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Abstract: We study the Cauchy problem associated to a family of nonautonomous semilinear equations in
the space of bounded and continuous functions over R? and in LP-spaces with respect to tight evolution
systems of measures. Here, the linear part of the equation is a nonautonomous second-order elliptic operator
with unbounded coefficients defined in I x R?, (I being a right-halfline). To the above Cauchy problem we
associate a nonlinear evolution operator, which we study in detail, proving some summability improving
properties. We also study the stability of the null solution to the Cauchy problem.
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1 Introduction

This paper is devoted to continuing the analysis started in [5]. We consider a family of linear second-order
differential operators A(t) acting on smooth functions ¢ as

d d
ABNH0) = Y gij(t, )DyE0) + Y. bi(t, )Di{(x), tel, x e RY, (1.1)

ij=1 i=1

where [ is either an open right halfline or the whole RR. Then, given T > s € I, we are interested in studying
the nonlinear Cauchy problem

{ Deu(t, x) = (A@OU)(t, X) + Pult,x), (t,x) € (s, TIxRY, 1.2)

u(s, x) = f(x), x € RY,

where 1, (t, x) = P(t, x, u(t, x), Vyu(t, x)). We assume that the coefficients g;; and b; (i,j=1,..., d), pos-
sibly unbounded, are smooth enough, the diffusion matrix Q = [gjjli j-1,...,a is uniformly elliptic and there
exists a Lyapunov function ¢ for A(t) (see Hypothesis 2.1 (iii)). These assumptions yield that the linear part
A(t) generates a linear evolution operator {G(t,s) : t >s € I} in C »(R%). More precisely, for every f € C »(RY)
and s ¢ I, the function G(-, s)f belongs to Cp([s, +00) x RY) n CL-2((s, +00) x RY), it is the unique bounded
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classical solution of the Cauchy problem (1.2), with i, = 0, and satisfies the estimate
IG(t, $)flco < Iflc> t>s€l, feCpRY. (1.3)

We refer the reader to [9] for the construction of the evolution operator G(t, s) and for further details.
Classical arguments can be adapted to our case to prove the existence of a unique local mild solution ug
of problem (1.2) for any f € Cp(R%), i.e., a function u : [s, 7] x RY — R (for some 7 > s) such that
t
u(t, x) = (G(t, $)f)(x) + J(G(t, DYu(r, )X dr, tels, 1], x e R (1.4)
S
Under reasonable assumptions such a mild solution uy is classical, defined in the whole [s, +o00) and
satisfies the condition

lufllco + sup Vt—s||Vxug(t, - )l < +0co
te(s,T)

forany T > s. Hence, setting N(t, s)f = uy(t, -) for any t > s we deduce that N(¢, s) maps Cp(RY) into C})(le)
and, from the uniqueness of the solution to (1.2), it follows that it satisfies the evolution law

N(t, s)f = N(¢t, r)N(r, s)f
foranyr € (s, t) and f € Cp(R?).

Asin the linear case we are also interested to set problem (1.2) in an L?-context. However, as it is already
known from the linear case, the most natural LP-setting where problems with unbounded coefficients can
be studied is that related to the so-called evolution systems of measures [6], that is one-parameter families of
Borel probability measures {y; : t € I} such that

j G(t, s)f dye = deys, feCy®Y), t>sel. (1.5)
R4 R4

When they exist, evolution families of measures are in general infinitely many, even the tight ones,
where, roughly speaking, tight means that all the measures of the family are essentially concentrated on
the same large ball (see Section 2 for a rigorous definition of tightness). Under additional assumptions on
the coefficients of the operator .A(t) (see Section 2), there exists a unique tight evolution system of measures
{u: : t € I}, which has the peculiarity to be the unique system related to the asymptotic behavior of G(¢, s)
as t tends to +co. We also mention that, typically, even if for ¢ + s, the measures u; and u; are equivalent
(being equivalent to the restriction of the Lebesgue measure to the Borel o-algebra in RY), the corresponding
LP-spaces differ.

Formula (1.5) and the density of C;(RY) in LP(R?, us) allow to extend G(t, s) to a contraction from
LP(RY, us) to LP(RY, ;) forany t > sand any p € [1, +00) and to prove very nice properties of G(t, s) in these
spaces.

In view of these facts, it is significant to extend N(t, s) to an operator from L? (R, us) to LP(R?, p,) for
any I > s < t. This can be done if p > po (see Hypothesis 2.1 (v)), ¥(t, x, -, -) is Lipschitz continuous in R4+!
uniformly with respect to (¢, x) € (s, T] x R? and, in addition, SUD/e(s, 7] Vt=s|y(t, -, 0, O)llrr (e, ) < +00.In
particular, each operator N(t, s) is continuous from L?(R9, us) to WHP(RY, uy).

We stress that the first condition on 1) may seem too restrictive, but in fact it is not. Indeed, the Sobolev
embedding theorems fail to hold, in general, when the Lebesgue measure is replaced by any of the mea-
sures U;. This can be easily seen in the particular case of the one-dimensional Ornstein—Uhlenbeck oper-
ator, where the evolution system of measures is replaced by a time-independent measure u (the so-called
invariant measure), which is the Gaussian centered at zero with covariance 1/2. For any € > 0, the function
x - exp(2(2p + £)1|x|?) belongs to W*P (R, u) for any k € N but it does not belong to LP*¢(R, p).

Under the previous assumptions, for any f € L?(R?, us), N(-, s) can be identified with the unique mild
solution to problem (1.2) which belongs to LP((s, T) x R%, u) n Wg’l(] x R?, ), for any J e (s, T}, such that
us(t,-) € WP (R4, U¢) for almost every ¢t € (s, T]. Here, u is the unique Borel measure on the o-algebra of all
the Borel subsets of I x R? which extends the map defined on the product of a Borel set A c I and a Borel set
B c R by

U(A x B) := jyt(B) dt.
A
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Since, as it has been stressed, in this context the Sobolev embedding theorems fail to hold in general,
the summability improving properties of the nonlinear evolution operator N(¢, s) are not immediate and true
in all the cases. For this reason in Section 4 we investigate properties such as hypercontractivity, supercon-
tractivity, ultraboundedness of the evolution operator N(t, s) and its spatial gradient. Differently from [5],
where ¥ = Y(t, u) and the hypercontractivity of N(¢, s) is proved assuming 1(t, 0) = O for any ¢ > s, here
we consider a more general case. More precisely we assume that there exist &y, > 0 and &7, & € R such that
up(t, x, u,v) < &lul + & u? + &lullv|forany t > s, x, v € RY, u € R. Under some other technical assumptions
on the growth of the coefficients g;; and b; (i,j =1, ..., d) as [x| — +co, we show that as in the linear case,
(see [3, 4]), the hypercontractivity and the supercontractivity of N(t, s) and V,N(t, s) are related to some
logarithmic Sobolev inequalities with respect to the tight system {u; : t € I}. These estimates are the natural
counterpart of the Sobolev embedding theorems in the context of invariant measures and evolution systems
of measures.

For what concerns the ultraboundedness of N(t, s) and V,N(t, s) we first prove an Harnack-type estimate
which establishes a pointwise estimate of [N(t, s)f|P in terms of G(t, s)|f|” forany f € C,(R9),p > poand t > s.
This estimate, together with the evolution law and the ultraboundedness of G(¢, s), allow us to conclude that,
foranyf € LP(RY, Us) and any t > s, the function N(¢, s)f belongs to Who(RY, U¢) and to prove an estimate
of |N(t, S)ﬂlwl,oo(]Rd’Ht) in terms of IIﬂle(IRd,ys).

Finally, assuming that (¢, x, 0, 0) = O for every t € (s, +00) and x € R4, we prove that the trivial solution
to the Cauchy problem (1.2) is exponentially stable both in W'P(R?, y;) and in C}(R%). This means that
lug(t, - )lx < Cxe “x as t — +oo for some constants Cx > 0 and wy < 0, both when X = W"P(R, y;) and
X= C}, (RY). In the first case, the space X depends itself on t. We stress that, under sufficient conditions on the
coefficients of the operators A(t), which include their convergence at infinity, in [2, 11] it has been proved that
the measure u; weakly* converges to a measure u, which turns out the invariant measure of the operator A,
whose coefficients are the limit as ¢t — +oco of the coefficients of the operator A(¢). This gives more information
on the convergence to zero of [lug(t, - )llwir(re,y, at infinity. We refer the reader also to [12] for the case of
T-time periodic coefficients.

To get the exponential stability of the trivial solution in Cj(R9), differently from [5] where a nonauto-
nomous version of the principle of linearized stability is used and more restrictive assumptions on i are
required, we let p tend to +oo in the decay estimate of [|uf(t, - )l wv.r(re,y,), since all the constants appearing in
this estimate admit finite limit as p tends to +co. In particular, we stress that we do not need any additional
assumptions on the differentiability of ) but, on the other hand, we require that the mild solution uy of (1.2)
is actually classical.

Notations

For k > 0, by C’I;(]Rd ) we mean the space of the functions in C*(R?) which are bounded together with all their
derivatives up to the [k]-th order. C ’g(]Rd) is endowed with the norm
Mlesmay = Y, 1IDleo + Y. D]kt gay,
la|<[k] la=[k]

where [k] denotes the integer part of k. When k ¢ IN, we use the subscript “loc” to denote the space of all
f € CK(R?) such that the derivatives of order [k] are (k — [k])-H6lder continuous in any compact subset of R<.
Given an interval J, we denote by B(J x RY; Lip(R9*1)) and C%24(J x R?) (a € (0, 1)), respectively, the set of
all functions f: J x R? x R x R? — R such that f(¢, x, -, -) is Lipschitz continuous in R%*!, uniformly with
respect to (¢, x) € J x R4, and the usual parabolic Holder space. The subscript “loc” has the same meaning
as above.

We use the g,ymbols D.f, Dif and Dj;f to denote respectively the time derivative % and the spatial deriva-
tives §_>{,- and aj,-;x» foranyi,j=1,...,d. B

The open ball in R? centered at 0 with radius r > 0 and its closure are denoted by B, and B,, respectively.
For any measurable set A, contained in R or in R4, we denote by 14 the characteristic function of A. Finally,
we write A € B when A is compactly contained in B.
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2 Assumptions and preliminary results

Let {A(t) : t € I} be the family of linear second-order differential operators defined by (1.1).

