Djz is continuous in (a, b] × ℝd, it suffices to prove that, for any x ∈ ℝd, the function

Djz( ⋅ , x) is continuous in (a, b]. For this purpose, we apply an interpolation argument. We fix R > 0 such

that x ∈ BR. Applying the well-known interpolation estimate

‖f‖C1(BR) ≤ K‖f‖
θ/(1+θ)
C(BR)
‖f‖1/(1+θ)C1+θ(BR)

with f = z(t, ⋅ ) − z(t
0
, ⋅ ) and t, t

0
∈ (a, b], from the continuity of z in [a, b] × ℝd and the local boundedness

in (a, b] of the function t 󳨃→ ‖f(t, ⋅ )‖C1+θ(BR), we conclude that the function Djz( ⋅ , x) is continuous in (a, b].
Hence, z ∈ C0,1+θ

loc

((a, b] × ℝd). Estimate (A.2) follows from (A.6). Further, estimate (2.4) and the assumption

on g imply that

|Djz(t, x)| ≤ C0[g]γ,∞
t

∫
a

(r − a)−γ(1 + (t − r)−
1

2 ) dr = C󸀠γ,a,b(t − a)
1

2

−γ[g]γ,∞

for any (t, x) ∈ (a, b] × ℝd, whence the second estimate in (A.1) follows at once.

Let us now assume that supt∈(a,b)(t − a)γ‖g(t, ⋅ )‖Cθb(BR) < +∞ for any R > 0. Arguing as above and taking
the second estimate in (A.5) with β = 2 (resp. β = 2 + α) into account, we can show that z(t, ⋅ ) ∈ C2

loc

(ℝd)
(resp. z(t, ⋅ ) ∈ C2+α

loc

(ℝd)) for any t ∈ (a, b] and (A.3) (resp. (A.4)) holds true. Applying the interpolation

inequality

‖φ‖C2(BR) ≤ C‖φ‖
θ/(2+θ)
∞ ‖φ‖2/(2+θ)

C2+θ(BR)

withφ = z(t, ⋅ ) − z(t
0
, ⋅ )wededuce that the second-order spatial derivatives of z are continuous in (a, b] × BR

and, hence, in (a, b] × ℝd due to the arbitrariness of R > 0.
Finally, to prove the differentiability of z, we introduce the sequence (zn), where

zn(t, x) =
t− 1n

∫
a

(G(t, r)g(r, ⋅ ))(x) dr, t ∈ [a + 1/n, b], x ∈ ℝd , n ∈ ℕ.

As it is immediately seen, zn converges to z, locally uniformly in (a, b] × ℝd and each function zn is differen-
tiable in [a + 1/n, b] × ℝd with respect to t and

Dtzn(t, x) =
t− 1n

∫
a

(A(t)G(t, r)g(r, ⋅ ))(x) dr + (G(t, t − 1n)
g(t − 1n

, ⋅ ))(x)

for such values of (t, x). Since ‖A(t)G(t, r)g(r, ⋅ )‖Cb(BR) ≤ CR[g]γ,∞(t − r)θ/2−γ(r − a)−γ for any r ∈ (a, t), and
g(t − 1

n , ⋅ ) converges to g(t, ⋅ ) locally uniformly inℝd, by [9, Proposition 3.6] and the dominated convergence

theorem, we conclude that Dtzn converges locally uniformly in (a, b] × ℝd toAz + g. Thus, we conclude that
z is continuously differentiable in (a, b] × ℝd and, therein, Dtz = Az + g.

Lemma A.2. Let J be an interval and let g ∈ C(J × ℝd) be such that g(t, ⋅ ) is bounded in ℝd for any t ∈ J. Then
the function t 󳨃→ ‖g(t, ⋅ )‖∞ is measurable in J.

Proof. To begin with, we observe that for any n ∈ ℕ the function t 󳨃→ ‖g(t, ⋅ )‖C(Bn) is continuous in J. This
is a straightforward consequence of the uniform continuity of g in J

0
× Bn for any bounded interval J0 com-

pactly embedded into J. To complete the proof, it suffices to show that zn(t) := ‖g(t, ⋅ )‖C(Bn) converges to
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‖g(t, ⋅ )‖∞ for any t ∈ J. Clearly, for any fixed t ∈ J, the sequence (zn(t)) is increasing and is bounded from

above by ‖g(t, ⋅ )‖∞. To prove that (zn(t)) converges to ‖g(t, ⋅ )‖∞, we fix a sequence (xn) ⊂ ℝd such that

|g(t, xn)| tends to ‖g(t, ⋅ )‖∞ as n → +∞. For any n ∈ ℕ, let kn ∈ ℕ be such that xn ∈ Bkn . Without loss of

generality, we can assume that the sequence (kn) is increasing. Then zkn (t) = ‖g(t, ⋅ )‖C(Bkn ) ≥ |g(t, xn)| for
any n ∈ ℕ. Hence, the sequence (zkn (t)) converges to ‖g(t, ⋅ )‖∞ and this is enough to conclude that the whole

sequence (zn(t)) converges to ‖g(t, ⋅ )‖∞ as n → +∞.

Finally, we prove some interior Lp-estimates.