Hypotheses 2.1. Our standing assumptions on the coefficients of the operators A(t) are as follows.
(i) The coefficients gj;, b; belong to cY21 (1« Rd) forany i,j = 1, ..., d and some a € (0, 1).

loc
(ii) For every (t,x) € I x R?, the matrix Q(t, x) = [gij(t, x)];j is symmetric and there exists a function

k:IxRY— R,
with positive infimum xg, such that

(Q(t, x)&, & = x(t, x)|&?

for any (¢, x) € I x R? and any ¢ € RY.
(iii) There exists a nonnegative function ¢ € C 2(RY), diverging to +co as |x| — +oo, such that

(ABP)(X) < a-cepx)

for any (¢, x) € I x R and some positive constants a and c.
(iv) There exists a locally bounded function p : I — R* such that

[Vxqij(t, X)| < p(t)x(t, x)

forany (t,x) e IxR?and anyi,j=1,...,d, where k is defined in (ii).
(v) There exists a function r : I x R — R such that

(Vxb(t, X)&, & < r(t, x)|&

forany & € R and (¢, x) € I x RY. Further, there exists po € (1, 2] such that

3 2
LOrKLA) @)

= t, -
+ 00 > 0p, sup <r( X) + Amin{po - 1, 1]

(t,x)eIxR4

Under Hypotheses 2.1 (i)—(iii) (actually even under weaker assumptions) it is possible to associate an evolu-
tion operator {G(t, s) : t > s € I} to the operator A(t) in Cp(IR9), as described in the Introduction. The function
G(-,-)f is continuous in {(s, t,x) e IxI x R? : s < t} and

(G(¢, HN(X) = jf(y)p(t,s,x, dy), Iss<t, xeR, (2.2)
IRd

where p(t, s, x, dy) are probability measures forany I 5 s < t, x, y € RY. This implies that

1G(&, AP < G(t, s)(If1P)

forany I > s < t, f € C,(RY and p > 1. Moreover, Hypotheses 2.1 (iv) and (v) yield the pointwise gradient
estimates

[(VxG(t, S)NOP < ePT 9 (G(t, s)IVIP)(x),  f € Ch(RY), (2.3)

CPeP(opre)t=s)(¢ — 5)~5 (G(t, 5)IfIP)(x), ifa, <O,

» T . (2.4)
Co(1 +(t=5)"2)(G(¢, s)IfIP)(x), otherwise,

|(VxG(t, NP < {

for any f € Cp(RY), t > s, x € RY, D € [po, +00), £ > 0 and some positive constants Co and C, where oy, is
given by (2.1), with p instead of po. We stress that the pointwise estimates (2.3) and (2.4) have been proved
with the constants Cy and C, also depending of p. Actually, these constants may be taken independent of p.
Indeed, consider for instance estimate (2.4). If p > po, then using the representation formula (2.2) we can



DE GRUYTER D. Addona, L. Angiuli and L. Lorenzi, Hypercontractivity, supercontractivity, ultraboundedness =— 229

estimate
IVxG(t, YP = (IVxG(t, $)P0) 30 < (Cho(L + (¢~ 5))Gt, 5)IfIP) o
p-ro P £z
<270 Cp (1+(t—5)"2)(G(t, s)IfiP*)P
P—pPo D 4
<270 Cp(1+(t-15)"2)G(t, s)IfIP

forany t > s € I and f € C,(R9), and, hence, estimate (2.4) holds true with a constant which can be taken
independent of p.

Remark 2.2. The case p =1 in estimate (2.3) is much more delicate and requires stronger assumptions.
Indeed, as [1] shows, the algebraic condition Dxgj; + Digjn + Djqin = 0 in I x R? forany i,j,he{1,...,d}
with i # j # h is a necessary condition for (2.3) (with p = 1) to hold. For this reason, if the diffusion coeffi-
cients are bounded and independent of x, then the pointwise gradient estimate (2.3) holds true also with
p = 1and 01 = ro, where r is the supremum over I x R9 of the function r in Hypothesis 2.1 (v).

Under Hypotheses 2.1 we can also associate an evolution system of measures {y; : t € I} with the opera-

tors A(t). Such a family of measures is tight, namely for every € > 0 there exists r > 0 such that us(R% \ B,) < &

for any s € I. The invariance property (1.5) and the density of C;(R?) in LP(RRY, us), s € I, allows to extend

G(t, s) to a contraction from LP(R9, us) to LP(R?, ;) for any t > s. As it has been stressed in the Introduction,

in general evolution systems of measures are infinitely many, but, under suitable assumptions, there exists

a unique tight evolution system of measures. This is, for instance, the case when Hypotheses 2.1 are satisfied

as well as the following two conditions:

(i) gij and b; belong to Cﬁ,/cz’““([a, +00) x RY) forany i,j = 1, ..., d and some a ¢ I. Moreover, g;; belongs
to Cyp([a, +00) x Br) and Dygjj, bj belong to Cp([a, +c0); LP(Bg)) for any i, j,k € {1,...,d}, R > 0 and
somep >d+ 2.

(ii) There exists a constant ¢ > 0 such that either |Q(t, x)| < c(1 + [x])@(x) and (b(t, x), x) < c(1 + |x|®)p(x)
for any (t, x) € [a, +00) x R4, or the diffusion coefficients are bounded in [a, +00) x R¥.

For more details and the proofs of the results that we have mentioned, we refer the reader to [9-11, 13].

3 The semilinear problem in a bounded time interval

GivenI > s < T, we are interested in studying the Cauchy problem (1.2) both in the case when f € C »(RY) and
in the case when f € LP(RY, us).

Hypotheses 3.1. Our standing assumptions on y are as follows.
(i) The function i : [s, T] x R? x R x R? — R is continuous. Moreover, there exists f € [0, 1) such that for
any R > 0 and some constant Lg > O

W(t, X, ur, (6= 8)"2ve) = (e, X, Uz, (=) 7o) < Lp(t - ) P(lur —ual +vi —val)  (3.1)
forany t € (s, T], x € R, uq, u, € [-R, R], v1, V> € Bg.
(ii) The function ¥(-, -, 0, 0) belongs to Cy([s, T] x R9).

Theorem 3.2. Under Hypotheses 2.1 and 3.1, for anyf € Cp(RY) there exist constants ro, 6 € (0, T — s] such
that, if f € Cp(R?) and |If - flleo < 7o, then the nonlinear Cauchy problem (1.2) admits a unique mild solution
us € Cp([s, s + 8] x RY) n C%1((s, s + 8] x RY) which satisfies the estimate
luglloo + SUPé Vit = s[Vxug(t, - )lleo < 2(1 +2Co + Co \/5)(||ﬂ|ch(1Rd) +28[Y(-, -, 0,0)lc,(is,s+61xre))s  (3.2)
te(s,s+6]
where Cy is the constant in (2.4). Moreover, forany R > 0,6 € (0, 1) and t € (s, s+6], uf(t, - ) belongs to C+9(Bp)
and there exists a positive constant Cg, r_s such that

140
sup (t—s)2 llug(t, licromyy < CR,T-sIflco-
te(s,s+6]
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Finally, ifg € Cp(RY) is such that ||g - flle < 7o, then

lur - uglloo + sup VE=SIVxug(t, -) = Vitg(t, lloo < 2(1 + Co + CoVO)If - gllco- (3.3)
te(s,s+6]
Proof. Even if the proof is quite standard, for the reader’s convenience we provide some details.
Fix f € Cp(R?). Let Ry > 0 be such that Ro/(1+Ko) > 8|/flles, Where Ko = Co(1+ VT — s) and Cy is the con-
stant in (2.4). Further, forany § € (0, T -s], let Ys be the setof all u € Cp([s, s + 6] x R?) n CO1((s, s + 6) x RY)
such that ully, = lullc,((s,s+61xRd) + SUP¢e(s,s+6] VE = SIVxU(E, -0 < +00.

Step 1. We prove that there exists § > 0 such that, for any f € C,(IR?) satisfying the condition

Ro

If = flleo 70 := 4+—4K0’

there exists a mild solution to problem (1.2) defined in the time interval [s, s + 6]. For this purpose, we con-
sider the operator T, defined by the right-hand side of (1.4) for any u € By, (Ro) (the ball of Y centered at zero
with radius Ry). Clearly, the function ¥, is continuousin (s, s + 8] x R? and 1, (t, - ) is bounded in R¢ for any
t € (s, s + 8]. Moreover, estimating [, (t, x)| < [P, (¢, x) — P(t, x, 0, 0)| + [P(t, x, 0, 0)| and taking (3.1) into
account, we can easily show that the function t — (t - s)P lpu(t, -)leo is bounded in (s, s + 6). Hence, Propo-
sition A.1 and estimates (1.3) and (2.4) show that I'(u) € Y5 for any t € (s, s + 6] and u € By,(Ro). To show
that, for a suitable § € (0, 1], I'is a 1/2-contraction in By, (Ry), we observe that, using again (3.1), it follows
that

Ihult, ) = Yy(t, oo < Lro(t = 8) Plu-vly,, te(s,s+6], (3.4)

for any u, v € By,(Ro), where Lg, is the constant in Hypothesis 3.1 (i). From this inequality and estimates
(1.3) and (2.4) we conclude that |T(u) - T(v)|ly, < ¢16*|lu - v|ly, for any u, v € By,(Ro), where c1, as the
forthcoming constants, is independent of 6 and u, if not otherwise specified. Hence, choosing & properly, we
can make I' a 1/2-contraction in By, (Ro).

It is also straightforward to see that I' maps By,(Ro) into itself, up to replacing § with a smaller value if
needed. It suffices to split I'(u) = (I'(u) — T'(0)) + I'(0), use the previous result and estimate

ITO)lly, < (1+ Co + Co \/g)llﬂloo +6(1+2Co+Co \/E)lll/J( 550, 0)llc, (s, TIxR) -
As a consequence, I has a unique fixed point in By, (Ry), which is a mild solution of (1.2) and satisfies (3.2).

Step 2. We prove the uniqueness of the mild solution uy. For this purpose, let ui, u, € Y5 be two mild
solutions. By Lemma A.2, the function r — h(r) := |uy(r, ) — u2(r, )lleo + Vr = SIVxu1(r, ) = Vxua (1, - o is
measurable in (s, s + §). Moreover, using (3.4), we easily deduce that

t
D)y (¢, -) = Dy (t, oo < C2(M) j(t -2 (r-s)Ph(r)dr (3.5)

forj=0,1,any ¢ € [s, s + 6], where M = max{[uilly,, luzly;}. Estimating vt — s with vt — r + +/r — s for any
r € (s, t), from (3.5), with j = 1, it follows that

t t
VE=s|Vxui(t, -) = Vxua(t, )l < c2(M) J(r —5)Ph(r) dr+cy(M) J(t — 1) = 5) 2 Pluy(r, )~ uz(r, o dr

t
+C2(M) j(t — 1) =) PIVus (r, ) = Voo (1, - lloo dr. (3.6)

Using (3.5), we estimate the last two integral terms in the right-hand side of (3.6), which we denote by J(t)
and J(t). Replacing (3.5), with j = 0, in J(t), we get
t
I(t) < c3(M)8F J(o - 5)Ph(o) do. (3.7)

S
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The same arguments show that J(t) can be estimated pointwisein [s, s + 6] by the right-hand side of (3.7),
with ¢3(M) being possibly replaced by a larger constant c,(M). Summing up, we have proved that

t
VEZSIVus(t, -) = Vet (t, - lleo < €5 (M)8LP J(a _ s)Ph(o) do. (.8)
From (3.5) and (3.8) we conclude that
t
h(t) < ce(M, 6) J(r -s)Ph(r)dr, te(s,s+6].

The generalized Gronwall lemma (see [7]) yields h(t) = O forany t € (s, s + 6), i.e., u; = up in (s, s + 8) x R4,

Step 3. We prove (3.2) and (3.3). Since uy = I'(0) + (T'(uf) - I'(0)) and T is a 1/2-contraction in By, (Ro), we
conclude that [luflly, < 2|IT(0)]ly, and (3.2) follows from the estimate on |T'(0)|ly, proved above. Estimate (3.3)
can be proved in the same way.

Step 4. We prove that ug(t,-) € C1*9(Bg) forany t € (s,s +6],R > 0, 6 € (0, 1), and

1+6
sup (t-5)2 Jlug(t, lerosg < €7lfloo
te(s,s+6]
for some constant c7, independent of f. For this purpose, we observe that the results in the previous steps
show that the function ¥, satisfies the estimate (¢t — s)P lpu(t, oo < csliflloo forany t € (s, s + 8], the constant
cg being independent of f. Applying Proposition A.1 and estimate (A.5), we complete the proof. O

Corollary 3.3. In addition to the assumption of Theorem 3.2 suppose that there exist § € [0, 1) and y € (0, 1)
such that 28 +y < 2 and

[W(t, X, u, (t = 5)7v) = (L, y, u, (t - )" 2v)| < Cr(t — ) Plx—y| (3.9)

foranyt e (s, T],x,y,v € Bg,u € [-R, R], any R > 0 and some positive constant Cg. Then, for any f € Cp(RY),
the mild solution ug to problem (1.2) belongs to C-?((s, s + 8] x RY) and it is a classical solution to (1.2).

Proof. Fix R > 0. Theorem 3.2 shows that uy(¢, -) belongs to C¥(Bg) and

1y
IVxug(t, lerag) < Cr(E=5)"2 [flleo

for any ¢ € (s, s + 6]. Moreover, by interpolation from (3.2) it follows that |lus(t, - )||C£(]Rd) < Ct-5)"?|floo
for any t € (s, s + 6]. From these estimates, adding and subtracting Y(t, y, u(t, x), Vxu(t, x)), we deduce
that [, (¢, x) — Yu(t, ¥)| < Cliflco(t - s) P |x - y|? for any t € (s, s + 6], x, y € R? such that |x - y| < R and
some positive constant C, depending on R and u. As a byproduct, [, (t, )l < C(t — $) P2 |floo for any
t € (s, s + 6] and some positive constant C, depending on R and u. Now, using Proposition A.1, we conclude
that u € C2((s, s + 6] x R9) n CO’2+9((S, s + 6] x RY) for any 0 < yify < a, and for 6 = y otherwise. O

loc

Remark 3.4. Suppose that (3.1) is replaced by the condition

[Y(-, -, ur,v1) = P(-, -, uz, vo)l < Lr(lur — uz| + [vi - va2l)

in [s, T] x R4, for any R > 0, uy, us € [-R, R], v1, Vv, € Bg and some positive constant Lg. Then, the proof
of the previous theorem can be repeated verbatim with Y4 = Cg’l([s, s + 6] x RY), endowed with the nat-
ural norm, and we can show that the mild solution to problem (1.2) belongs to Cg’l([s, s+ 6] x RY) and
llusl COL([s,5+6]xRA) < Csll f"cll)(]Rd) for some positive constant Cs, independent of f.

We now provide some sufficient conditions for the mild solution to problem (1.2) to exist in the large.
Such conditions will be crucial to define the nonlinear evolution operator associated with the Cauchy
problem (1.2).
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Hypotheses 3.5. We introduce the following assumptions.
(i) Forany R > O there exists a positive constant Lg such that

[h(t, x, uq, vi) — P(t, x, uz, vo)| < Lr(lup — uq| + vy — v1l)

forany t € [s, T], x € R, uq, u; € [-R, R]and v, v, € R,

(ii) Forany T > s € I there exist positive constants ko, k; and a, and a function p € C 2(R9) with nonnegative
values and blowing up at infinity such that uy(t, x, u, v) < ko(1 + u?) + ky|u|lv| and Ap + k1|VP| < ad
inR?forany t € [s, 7], x,ve RYand u € R.

In the rest of this section, for any p € [po, +00) and T > s we denote by [1],, 7 the supremum over (s, T) of the
function V= s |¥(t, -, 0, 0)llr(re,u)3 [P]eo, 7 is defined similarly, replacing LP (R?, u;) by Cp(RY).

Theorem 3.6. Assume that Hypotheses 2.1, 3.1(ii), 3.5 and condition (3.9) are satisfied. Then, for any
f € Cp(RY), the classical solution uy to problem (1.2) exists in [s, T|. If, further, the constant in Hypothesis 3.5 (i)
is independent of R, then for any p € [po, +00],

S(upT)(Iluf(t, e,y + VE= S IVxus(t, llrwa,p,) < Cr-sUflzpmaug) + (VT = s+ D[Plpr),  (3.10)
te(s,

S(ul%(”llf(ty ) = ug(t, pr e,y + VE=SIVxup(t, ) = Vattg(t, o ma,py) < Cr-slf = 8lpwa,yy (.11
te(s,

forevery f, g € Cp(R?), where C; = (VT + 1)ei™"*+42 for some positive constants dy and ds.
Proof. We split the proof into two steps.

Step 1. We prove that, for any f € Cp(RY), uy is defined in the whole [s, T]. To this end, we fix f € Cp(RY),
denote by [s, 7¢) the maximal time domain where uy is defined and assume, by contradiction, that 75 < T.
We are going to prove that uy is bounded in [s, 7f) x R4. Once this is proved, we can use Hypotheses 3.5 (i)
to deduce, adding and subtracting (t, x, 0, 0), that [ (¢, x, us(t, x), v)| < C(1 + |[v|]) fort e [s, T], x,v € R4
and some constant C > 0, which depends on [[ufllc, (s, )xrey @and [P (-, -, 0, 0)ll¢, (s, 11xre) - APPlying the same
arguments as in Step 2 of the proof of Theorem 3.2, we can show that also the function t — V- s||Vyu £(t, oo
is bounded in [s, 7f) x RY. This is enough to infer that us can be extended beyond 7/, contradicting the
maximality of the interval [s, ¢).
To prove that uy is bounded in (s, 1) x R4, we fix b € (0, Tr —5), A > a + ko and we set

Va(t, X) = e M Dug(t, ) - n7 px)
for any (¢, x) € [s, s + b] x R?. A straightforward computation shows that
Divn— Avp = e XY (-, v, + 171 ), A (Vvn + 1T IVR) —A(vp +nT1P) + nTt AR (3.12)

in (s, s + b] x R%. Since uy is bounded in [s, s + b] x R? and @ blows up at infinity, the function v,, admits
amaximum point (t,, xn). If v (tn, x5) < O forany n, thenuy < 0in[s, s + b] x R4, Assume that v, (tn, X) > O
for some n. If t, = s, then v,(ty, Xn) < suppa f. If £, > s, then Devy(tn, Xn) — A(tn)vn(tn, xn) = 0, so that,
multiplying both the sides of (3.12) by vy(ty, Xn) + 1 1@(x,) > 0 and using Hypotheses 3.5 (ii) we get
0 < (A + ko + a)(Vu(tn, Xn) + 1 1@(x,))? + ko, which clearly implies that, also in this case, u is bounded
from above in [s, s + b] by a constant, independent of b.

Repeating the same arguments with u; being replaced by —uy, we conclude that uy is bounded also
from below by a positive constant independent of b. Since b is arbitrary, it follows that [lufllc,((s,r,)xre) < +00
as claimed.

Step 2. Fixf, g e Cp(RY), p > po and let || - I, be the norm defined by
Vil = sup eIVt o ra g + VE= IV o @ )
te(s,
on smooth functions v, where w is a positive constant to be chosen later on and to fix the ideas we assume
that p < +oo. From Hypothesis 3.5 (i), where Ly is replaced by a constant L, it follows that

1u (ry ) = o, (1 e ra, ) < Lllug(r, -) = up(r, llwrrwd )
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foranyr € (s, T]. Hence, recalling that each operator G(t, r) is a contraction from L? (R?, u,) to L? (R?, u;) and
using the second pointwise gradient estimate in (2.4) and the invariance property of the family {u, : t € I},
we conclude that

t
1
s - ugllp < G-, )(F - &)l + Lllug - ugll, sup je‘”("”(n—)dr
f gliip p f g ptE(S’T)S r—s

t
1 1
+ LColllur — ugll, sup \/t—sje‘”("t)(1+ <1+ )dr
/ & pte(s,T) : \Vt-r \Vr—s

<[1+Co(1 + VT = 9)]If — gllzr(re,uy)

t
1 w(r-t)
+L|||uf—ug|||p[(1+c0w—s)(—+j ¢ dr)+ﬁ(;0w/_]‘_s

w ) r=s Vo
¢
e®r=t gy
+ Co sup \/t—sj—]. (3.13)
te(s,T) ] Vt—ryr-s

To estimate the integral terms in the last side of (3.13), we fix § > 0 and observe that

t
w(r-t) ea)(r—t) e(u(r—t)
dr = j € _dr+ j ar) <245+
J\/T‘—S : Vr—S ( 5 Vr—S
S+

s+6

(3.14)

\/_a)

Hence, minimizing over 6 > 0, we conclude that the left-hand side of estimate (3.14) is bounded from above
by V8w™1/2. Splitting v/t —s < vt - r + \/r — s and arguing as above, also the last term in square brackets in
the last side of (3.13) can be estimated by (V8 + vm)w~/2. It thus follows that

1
llus = uglly < [1+ Co(1 + VT = $)IIf = gllore, ) + LcT-sw™ 2 + (1 + CoVT = s)w™ lllus — ugllp,

where c; = (V8 + V) Co(+/T + 1) + V8. Choosing w such that cr_sw 2 + (1 + CoVT —s)w™! < (2L)"L, we
obtain
lur — uglllp < 2[1 + Co(1 + VT = S)IIf — 8llro(re, s

and estimate (3.11) follows at once.
Estimate (3.10) can be proved likewise. Hence, the details are omitted. O

As a consequence of Theorem 3.6 we prove the existence of a mild solution to problem (1.2) in the time domain
(s, T)when f € LP(RY, ys), that is a function uy € LP((s, T) x R%, u) n W' (J x R%, p), forany J e (s, T], such
that u(t,-) e WhP (R4, ;) for almost every t € (s, T] and, for such values of ¢, the equality

t
us(t, x) = (G(t, $)H(x) + J(G(t, NYu(r, -)(x) dr

holds true in RY \ A;, where A, is negligible with respect to the measure y; (or, equivalently, with respect to
the restriction of the Lebesgue measure to the Borel g-algebra in R9).

Corollary 3.7. Under all the assumptions of Theorem 3.6, for any f € LP(R?, us) (p = po) there exists a unique
mild solution to the Cauchy problem (1.2). The function uy satisfies estimates (3.10) and (3.11) with the supre-
mum being replaced by the essential supremum and, as a byproduct, us € Wg’l((s, T)xR%, p) if p < 2, and
us € Wg’l((s, T) x R4, ) for any q < 2 otherwise. Finally, if there exists y € (0, 1) such that

|¢(t’ X, 5! Yl) - l)b(t’ Y, 5’ rl)l < C],R(l + |€| + |’1|)|X —)/|y (315)

forany te], x,yeBgp,n¢€ R4, ¢ eR,Je(s,T], R >0 and a constant Cjg > 0, then, for any f € Lp(IRd,ys)
and almost every t € (s, T), ug(t, -) belongs to leo’f (RY). Moreover, us € W; 12<>c((5’ T) x RY) and satisfies the
equation Deug = Aug + y,.
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Proof. Fix f € LP(RY, us) and let (f;) c C»(RY) be a sequence converging to f in LP(R?, us). By (3.11),
(ug,(t,-)) is a Cauchy sequence in wbhr (R4, ut) for any t € (s, T]. Hence, there exists a function v such
that ug, (t,-) converges to v(t,-) in WhP (R4, u¢) for any t € (s, T]. Moreover, writing (3.10), with f being
replaced by f,,, and letting n tend to +co we deduce that v satisfies (3.10) as well.

Next, using (3.11) we can estimate

||ufn - ufm ”ILjp((S,T)X]Rd,}I) = "ufn(t7 : ) - ufm(t! N )"ip(]Rd’yt) dt

0

< Ch (T =)o~ il g 1

and
T
”VXufn - qufm "Zq((S,T)X]Rd,}J) = J "quf"(t, ) - qufm(t, : )”Zq(IRd,H[) dt

s
q

2CT—s 1-2 q
< ST -9 W~ fll

for any q € [1, 2) if p > 2 and for p = q otherwise. Hence, recalling that LP(RY, Ue) — LI(RY, U¢) for any
t € I, we conclude that the sequence (uy, ) converges in L? ((s, T) x RY, u)n Wf; 1 ((s, T) x RY, u) to a function,
which we denote by uy. Clearly, v(t, ) = us(t, -) almost everywhere in R? for almost every t € (s, T). Letting
n tend to +oo in formula (1.4), with f,, replacing f, we deduce that uy is a mild solution to problem (1.2). The
uniqueness follows, arguing as in the proof of Theorem 3.2 with the obvious changes.