Proposition A.3. Let Ω ⊂ ℝd be a bounded open set and let u ∈ C1,2((s, T) × Ω) solve the equation Dtu = Au
in (s, T) × Ω. Then, for any x

0
∈ Ω and any radius R

1
> 0 such that BR

1

(x
0
) ⋐ Ω, there exists a positive constant

c̃ = c̃(R
1
, x

0
, s, T) such that

(t − s)‖u(t, ⋅ )‖W2,p(BR
1

(x
0
)) + √t − s‖u(t, ⋅ )‖W1,p(BR

1

(x
0
)) ≤ c̃ sup

r∈(s,T)
‖u(r, ⋅ )‖Lp(Ω).

Proof. Throughout the proof, we denote by c a positive constant, independent of n and u, which may vary

from line to line.

Let us fix 0 < R
1
< R

2
such that BR

2

(x
0
) ⊂ Ω and a sequence of cut-off functions (ϑn) ⊂ C∞c (Ω) such that

𝟙Brn (x0) ≤ ϑn ≤ 𝟙Brn+1 (x0) and ‖ϑn‖Ckb(Ω) ≤ 2
knc for any n ∈ ℕ ∪ {0} and k = 0, 1, 2, 3, where

rn := 2R1 − R2 + (2 − 2−n)(R2 − R1).

Since the function un := ϑnu solves the equation Dtun = Aun + gn in (s, T) × Brn+1 (x0), where

gn = −uAϑn − ⟨Q∇xu, ∇ϑn⟩,

we can write

un(t, x) = (GD
n+1(t, s)ϑnu(s, ⋅ ))(x) +

t

∫
s

(GD
n+1(t, σ)gn(σ, ⋅ ))(x) dσ, (A.7)

where GD
n+1(t, s) is the evolution operator associated to the realization of the operatorA in Lp(Brn+1 (x0))with

homogeneous Dirichlet boundary conditions. It is well known that

‖GD(t, r)ψ‖W2,p(Brn+1 (x0)) ≤ c(t − r)
−1+ α

2 ‖ψ‖Wα,p(Brn+1 (x0))

for any α ∈ (0, 1), ψ ∈ Wα,p(Brn+1 (x0)) and s ≤ r < t ≤ T. Since gn(σ, ⋅ ) ∈ Wα,p(Brn+1 (x0)) for any σ ∈ (s, t),
from (A.7) we obtain

(t − s)‖u(t, ⋅ )‖W2,p(Brn (x0)) ≤ c‖u(s, ⋅ )‖Lp(Brn+1 (x0)) + c
t

∫
s

(t − σ)−1+
α
2 ‖gn(σ, ⋅ )‖Wα,p(Brn+1 (x0)) dσ.

Now, for any n ∈ ℕ we set ζn := supt∈(s,T)(t − s)‖u(t, ⋅ )‖W2,p(Brn (x0)) and estimate the function under the inte-

gral sign. At first, we note that

‖gn(σ, ⋅ )‖Wα,p(Brn+1 (x0)) ≤ c‖ϑn‖C2+αb (Brn+1 (x0))
‖u(σ, ⋅ )‖W1+α,p(Brn+1 (x0)).

By interpolation and using Young’s inequalities we obtain, for any σ ∈ (s, t),

‖u(σ, ⋅ )‖W1,p(Brn+1 (x0)) ≤ c(σ − s)
− 1
2 ‖u(σ, ⋅ )‖

1

2

Lp(Brn+1 (x0))
√ζn+1

≤ (σ − s)−
1

2 (cε−1‖u(σ, ⋅ )‖Lp(Ω) + εζn+1)

and

‖∇xu(σ, ⋅ )‖Wα,p(Brn+1 (x0)) ≤ (σ − s)
− 1+α

2 (cε−
1+α
1−α ‖u(σ, ⋅ )‖Lp(Ω) + εζn+1).

Collecting the above estimates together, we get

ζn ≤ 8ncεζn+1 + c sup

r∈(s,T)
‖u(r, ⋅ )‖Lp(Ω)(1 + 8nε−(1+α)/(1−α)).



252 | D. Addona, L. Angiuli and L. Lorenzi, Hypercontractivity, supercontractivity, ultraboundedness

Now we fix 0 < η < 64−1/(1+α) and ε = 8−nc−1η. Multiplying both the sides of the previous inequality by ηn

and summing up from 0 to N yields

ζ
0
− ηN+1ζN+1 ≤ c sup

r∈(s,T)
‖u(r, ⋅ )‖Lp(Ω). (A.8)

Since {ζn}n∈ℕ is bounded, taking the limit as N → +∞ on the left-hand side of (A.8) we conclude that

(t − s)‖u(t, ⋅ )‖W2,p(BR
1

(x
0
)) ≤ c sup

r∈(s,T)
‖u(r, ⋅ )‖Lp(Ω)

for any t ∈ (s, T). An interpolation argument gives ‖u(t, ⋅ )‖W1,p(BR
1

(x
0
)) ≤ c(t − s)−1/2 supr∈(s,T) ‖u(r, ⋅ )‖Lp(Ω) for

any t ∈ (s, T), and this completes the proof.
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