Let us now prove the last part of the statement. We again use an approximation argument. Fix t > s € I
and R > 0. At a first step, we estimate the norm of the operator G(¢t, r) in L(LP (R, Ur), LP(Bg+1)) and in
L(LP(RY, Uy), W»P(Bg,1)), forany r € [s, t). In the rest of the proof, we denote by c a positive constant, possi-
bly depending on R, but being independent of t, r and f € LP(R¢, u,), which may vary from line to line. Since
there exists a positive and continuous functionp : I x R4 — Rsuch that ur = p(r, -)dx, the spaces LP (By) and
LP(Byy, pr) coincide and their norms are equivalent for any M > 0. From this remark, the interior L?-estimates
in Theorem A.3, with u = G(-, s)f and the contractiveness of G(t, r) from LP(R¢, Ur) to LP(RY, U¢), imply that

1G(t, DAlwrBes) < €t =) Al ray,), S<r<t<T, (3.16)

first for any f € C,(IR?), and then, by density, for any f € L (R, y,). Since, for 6 € (0, 1),

(LP(RY, y), LP(RY, p))o,p = LP(RY, ;) and (WP (Bgyt), WP (Bri1))e,p = WHOP(Bg,),

with equivalence of the corresponding norms, by an interpolation argument and (3.16) we deduce that
1G (&, Nl 2z e, puy), wi+0w (Bgay)) < C(E = r)~% for any s < r < t < T. Hence, if for any n € N we consider the
function z,,, which is the integral term in (1.4), with u being replaced by uy,, and use (3.11) and the fact that
Y € B([s, T] x R%; Lip(R4*1)), then we get

t
_1+0
IVxzn(t, ) = Vzm(t, llwor(sg,,) < € J(t =177 g, (r ) = up, (1 )llewa ) dr
S

_ 146
+c | (t=1)72 [IVaug, (1, ) = Vattg, (1, o (wa ) A7

S L S

<c(t-s)"2|fn —fm"LP(IRd,ys)

for any n € IN. We have so proved that, for any 0 € (0, 1) and almost every ¢ € (s, T], the function uy(t, -)
belongs to W*?(Bg,1) and

16
lug, (t, ) = up, (&, HwrorBe,,) < €t =8)"Z Ifn = fmllirra,pg)s m,n €N.

Similarly,

_1+0
”ufn(t’ . )"W“avP(BRH) < C(t - S) 2 ("ﬂ'LP(]Rd,Hs) + "l/)( 0, 0)”00): neN.
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Using these estimates, we can now show that 1,,(r, -) € WP (Bg,1), for any 6 < y. For this purpose, we
add and subtract Y(t, y, uy, (¢, x), Vxuy, (t, X)), use condition (3.15) and the Lipschitz continuity of i with
respect to the last two variables to infer that

Il,buf" (t, x) — v,[;uf" (t, Y)I < clug, (¢, x) — ug, (t, )| + c|Vxug, (t, X) = Vxug, (t, ¥)I
+clx = yI" (1 + |ug, (¢, X)| + [Vxuy, (t, X)) (3.17)

and

[Py, (t, X) = Py, (£, X)| < clug, (t, X) = ug, (t, )| + |Viug, (£, X) = Viug, (¢, x)]) (3.18)
foranyte (s,T),x,y € R4 and m, n € N. Hence, using (3.17) we obtain
|'I)ufn (t’ X) - 'I)ufn (t’ )’) - Ebufm (t’ X) + l.bufm (t’ )’)|
< clug, (t, x) — ug, (t, Y)| + |Vxug, (t, x) = Viug, (6, V)| + lug, (8, x) = ug, (6, Y]+ [Veug, (t, x) = Viug, (¢, Y)]

+x =yl (1 + lug, (¢, )| + lug, (¢, )| + [Vxuy, (¢, )] + [Viug, (¢, X)])]
= (¢, X, y)

and, using (3.18),
|l/)ufn (t’ X) - l/)llfn (t’ Y) - l/}llfm (t’ X) + l/)u!’m (t’ )/)| < C[qun(t’ X) - ufm(ta X)l + |qufn(t, X) - qufm(t’ X)|

+ lug, (¢, y) = uy, (6, Y| + [Vaug, (t, y) = Vug, (6, V)]
= J(t, x,y).

From these two estimates we conclude that

[, (£, ) = Yoy, (6, V) = Pu,, (6 X) + Py, (&P < (Ot X, ¥)PPAE, x, y)TPP

forany (¢, x) € (s, T) x IRd,any,B € (0, 1) and any m, n € N. Hence, for any 6 < yand 8, such that (0, 1) > 6’ =
0/B +d(1 - B)/(pB), along but straightforward computation reveals that
[Wug, (t, ) = Yu,, (& ) wor B,y
< cllug, (t,-) = ug, (6 OIGE o (g, (&)1 + g, (¢, I +1)
= fu\ls fm\Ls WLP(RA, pg) fulls W“‘GI'I’(BRH) fn \Ls W1+9’,p(BR+1)

and, consequently,

B0 1-
1, (6 ) = g, (6 Moy < =) W= Flpa )

for any t € (s, T). We are almost done. Indeed, by interpolation from Proposition A.3 we deduce that
IG(t, M)l & (wor (Bg,y), w22 (B < (¢ —1)~1*%/2 From this and the previous estimate we conclude that

B+6-0"
2

_ 1-
U = fll 5P m,neN,

"Zn(t» ) - Zm(ta : )" W2:P(Bg) < C(t - S) Lp(lest)’

forany t € (s, T) and B > 6', so that
— 1-
g, (&) = gy (& w2y < =97 W = Fnll i

for any m, n € N, thanks to (3.16). From this estimate it is easy to deduce that (uy,) is a Cauchy sequence

in WI?:IZO (s, T) x RY), Since uy, is a classical solution to problem (1.2), we conclude that (D;uy,) is a Cauchy

sequence in L} ((s, T) x RY). It thus follows that uy € W;,’lzo (s, T) x RY) and it solves the equation
Deus = Aug + l/)uf
in (s, T) x R4, O

The arguments in the proof of Theorem 3.6 and Corollary 3.7 allow us to prove the following result.
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Proposition 3.8. Under Hypotheses 2.1, the following properties are satisfied.

(i) Let p € C((s, T x RY x R x RY) with [Y]eo,T + SUD(¢ xye(s, Tixre [W(E X, -, )Lipra+1y < +0o. Then, for any
f € Cp(RY), the Cauchy problem (1.2) admits a unique mild solution us € C([s, T] x RY) n C%1((s, T] x RY)
which satisfies (3.10) and (3.11) for any p € [po, +oo].

(ii) Let € C((s, TI x R x R x RY) and [lp,1 + SUP(¢ xye(s. 11xre [W(E X, -, ) Lipresty < +00 for some p > po.
Then, for any f € LP(RY, us), the Cauchy problem (1.2) admits a unique mild solution ug which belongs to
Wg’l((s, T)xRY),if po < p < 2, and to WS’I(I x RY) forany J e (s, T], if p > 2. Further, uy satisfies (3.10)
and (3.11), with the supremum being replaced by the essential supremum.

Proof. To prove property (i), it suffices to apply the Banach fixed point theorem in the space of all the func-
tions v € Cp([s, T] x RY) n C%1((s, T] x R?) such that ||V]|e < +00, where || - [l is defined in Step 2 of the
proof of Theorem 3.6, with p = +co. The uniqueness of the so obtained solution follows from the condition
SUD(¢ (s, Tixre [P (L5 X, -, )] Lip(ra+1y < +00, in a standard way.

To prove property (ii), one can argue by approximation. We fix f e LP(R?, us), approximate it by
a sequence (f,) ¢ Cp(RY), converging to f in LP(RY, y), and introducing a standard sequence (9,) of cut-off
functions. If we set i, = 9,3 for any n € N, then each function i, satisfies the assumptions in property (i)
and [Ynlp,r < [Ylp,r. Therefore, the Cauchy problem (1.2), with f, and 1, replacing f and ) admits a unique
mild solution u € Cp([s, T) x R%) n €%1((s, T] x R?), which satisfies (3.10) and (3.11) with f,, replacing f.
The arguments in the first part of the proof of Corollary 3.7 allow us to prove the existence of a mild solution
uy to the Cauchy problem (1.2) with the properties in the statement of the proposition. The uniqueness of the
solution follows also in this case from the condition sup; e (s, rjxre [P(£5 X - 5 *)Lipra+1) < +00. O

4 The evolution operator and its summability improving properties

Suppose that, besides Hypotheses 2.1, the assumptions on  in Theorem 3.6 hold true for any I >s < T
or P € C(I x RY x R x RY) n B(J x RY; Lip(R¥+1)) for each J e I and (-, -, 0,0) € C,(R4*1). Then, for any
f e Cp(RY) and s € I the mild solution to problem (1.2) exists in the whole of [s, +oo). Hence, we can set
N(t, s)f = ug(t,-) for any t > s. Each operator N(¢, s) maps Cp(RY) into C}J(]Rd). Moreover, the unique-
ness of the solution to problem (1.2) yields the evolution law N(t, s)f = N(t, r)N(r, s)f for any r € (s, t) and
f e Cp(RY). Hence {N(t, s) : I 5> s < t} is a nonlinear evolution operator in Cp(R9). It can be extended to the
LP-setting, for any p > po, using the same arguments as in the first part of the proof of Corollary 3.7. Clearly,
if Y(t, x, -, -) is Lipschitz continuous in R4+, uniformly with respect to (¢, x) x J x R4, for any J € I, then
by density, we still deduce that N(¢, s) satisfies the evolution law and, moreover, each operator N(¢, s) is
bounded from LP (R, ys) to WP (R?, p;) and

INCE, $)AlLe e ey + VE =S IVENE Ao ey < Cr-s e we ug) + (T =5+ DIYP(-, -, 0,0)le0).  (4.1)

4.1 Continuity properties of the nonlinear evolution operator

In the following theorem, assuming the above conditions on 1y, we prove an interesting continuity property
of the operator N(t, s).

Theorem 4.1. Let (f,) ¢ C»(R?) be a bounded sequence converging to some function f € Cp(RY) pointwise
in R9. Then, for any s € I, N(-, s)f, and VxN(-, s)fn converge to N(-, s)f and V,N(-, s)f, respectively, locally
uniformly in (s, +co) x RY,

Proof. Let(fy)and f be as in the statement. To ease the notation, we write us, and us for N(-, s)f, and N(-, s)f,
respectively. Moreover, we set h,(r,-) = G(t, r)(Jug, (r, - ) — us(r, )P + |Vx(ug, (1, ) — up(r,-))|P) forany n e N,
t>sandr € (s, t], and we denote by L, r any constant such that

[Y(t, x, uz, v2) = P(t, x, ur, vi)l < Lr,r(luz — usl + [va = v1l) (4.2)
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forany ¢t € [s,s + T], x, v1, V2 € R?, uy, up € [-R, R] and T > 0. As a first step, formula (3.2) shows that, for
any T > 0, there exists a positive constant Mt such that |uflle + lluf, lleo < M7. Fix p € (1, 2). Using formula
(1.4), we can estimate

t

j(m}a(t, N, (1) — o, (1)) dr

N

. . . p
Dy, (£, x) — Dup(t, )P < 2P (DY G(t, $)(fn — (X + 2P~

for any (t, x) € (s, +00) X R and j =0, 1. By the representation formula (2.2), Holder inequality, estimates
(2.4) and (4.2), we deduce that

t
lug, (t,-) —us(t, )P < 2P71G(t, $)Ifn — fIP + (4P LY, J h(r,-)dr
S
and
t
Vo, () = Viup(t, )P < 2271t = $) "2 crG(t, 9)lfo - AP + 4TI YerLly o j(t -1 Eh(r, ) dr
S

in R?, forany t € (s, s + T) and some positive constant c7. Hence, the function h,( -, x) satisfies the differen-

tial inequality
t

Rn(t, %) < Cp.1(t - 5)"2(G(t, $)Ifn — fIP)(X) + Cp, 1 j(t — 1) ha(r, x) dr

S
forany t € (s,s+ T) and x € R4, Since hy,(-, x) is continuous in (s, t] and h,(r, x) < Cr(r — s)"P/2 for some
positive constant Cr, independent of n, and any r € (s, t), we can apply [8, Lemma 7.1] and conclude that

t
Rn(t, %) < Cp1(t = 5)2 (G(t, S)|fn = P)X) + Cp. 1 j(t — 15 (r =) (G, S)Ifn - AP)(x) dr

foranyt € (s,s + T). Hence,

t
lhn(t, lic,Bg) < Cp,1(t - $) 2 1G(t, $)Ifn — fIPlcyBa) + Cp,T I(t — 1) 5 (r =) PRIG(r, $)Ifn — AP llcy () dr
S

for any R > 0. By [9, Proposition 3.1 ()], [G(r, s)Ifn — fI”llc,(Bz) Vanishes as n — +co for any r > s. Hence, by
dominated convergence, [|h,(t, - )lc,(Bg) vanishesasn — +co forany ¢ € (s, s + T), which means that, for any
te(s,s+T), us(t,-)and Vyuy,(t, ) converge uniformly in B to ug(t,-) and Vyuy,(t, -), respectively. The
arbitrariness of R and T yields the assertion. O

4.2 Hypercontractivity

Throughout this and the forthcoming subsections we set

d
F = IVQVL?, S = Y INQVDil?

i=1
for any smooth enough function ¢. To begin with, we recall the following crucial result.
Lemma 4.2 ([4, Lemma 3.1]). Assume that Hypotheses 2.1 hold true and fix [a, b] c I. Iff € C})’z([a, b] x R%)

and f(r, -) is constant outside a compact set K for every r € [a, b], then the function r — J]Rd f(r,-)dp, is con-
tinuously differentiable in [a, b] and

D, jf(r,-)du, - j D,f(r, ) dpy - j AMFr,)duy, 1€ la, bl

R4 R4 R4
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Hypotheses 4.3. We introduce the following assumptions.

(i) ¥ e BUI x R4 Lip(R¥*1)) n C(I x RY x R x RY), condition (3.9) is satisfied in [s, T], forany T > s € I and
some constant which may depend also on s and T, and there exist two constants &, > 0 and &; such that
u(t, x, u,v) < &lul + & u? + Slullv| forany t > s, x, v € R%and u € R.

(ii) There exists a nonnegative function @ : R4 > R, blowing up atinfinity such that AQ + k1|VQ| < a@in R4
for some locally bounded functions a, k;.

(iii) There exist locally bounded functions Cy, C1, C> : I — R* such that

1Q(t, )x] < CoOIXP @),  Tr(Q(t, x)) < C1(O)( + IxIP)P(),  (b(t, %), x) < C2()|X|*P(x)

forany t € I and any x € R,
(iv) There exists a positive constant K such that

J A9 10g(1A) due < IAl]sga ) 108UAlLare ) + Kq j ATV Ligo) dps (4.3)
R4 R4
foranyt>s,f e Ci(R?) and g € (1, +00).

Remark 4.4. (i) Hypothesis 4.3 (i) implies that (-, -, 0, 0) is bounded in [s, +c0) x R and

(-, -, 0,0)lc, (s, +c0)xrd) < S0-

(ii) Sufficient conditions for (4.3) to hold are given in [4]. In particular, (4.3) holds true when (2.3) is
satisfied with p = 1 (see Remark 2.2).

We can now prove the main result of this subsection.

Theorem 4.5. Let Hypotheses 2.1 and 4.3 be satisfied. Then, for any f € LP(RY, us) (p = po) and t > s, the
function N(t, s)f belongs to WPy (R4, Ut) and satisfies the estimates

INCE, )y o ra ) < ew”'y(tfs)[||ﬂ|LP(Rd,ys) +&o(t-9)], (4.4)
IV Nt )lpvo e iy < Colt = $)eP T [f e iy + Eo(t = $)] + €1 (t = 5)éo, (4.5)

wherep,(t) := y 1 (p - 1)(e*oK M (E=5) _ 1) 4 pforanyy > 1, ko being the ellipticity constant in Hypothesis 2.1 (ii)
and K being the constantin (4.3), wp,¢ = {1+(§2*)20[(0—1)(p—1)1<0]‘1 and the functions cg, ¢ : (0, +c0) — R*
are continuous and blow up at zero.

Proof. To begin with, we observe that it suffices to prove (4.4) and (4.5) for functions f € C i(]Rd). Indeed, in
the general case, the assertion follows approximating f with a sequence (f;) ¢ C ll)(le) which converges to f
in LP(RY, Us). By (3.10), N(t, s)f, converges to N(t, s)f in WLP(RY, U¢) for almost every t > s. Hence, writing
(4.4) and (4.5) with f being replaced by f,, and letting n tend to +co, the assertion follows at once by applying
Fatou lemma.

We split the rest of the proof into two steps. In the first one we prove (4.4) and in the latter one (4.5).

Step 1. Fixf € C;(R%), n € N, € > 0 and set

ﬁn,e(t) = ||Vn,s(ty : )”py(t)

foranyt > s, where vy . = (92N(-, s)f + €)/? and 9, = {(n"!|x|) forany x € R? and n € N. Here, { is a smooth
function such that 1, < { < 1p,. Moreover, we set
" u>l~
¢ ( =)@

AP
¢ (7)“[’, Pa,n =
for any n € IN. We recall that in [9, Theorem 5.4] it has been proved that supe; @11 (re,,) < +00. Hence, the
functions t — [|¢j,nllrrwe,u,) (= 1, 2) are bounded in I and pointwise converge to zero as n — +co.

By definition, the function u = N(-, s)f belongs to Cg’l([s, 7] x RY) for any 7 > s andisa classical solution
to problem (1.2). Moreover, Lemma 4.2 shows that f,  is differentiable in (s, +00) and a straightforward
computation reveals that

py(t)
py(t)

P1,n =

Br.e(t) = Br,e(£)108(Bn,c (1)) + I%(t)(/sn,g(t»lfpv“’ j{Dd(vn,s(t, PO — AW [(Vn,e(t, - P O1} dpg.
Yy

R4
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Taking into account that

Di[(vne(t, DPrO] = Al(Va,e(t, - O] = pl(O)(Vne(t, - )P O log(vn e(t, )
—py(O@y(t) = DV e(t, NP'O2(F(vn )L, -)
+ Dy (O Wne(t, PO Dvp e(t, ) — At)Vne(t, )

and
DiVn,e — AVn,e = Oy uhy — €9, F (U)Vy 2 — Tr(QD? 9y )y e Inu? — €UV, F(9y)
— (b, VIn)v;y 9nu® - 2(2eu + 93u?)(QVIn, Vi) 9nvi .
= 9pvikupy — eRT WV + gnelt, ),
we deduce

) _ _ (6
Br.e(6) = (Bn,e(t) PO j(vn,s(t, PO g o (t, ) due - py—ﬁn,g(t) 10g(Bn,e(t))
e py(t)
— (py(t) = 1)(Bn, () PO j (Ve (t, NPYO2(F(vn o)L, ) dpe
IRd
py(0)

i py(t)

(B, ()P0 j (Ve (t, )P0 log(vn e (t, -)) dpy

IRd
+ (Bn,e(t) PO j(vn,g(t, P O=292u(t, - u(t, ) dp
IRd
= &(Bne(t) PO j 9 (WVnelt, NP O (F )L, -)) dpg.
IRd
Using Hypotheses 4.3 (i), (iv), the expression of the function t — p,(t) and Hypothesis 2.1 (ii), we can
estimate
Br,e(t) < (Bne(t) 71 j Vnelt, )P O gy o(t, ) dpy

R4

+ & (B, () PO j 2lu(t, )(Vne(t, )P D=2 dpg + & B e(t)

R4
=61 (Bne0)' 71 [ (et O
R4
-p-1A- y_l)(ﬁn,a(t))l_py(t) j(vn’g(t, . ))py(f)—z(g(vn’g))(t’ ) dyy

R4

+ &5 (B,e(£) PO j 92(Vn,e(t, NP O2|u(t, HIIVyu(t, - )l dus

R4

— &(Bne () Pr® j 92 (Vi e(t, )PrO~AF(u(t, -)) du. (4.6)

R4

Further, since F(vn,¢) = 95F(9n)u'vy? + IpuFu)vys + 295uv;%(QV,u, V9,) and

j(v(t, NPO=492 (y(t, ))3(Q(t, - )Vxult, - ), V) dus
]Rd
1

<6 j(v(t,->)Py“>*‘*8ﬁ<u(t,-))Z(SF(u))(t,-)dut t3 j(v(t,-))Pv“*"(u(t,-))‘*(St(sn))(t,»dut,

R4 R4
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it follows that

j Vet NP O2(F (v )t ) dite
]Rd
> (1-6) j 94(u(t, ) Wn.e(t, )PP OSF W)L, -) dptc — Ce5(0) j 010 diy
R4 R4

for any 6 > 0 and some continuous function C; s : [s, +00) — R*. Moreover, applying Holder and Young
inequalities and Hypothesis 2.1 (ii) we can infer that

j 92 (Ve (t, NP O-2{u(t, )IVyu(t, - ldue
IRd

1) 1
< K—; j 9t (Ve (t, NP O u(t, H(Fw))(L, -) due + 4—51(Bn,g(t,-))1’y‘°

R4

for any 6; > 0 and

j Q2u(t, ) (Vn,e(t, - )P O"2 dy, < j (Vne(t, PO dpe < (Bn,e(t, -))PrO7L.

R4 R4

Hence,

Br.e() < &+ (51 + l%)ﬁn,g(t) + (Bn,e(£) P10 j(vn,e(t, )P O1g o (t, ) dug

R4

(- DA -y (- 8) - K5 &5 81](Bn,e(£))Pr® J St )2 (et )P O-SF W)L -) it

R
+ ‘CS"S’p,V(t)(ﬁn,e(t))l_py(t) J Q1,0 dp;

Rd
— (B () PO I 92 (Vnet, NPOHF)(E, -) dpe
R
- &1 (B O) P [ (et )P0 dp
R4

for some continuous function E‘E,g,p,y : [s, +00) —» R*. Now, we estimate the integral term containing g,. We
begin by observing that

-2 j(Zsu(t, )+ O(u(t, - )*)Q(L, -)VIn, V) In(Van,e(t, - )P~ dpue

IRd
< 428, [ B2(vnelt, WP OHT@IE ) dpte + 85" [ It I et DO FONE )
R4 R4
+6 j 941Ut )P (et PO (F))(L, -) dp
3
#851 [ SRt el DO TENE ) di
J
< 4€6) j 9 (Vn,e(t, PO FW))(L, ) dpe + Ce6,(8) j @10 dle
R4 R4

6, j 94 lu(t, )P (et NPOHF W)L, -) de

R4
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for some continuous function 55,52 : [s, +00) — R*. Moreover,
- j(vn,g(t, PO u(t, ) [InA)In — eult, - ) (F(9n))(t, )] dpr < Ce(t) J(qol,n +@2,n) Ay
R4 R4

for some positive and continuous function Ce : [s, +00) — R*. Hence, replacing these estimates in (4.6), we
get

ﬁ;l,s(t) <o+ <‘~fl + f_gl)ﬁn,s(t) + Ce,&,b‘z,p(t)(ﬁn,s(t))l_py(t) j(¢1’" + Q2,n) dis
R4
~lp =D -y (= 8) =151 61 = 8521(Bne ()10

x j 941t )P (v et NP O (F W)L, ) dte

]Rd
—&(1 - 4682)(Bn,e ()P O j 92 (Ve (t, NPrOH(F ()L, - ) due
]Rd
- 8{1 (ﬁn,s(t))lipy(t) J (Vn,s(t: * ))py(t%z dyt’ (4-7)

]Rd
where, again, 58,5,52,1, : (s, +00) — R is a continuous function. Choosing § = %, b1=(p-1)1- y‘l)l:‘TO2 if
& >0, 61 = 0 otherwise, and then §, small enough we obtain
Br.e() < &0 + wp,yBne(t) + Ce,1/2,6,,p () Bre (D) POl @10 + @2 nllpwa )

- ‘g{l(ﬁn,s(t))lipy(t) J’ (Vn,s(t, . ))py(t%z dyt- (4-8)
]Rd

Hence, integrating (4.8) between s and t and letting first n — +oo and then € — 0*, by dominated conver-
gence we get

t
lu(t, iprvo e,y < Wlloewd g + ot =) + wp,y J lu(r, Hleo (re, ) dr-
S

Applying the Gronwall lemma, we conclude the proof of (4.4).

Step 2. To check estimate (4.5), we arbitrarily fix y € (1, +00), t > s and we take

K KoK~ 1(t-s) KoK (t-s—€) _ 1
€= —log(w+l), Y = yefl—. (4.9)
2;(0 y+ eKoK (t-s) _ 1 eKOK (t-s) _ 1
With these choices of € and y’, we have
Dy (t =€) = py(t).
From Step 1, we know that N(t — &, s)f € LPY (R4, y;_,) and
INGE = & )l ovogra .y < € S Ufll o ) + Eo(t = 5)- (4.10)

By the evolution law and estimates (4.10) and (4.1) we get

sup VT =t + e IVN(T, S)fllpovo wa )

Te(t-¢€,T)
< Crotael€r? O (fl ppma ) + Eo(t =) + (T =t + £+ DIYP(-, -, 0, 0)lloo}

forany T > t — €. In particular, taking T = t and using Remark 4.4 (i) to estimate [|(-, -, 0, 0)[l0o < &0, We get

Ce _ _ 1
"VXN(t, s)ﬂlLPy(')(]Rd,yt) < _Ze EWp 1 ewp,y/(t s)[||ﬂ|Lp(IRd,us) + ’fO(t - S)] + (\/E-f— $)Cgfo (411)
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Replacing the value of ¢ in the expression of y’ (see (4.9)), we deduce that

N (G B

and, since the function o — w,,; is decreasing, wy,, < w, 5. Finally, observing that e ¢“ry' is bounded in

(s, +00), € < (2k0) 'K log(y) (which follows from (4.9) recalling that y’ > /y) and € ~ (2y)"}(y - 1)(t - s) as
t - s — 0", formula (4.5) follows immediately replacing in (4.11) the value of € given by (4.9). O

Remark 4.6. As the proof of Theorem 4.5 shows, if & < 0, then we can take y = 1 and wp, 1 = &7 in (4.4).

4.3 Supercontractivity

In the next theorem we prove a stronger result than Theorem 4.5, i.e., we prove that the nonlinear evo-
lution operator N(¢, s) satisfies a supercontractivity property. For this purpose, we introduce the following
additional assumption.

Hypothesis 4.7. There exists a decreasing function v : (0, +0co) — R* blowing up as o tends to 0* such that

v(0) -
[ 1A 108D dptr = UV g ) 108U R ) < = Wy, + 0P j A2 Doy e (412)

RY RY
foranyrel,0>0andf € C}(RY).
Remark 4.8. Sufficient conditions for (4.12) to hold are given in [3]. In particular, it holds true when (2.3) is

satisfied with p = 1 (see Remark 2.2) and there exist K > 0 and R > 1 such that (b(t, x), x) < —K|x|* log || for
any t € I and [x| > R.

Theorem 4.9. Let Hypotheses 2.1, 4.3 (i)-(iii) and 4.7 be satisfied. Then, forany t >s € I, po < p < q < +0
and any f € LP(R?, us), N(t, s)f belongs to W-4(R4, u;) and
INCE, $)flLara,py < €2(t = )l (ra, ) + So(t = S)), (4.13)
IVAN(t, $)fllLara, ) < €3(t = S)fllpma,pg) + calt = $)éo- (4.14)
Here, ¢, c3, 4 : (0, +00) — R* are continuous functions such that lim,_,q+ ci(r) = +oco (k = 2, 3, 4).

Proof. The proof of this result follows the same lines of the proof of Theorem 4.5. For this reason we use the
notation therein introduced and we limit ourselves to sketching it in the case when f ¢ C;(le ).

Step 1. Here, we prove (4.13). For any ¢ > O and any ¢ > s, we set
p(t) = e*0E9p 111, mO) =v(@) P - @O, e = e OBy (8).

The function {y . is differentiable in (s, +0o) and arguing as in the proof of the quoted theorem, using (4.12)
instead of (4.3) and the definition of m(t) and p(t), we deduce that

{re(t) = [(ﬁn,g(t»l-p“’ j (Vne(t, PO gy o(t, ) dpy
]Rd
-1
P2 e [ et PO G (e, )
Rd
+ (Bn,e(£)) PO j(vn,g(t, NPO-292u(t, - Vipy(t, - ) dus

R4

— &(Bn,c(£)) PO j 92 (Ve (t, NPOF @)L, - ) due |e™O

R4
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and the same arguments used to prove (4.7) show that, if 6, < 1, then

¢ () < Soe™O 4 (f el )(ng(t) " (cg 5.5,.p(O) (Br.c (D)1 PO j(fpl,n o) dpe

]Rd
~27Mp - 1)A - 8) — x5 &5 81 — 821 (B, (1)1 PO j Ihlult, NP (Vne(t, NPOHF @)L, - ) dus
]Rd
— &1 (Bn,e(£) PO j (Vn,e(t, - ))PO2 dm)e""(”.
IRd

Choosing 6 = %, 81 = (p - 1)ko(8&5)71if & > 0, §; = 0 otherwise, and 6, = [(p - 1) A 2]/8 we get

Gne(t) < Dplne(t) + 7m0 [so + Ce,8,,p (O Br,e () PN @1n + P2,nll1(re 1)
— €&1(Bn,e (1) PO j (Vn,e(t, - ))PO2 dut] , (4.15)
]Rd

where @, = & + 2(&5)*(ko(p — 1))"1. Hence, integrating (4.15) between s and ¢ and letting first n — +oo and
then € — 0%, by dominated convergence we get

t
e~ g (Es M rpo e,y < ot =) + IfllLp(ra, ) + Dp J O |lu(r, - e wa ) A,
S

which yields
lug(t, lipora,uy < €27 MO E(t = 8) + Iflo e pug))-

Now, forany g > pand t > s, we fix 0 = ko(t — s)(2log(q — 1) — 2log(p - 1))~1. We get p(t) = q and from the
previous inequality the claim follows with

ca(r) = exp(@pr + (p* - g Hv(kor(21log(g - 1) - 21og(p — 1))™H).

Step 2. Fix q > p. By Step 1, N((t + 5)/2, s)f belongs to L4(R¢, H(t+s)/2) and
t-s S

e ) 52

The same arguments used in Step 2 of the proof of Theorem 4.5 show that N(¢, s)f € W-49(R?, ) for any

< Cy (
Lq(]Rd:F(H-S)/s)

7> 45 and
-s t—s
VS IV sy < Cona[ €25 ) (Mlisme + 075~ ) + (5 +1)é0]-
Estimate (4.14) follows with c5(r) = \/gc,/zcz(%), cu(r) = C,/z[cz(%)\/g+ \/g+ \/g]. O

4.4 Ultraboundedness

To begin with, we prove a sort of Harnack inequality, which besides the interest in its own will be crucial to
prove the ultraboundedness of the nonlinear evolution operator N(t, s).

Proposition 4.10. Let Hypotheses 2.1 (i)-(iii) and 4.3 (i)-(iii) be satisfied. Further, suppose that estimate (2.3)
holds, with p = 1 and some constant g1 € R. Then, forany f € C p(RY), p>1,t>sandx, y € R4, the following
estimate holds true:

(Ix =yl + & (t-s))?
4ko(t—5)2(p-1)
where O(r) = (€217 - 1)/(201) if 01 > 0 and O(r) = r otherwise.

IN(E, NP < exp(P(l +&7)(t—5)+pO(t-5) )[(G(t, SIAPy) + &1, (4.16)
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Proof. Tobegin with, we observe that it suffices to prove (4.16) for functions in C, (R?). Indeed, if f € C(RY),
we can determine a sequence (f,) ¢ C 117 (R%), bounded with respect to the sup-norm and converging to f locally
uniformly in RY. Writing (4.16) with f replaced by f, and using Theorem 4.1 and [9, Proposition 3.1 (i)], we
can let n tend to +0co and complete the proof.

So,letusfixf e C}?(IRd) and set @, (r) := [G(t, r)(S%,vg(r, N(p(()) + .fg foranyn € Nandr € (s, t), where
Ve = (u} +&)P/2 up = N(-, s)f (see Theorem 3.6), ¢(r) = (r — s)(t — s) " 'x + (t — r)(t — s) "Ly and (Jy) is a stan-
dard sequence of cut-off functions. We note that @,,(r) > Co > O forany r € [s, t] and any n > ng. This is clear
if & > 0. Suppose that & = 0.If r < ¢, then @, (r) is positive since ve > 0.1f r = t, then @, (t) = (9,(x))?ve(t, X)
which is positive if we choose n € N large enough such that x € supp(9,). Moreover, ®,, € C1((s, t)). Hence
log(®,) € C1((s, t)) and we have

2Deve(r, ) — AG3ve(r, N(P(r))
+(t = ) H{[VxG(t, 1)(Iave(r, - NI(P(), x - ¥)}.

d 1
I log(®@n(r)) = .0

We observe that
DU(G2ve) ~ AG2ve) = PR + )4 Tuptpy, — p%ave ? (p - D2 + £)F(up)
4y 9 (QVOn, Vs — 20272 A0 — 2 F(Sh),
and
IVxG(t, 1)(97ve(r, )| < e Gt 1)Va(Iqve(r, )

< pe” NG (t, (O3 (ve(r, )P lup(r, )IKOZ((?(uf))(r )?)
+ T DGt )29V In|Ve(r, -)).

Hence, we get

; log @,(r) <

o P e G et iy (S )
x

= Gt Nnelr ) + S y [ gorte- DG(t, 1)(29nVInlVe(r, - >}(¢(r)),

where
-5 2 15 2 15
Cnye = 290 (AIn)Ve + 2F(In)ve + 4pInve " ur(QVIn, Vxls) — pInvn,¢ Uy, +p9ve "((p - Dus + &)F(uy).

From Hypothesis 4.3 (i) it follows that

d —log @, (r) <

dr = q)n( )G(t r){ 290 (A In)ve(r, -) +p509%v2_7’ + {If)ﬁpvg(r, )

+4p(ve(r, - ))17%l9n|uf(r’ INKQ(r, - )VIn, Viug(r, )|

~p92ve(r, )| ((p — V(up(r, - )* + &)(he(r, -))?

et N x —y| + & (t - s)
~up(r, he(r, ) yi+ds

[}en

VEKo(t - s)
+ %e“l(”){G(t, NIVInlve(r, )1} (1)), (4.17)

where h, = (u/% +¢e)1 \/F (uf). Using the Cauchy-Schwarz inequality, we can estimate

_2 1-2
Ve p‘9n|uf||(QVl9ns quf>| < Ve p'9n|uf| \/?(Sn) \lg’.(uf)

1
< 8.93,v£h§uf + Evg?(Sn).
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Moreover, using formula (2.2), we can estimate
(G(t, NO2VEYPY (B(1) < (G(t, NO2ve))))) 7 (G(t, 1)) ((r))P
< (G(t, NGV DM 7 < (@n()' 7.

These two estimates replaced in (4.17) give

i log @, (r) <

dr .0 <G(t, r){[P&‘l(fJ"(Sn))(r, D =29, A Inlve(r, ) + ffﬂf,pvg(r, 9

- p8Rve(r, )| (@ = 1= O (r, ) + e)(he(r,))?

e Mx -yl + & (t-5)
B L e e ] |9 L)

+ BT o0 (68, n 98 Ivelr, @) + p. (4.18)

Straightforward computations show that A(r)9, and (F(9,))(r, - ) vanish pointwise in R9 asn — +oo, for
any r € (s, t) and there exists a positive constant C such that |A(r)I,| + (F(In))(1,-) < CPin R¢ for anyn € N,
thanks to Hypothesis 4.3 (iii). By [9, Lemma 3.4] the function G(t, - )@ is bounded in (s, t) x Bg forany R > 0.
Hence, by dominated convergence we conclude that G(t, r)(9,(A(r)9n)ve(r, -)) vanishes as n — +oo, point-
wise in R?, for any r € (s, t) and

IG(t, NS (FO))(T, ) = 292 AN InllicyBr) < Cs.p.lules S?p) 1G(t, " @lic,Bg)> (4.19)
re(s,t

where R > max{|x|, |y|}. Similarly, the last but one term in (4.18) vanishes pointwise in R4 as n — +oo0, for
any r € (s, t) and

[(G(t, N[IVInlve(r, )D(PM)] < Cp,jusle Stlr;) 1G(t, N@llc, By - (4.20)

Moreover, using the inequality a% — yf > —Z—; forany @ > O and B, y € R, and that G(t, s)g1 < G(t, $)g>
for any t > s and any g; < g», we deduce

d 1
I log(®y(r)) < .0

(G(t, NPS ™ F )T, -) = 290 A Inlve(r, (D) + p(1 + & + 271 Dy5)
e D|x —y|
T =) Du(r)

where x5 = (Ix = y| + & (t — 5))*(4ko(t — s)*(p — 1 - 6))~ 1. Integrating both sides of the previous inequality in
(s, t) and taking (4.19) and (4.20) into account to let n — +co, we get

(G(t, N[IVInlve(r, - )D)((1)),

Og( (up(t, x)* + &) + &

. < pl(L+EN(E—3) +O(t - )xs],
(Gt )(F2+8)5)y) + & ) ! ’

or even

((us(t, x))* + )P < exp[p(1 + EN)(t - 5) + pO(t — s)Xs1[(G(t, $)(f2 + ) D))(y) + &X1.

By formula (2.2) we can let € and § tend to zero on both sides of the previous inequality and this yields the
assertion. O

We can now prove the main result of this subsection. For this purpose, we set @;(x) = e*” for any x € RY
and A > 0, and introduce the following additional assumption.

Hypothesis 4.11. Forany I > s < t and A > 0, the function G(t, s)¢, belongs to L®(RY) and, for any 6 > 0,
+00 > Mg 2 := SUP;_g55 1G(t, S)PAllco-

Remark 4.12. A sufficient condition for Hypothesis 4.11 to hold is given in [3, Theorem 4.3]. More precisely,
it holds when (2.3) holds with p = 1 and there exists K > 0, 8, R > 1 such that (b(t, x), x) < —K|x|>(log(|x]))?
forany t € Iand x € R? \ Bg.
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Theorem 4.13. Assume that Hypothesis 4.11 and the conditions in Proposition 4.10 are satisfied. Then, for any
Iss<tfeLlP(RY, us) (p € [po, +00)), the function N(t, s)f belongs to W5 (R?) and

IN(E, $)flloo < €5(t = $)IfllLrre, ) + C6(t = $)E0, (4.21)
IV N(E, $)fllco < €7 (€ = S)IflLr (e, ) + C3(t = S)S0 (4.22)
for some continuous functions cy : (0, +00) — R* (k =5, 6, 7, 8) which blow up at zero.
Proof. As usually, we prove the assertion for functions in C ll)(le).

Step 1. We prove (4.21). So, let us fix f € C}(R?) and x € R?. By the invariance property of the family
{y¢ : t € I} and inequality (4.16), we can estimate

MW ey = | (GCE P Ipa(dy)
R4
> [ 16 I + Eptdy) - &8

Br

_ t(t— 2
> 10t 9PPe 409 [ exp(-poie -9 G22I Yy ay) - gf

Br
(IXI + R + &5 (t - 5))? »
Akt —5)2(p — 1) )Ht( R) = &5

where ¢ = 1 + ¢7. By the tightness of the family {y; : t € I} we can fix R > 0 such that p;(Bg) > 277 for any
t > s and, from the previous chain of inequalities, we conclude that

> |(N(t, Y0OPe P exp(-peie - 5)

N, POOP < 27Tt = )P Ppae-5) AL, ga . + €0)s (4.23)

where

o(r)

_ (&r+R)?
A(r) = exp(m>, C(r) = exp(¢r + ®(r)2—)

2xor2(p-1)/°
Now, using the evolution law and again (4.16), we can write

o mop - (5 () o]

[l SR o6
ro( ) e

X exp(p¢ ; (4.24)

for any y € R9. From (2.2) and (4.23) we obtain

(6(t N2 = 22(S(555)) Uy + I(6(6 55 )omnics))

< 2(T(52)) U+ EDM 92001 (4.25)

From (4.24), (4.25), choosing y = x in the exponential term, we get

6 9901 = [28( 52 )W + ML + 0] xn(6 5%+ 0(57) it

and (4.21) follows with
¢s() = 20( 5 )M1f2 o exp| (1 + £1) 2+ 6( 5 ) €D (4rop - 1)L
ce(r) = (2C(§)M}/£pm/2 + 1) exp[(l + 5;)5 + @)(i)(.f;)z(lmo(p - 1))—1].
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Step 2. Wefixt > s, f € C;(R?). By Theorem 3.2, N(t, s)f € C;(RY) and, by Step 1,
t+s t-
NERY
(o)

Hence, from (4.1) we get
t-s t-s t-s
V219086, 9l = o es( 5 Wi+ c6( 52 Yoo+ 5280+ 0]

Taking T = t, estimate (4.22) follows with ¢;(r) = V2r~/2Cy2cs(3) and cs(r) = Cralca(5)\2 +1[5+42]. O

5 Stability of the null solution

In this section we study the stability of the null solution to problem (1.2) both in the Cj- and L?-settings. For
this reason, we assume that (-, -,0,0) =

Theorem 5.1. The following properties are satisfied.

(i) Let Hypotheses 2.1, 4.3 ()-(iii) hold true. Further, suppose that the constant w, = & + (&5 Y2 (4xo(p — 1)1
is negative, where &, and &, are defined in Hypothesis 4.3 (ii). Then, for any p > po, there exists a positive
constant K, such that, foranys € I, f € LP(RY, us)andj=0,1,

IDAN(E, $)fle e, < Kpe? N Alpra s ¢ > S +J. (5.1)

(ii) Suppose that the assumptions of Theorem 3.6 are satisfied. Further, assume that Hypotheses 4.3 (i)—(iii)
hold with & < 0. Then (5.1) holds true for any f € C»(RY) with p = +co and wyp and K being replaced,
respectively, by & and C1e™%.

Proof. (i) Estimate (5.1) can be obtained arguing as in the proof of Theorem 4.5, where now p(t) = p for any
t > s. As far as the gradient of N(¢, s)f is concerned, we fix t > s + 1 and observe that

N(t, s)f = N(t, t — 1)N(t - 1, s)f.
Hence, from (4.1) we obtain
VNt $)flipre ey < CLINCE = 1, $)flore, e, o) < Kpe”? ™ IAlora )

where K, = C1e™®
(ii) The assertion follows easily letting p tend to +oo in (5.1). O

6 Examples

Here, we exhibit some classes of nonautonomous elliptic operators and some classes of nonlinear functions
1 which satisfy the assumptions of this paper.
Throughout this section, we fix a right-halfline I and assume that {A(t) : t € I} is defined by (1.1) with

qij(t, ) = L+ XP)"g(0),  bi(t, x) = -xib(O1 + xPP)',  (t,x) € IxRY,

foranyi,j=1,...,d, where r > m, the function b ¢ ClOC (I) is bounded with positive infimum b and qg.(t)
are the entries of a symmetric and positive definite matrix Q°(t), for any t € I, which satisfies the estimate
(QO(t)¢, &) = Ao for any t € I, & € 0B(0, 1) c R? and some positive constant Ag. Then Hypotheses 2.1 are
satisfied with ¢ (x) = 1 + |x|? for any x € RY.

Example 6.1 (Local existence and regularity). Fix T > s € I and let us consider as nonlinear term the function
P :[s, TI x R? x R x RY — R defined by

Y(t, x,u,v) =-p()gx)u(l + vI2)%, tels,T], x,ve R?, u e R.
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Here, ¢ : [s, T] —» Rand g : R? — R are bounded and continuous functions with positive infimum,

|p(6)] < Mo(t - s)"

for any ¢ € [s, T] and some positive constants M and 1, and « € (0, 1 + 1). We claim that 1 satisfies Hypo-
theses 3.1 so that Theorem 3.2 can be applied to deduce that for any f € C,(IR?) there exists a unique local
mild solution uf to the Cauchy problem (1.2) with these choices of 1 and A. Hypothesis 3.1 (ii) is trivially
satisfied. To prove Hypothesis 3.1 (i), we fix R > 1, uq, u> € [-R, R] and vy, v, € B(O,R) ¢ Re. Then, for any
te(s,(s+1)AT]and x € ]Rd, we can estimate

P, X, u, (= $)7ve) = Pl X, s, (= 5) 72 v)))
= PO (1 + (¢ =) val)* = ua (1 + (t = 5) HvalH)Y
< 8loo@OIL + (£ =) R*)*|ug — uz| + RI(L+ (¢ = )M val)* = (1 + (¢ = 8) " Hva P}
< Cllglloo(t = )71 + R*)*ur - ua| + R* (1 v (1 + RH* H)v1 - v}

for some positive constant C, independent of ¢, x, u; and v; (j = 1, 2). Hence, Hypothesis 3.1 (i) is satisfied
Withﬁ:a_rland
Lg = Cligllo max{(1 + R*), R*(1V (1 +R*)* )}

If, in addition, g is y- Holder continuous for some y € (0, 1) and 2a — 21 + y < 2, then, by Corollary 3.3, uy is
actually a classical solution to the Cauchy problem (1.2).

Example 6.2 (Global existence and stability). Fix s € I and let i : [s, +00) x R x R x R — R be the func-
tion defined by
P(t, x, u,v) = p(Og)(-h(w) +x(v), t=>s, x,veR?, ueR,

where ¢ € Cp((s, +00)) has positive infimum ¢, and g € CZ(]R"’), for some y € (0, 1), has positive infimum
go. The function h : R — R is nonnegative, locally Lipschitz continuous in R and satisfies the conditions
h(0) = 0 and uh(u) = y1u? - yolu| for some positive constants yo and y;. Finally, the function y : RY - Ris
Lipschitz continuous and vanishes at 0. As it is easily seen, 1 satisfies Hypotheses 3.5, condition (3.9) and,
clearly, Y(-, -, 0, 0) is a bounded function. Moreover, if we take @(x) = 1 + |x|? for any x € R4, then also the
condition A® + k1|VP| < ap in I x R4 is satisfied with some suitable positive constants a and k;. Hence, by
Theorem 3.6, problem (1.2) admits a unique global classical solution defined in the whole [s, T] x R€.
If h is globally Lipschitz continuous, then y satisfies Hypotheses 4.3 (i) with

§0 = l@lloliglooyos  §1 = —ogoy1,  §2 = [XILipmra)|Plloollglleo-

For any ¢ > max{m — 1, 0}, the function ¢ : R — R, defined by @(x) = (1 + |x|?)° for any x € R, satisfies
Hypotheses 4.3 (ii)-(iii) for some suitable locally bounded functions a, k; and C; (j = 0, 1, 2). Hence, Theo-
rem 5.1 can be applied to deduce that, if

~$ogoy1 + [S]fip(md)||¢|I§o||g||§o(4/\o(p -1t <o,

then the functions t — [lus(t, - Mrewe, e and t — ||Vyus(t,- e we, ) exponentially decay to zero as t — +co
for any f € LP(RY, us) and p > po, where A is the constant introduced at the beginning of this section. The
same result holds for any f € Cj,(RY) if we replace the LP(R¢, yi;)-norm by the L*-norm.

Example 6.3 (Summability improving properties). We take the same function 1 as in Example 6.2. In view of
Remark 4.4, we assume that the diffusion coefficients are independent of x. Since (V,b(t, x)&, & < —bo|é|?
for any t € I and x, ¢ € RY, and by is positive, by [4, Theorem 3.3] Hypothesis 4.3 (iv) is satisfied. Then, by
Theorem 4.5, estimates (4.4) and (4.5) are satisfied.

If, in addition, the power r in the drift coefficients is positive, then (4.12) holds true, by Remark 4.12.
Indeed, in such a case we can estimate (b(¢, x), x) = —=b(t)|x|2(1 + |x|2)" < —=bo|x|2(1 + |x]|2)" < —bg|x|>*2" for
any t € I and x € R?, so that, by Theorem 4.13, the nonlinear evolution operator N(t, s) satisfies estimates
(4.21) and (4.22).
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A Technical results

Proposition A.1. Let Hypotheses 2.1 hold and let g € C((a, b] x RY) satisfy

[gly,00 := sup (r—a)’lg(r, )le < +00
re(a,b)

forsomey € [0, 1) and some I > a < b. Then the function z : [a, b] x R? > R, defined by
t
26, = [ (Gt g N00dr, telabl, xeRY,
a

belongs to Cp([a, b] x RY) n C%*9((a, b] x RY) for any 6 < (0, 1),

(b-a)ty

o (8lor  1Vx2(, Moo < Cpab(t = )78l (A1)

Izl <

and
(A.2)

IVxz(t, licosy) < CrIGly,00(t -
forany t € (a, b], R > 0 and some positive constants cy,q,p and Cg. In particular, if y <
in (a, b] x RA.

Finally, if [gly,6,r := SUD¢e(q,p)(t — @)Y [I8(L, - )"c"(BR) < +oo for some 0 € (0, 1) and any R > 0, then one has

< 2, then Vyz is bounded

ze C?oc2+ ((a, b] x R%) n C1-2((a, b] x RY). Moreover,
Iz(t, 2 gy < c(t - a)? (gl ke, e (@ bl, (A.3)
and
266, Mgz gy < €t - @)V glyorer, e (@b, (A.4)

where p = aif 0 > a, whereas p can be arbitrarily fixed in (0, 0) otherwise

Proof. Throughout the proof, we will make use of [5, Proposition 2.7], where it has been shown that,
forany Isa<b, R>0,1n¢€(0,1] and € [, 2 + a], there exist positive constants Cg = Cg(a, b, R) and
Cn.p = Cy.p(a, b, R) such that forany f € C»(RY) n €L (R?),

loc

Cp(t - $)"2llcor

8o a<s<t<h. (A.5)
Crl,ﬁ(t - s)iT "f“C'l(ERH)’

G(t, S)ﬂ|cﬁ(ER) < {

To begin with, we observe that, for any ¢ € (a, b] and x € R, the function r — (G(t, r)g(r, - ))(x) is mea-
surable in (a, t]. If g is bounded and uniformly continuous in R%*1, this is clear. Indeed, as it has been
recalled in Section 2, the function (¢, s, x) — (G(t, s)f)(x) is continuousin {(t, s, x) € I x I x R? : t > s} forany
f € Cp(RY). Hence, taking (1.3) into account and adding and subtracting (G(t, r)g(ro, - ))(x), We can estimate

1(G(t, )g(r, -))(x) - (G(t, r0)g(ro, - ) (x0)| < 18(1, -) = &(ro, -)lleo + [(G(t, 1)8(r0, -))(X) — (G(£, T0)g(r0, - ))(x0)I

for any (r, x), (ro, Xo) € [a, t] x RY, and the last side of the previous chain of inequalities vanishes as (r, x)
tends to (1o, Xo).

If the function g is as in the statement of the proposition, then we can approximate it by a sequence (g5,) of
bounded and uniformly continuous functions in R%*! which converge to g pointwise in (a, b) x R¢ and satisfy
lgn(r, )l < llg(r, - )l for any r € (a, b).* Since the sequence (gy) is bounded and pointwise converges to g
in (a, t] x R%, by [9, Proposition 3.1 (1)] (G(t, - )gn(r, - ))(x) converges to (G(t, - )g(r, - ))(x) as n — +co pointwise
in (a, t]. Hence, the function r — (G(t, r)g(r, - ))(x) is measurable in (a, t].

1 Thiscanbedone, forinstance, setting gn(t, x) = 9n(£)(8(t, -) * pn)(x) forany (¢, x) € R4l neN, whereg : (a, +00) x RY S5 R
equals gin (a, b) x R9 and g(¢t, -) = g(b, - ) for any t > b, (9,) ¢ C*®°(R) is a sequence of smooth functions such that 1(442/n,+00) <
In < L{a+1/n,+00) fOr any n € N and “x” denotes convolution with respect to the spatial variables.
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Using again (1.3), we obtain [|G(t, )g(r, - )leo < 18(r, oo < (r — @) [gly,0 for any r € (a, t]. It thus fol-
lows that z is bounded and the first estimate in (A.1) follows.

Proving that z is continuous in [a, b] x R? is an easy task, based on estimate (1.3) and the dominated
convergence theorem. Hence, the details are omitted.

Fix 0 € (0, 1). The first estimate in (A.5) with 8 = 1 + 6 and the assumptions on g allow to differenti-
ate z with respect to x; (j = 1, ..., d), under the integral sign, and obtain that D;z(t, -) is locally -Holder
continuous in R?, uniformly with respect to t € (a, b), and

1-2y-6
IDjz(t, oy < Crlglylt-a) 2, te(a,bl. (A.6)

To conclude that Djz is continuous in (a, b] x RY, it suffices to prove that, for any x € R4, the function
Djz(-, x) is continuous in (a, b]. For this purpose, we apply an interpolation argument. We fix R > 0 such
that x € Bg. Applying the well-known interpolation estimate

6/(1+6 1/(1+6
Wles sy < KIAg  Mlchio s

with f = z(t,-) — z(tp, -) and t, tg € (a, b], from the continuity of zin [a, b] x R? and the local boundedness
in (a, b] of the function t — |f(t, -)llc1+6(g,), We conclude that the function D;z(-, x) is continuous in (a, b].

Hence, z € C0’1+9((a, b] x R?). Estimate (A.2) follows from (A.6). Further, estimate (2.4) and the assumption

loc

on g imply that
t
IDjz(t, x)| < Col8ly,c0 J(r —a@) V(L +(t-n"2)dr = Chant= )27 [gly,c0
a

for any (t, x) € (a, b] x R4, whence the second estimate in (A.1) follows at once.

Let us now assume that sup; 4 ) (t — @)”lIg(t, - )||C9 (Bp) < too forany R > 0. Arguing as above and taking
the second estimate in (A.5) with 8 = 2 (resp. 8 = 2 + a) into account, we can show that z(t,-) € CIOC(IRd)
(resp. z(t,-) € ClzoJrC“(Rd)) for any t € (a, b] and (A.3) (resp. (A.4)) holds true. Applying the interpolation
inequality

_ 0/(2+0)12/(2+6)
19l < Cllolloo™ N0l s g,

with ¢ = z(t, -) — z(to, - ) we deduce that the second-order spatial derivatives of z are continuousin (a, b] x Bg

and, hence, in (a, b] x R? due to the arbitrariness of R > 0.
Finally, to prove the differentiability of z, we introduce the sequence (z,), where

1
-5

Zn(t, x) = J (G(t,r)g(r, )(x)dr, tela+1/n,bl, xeR? neN.

As it is immediately seen, z, converges to z, locally uniformly in (a, b] x R4 and each function z,, is differen-
tiable in [a + 1/n, b] x R? with respect to t and

-

Deznt, x) = j AWDG(t, Ng(r, )00 dr + (G(t, t— %)g(t - ))(x)

for such values of (¢, x). Since [A()G(t, 1)g(r, -)llc,Bz) < CrIgly,c0(t - 1o/2=Y(r - q)V for any r € (a, t), and
g(t- %, -) converges to g(t, - ) locally uniformly in R9, by [9, Proposition 3.6] and the dominated convergence
theorem, we conclude that Dz, converges locally uniformly in (a, b] x R? to Az + g. Thus, we conclude that
z is continuously differentiable in (a, b] x R4 and, therein, Dz = Az + g. O

Lemma A.2. Let ] be an interval and let g € C(J x RY) be such that g(t, ) is bounded in R4 for any t € J. Then
the function t — || g(t, - )||lco iSs measurable in J.

Proof. To begin with, we observe that for any n € IN the function ¢t — |g(t, - )IIC(E") is continuous in J. This
is a straightforward consequence of the uniform continuity of g in Jo x B, for any bounded interval J, com-
pactly embedded into J. To complete the proof, it suffices to show that z,(t) := |g(¢, - )||C(§n) converges to
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lg(t, - )lloo for any ¢t € J. Clearly, for any fixed ¢t € J, the sequence (z,(t)) is increasing and is bounded from
above by ||g(t, ). To prove that (z,(t)) converges to [g(t, - )lleo, We fix a sequence (x,) ¢ R? such that
|g(t, xn)| tends to |Ig(t, - )lleo @5 n — +oo. For any n € N, let k, € N be such that x, € By,. Without loss of
generality, we can assume that the sequence (ky) is increasing. Then z (t) = llg(¢, - )| €@y 2 lg(t, xn)| for
any n € N. Hence, the sequence (z, (t)) converges to ||g(t, - )|lo and this is enough to conclude that the whole
sequence (z,(t)) converges to | g(t, - )]lco a5 N — +00. O

Finally, we prove some interior L”-estimates.

Proposition A.3. Let Q ¢ R4 be a bounded open set and let u € C*2((s, T) x Q) solve the equation D;u = Au
in (s, T) x Q. Then, for any xo € Q and any radius R1 > 0 such that Bg, (xo) € Q, there exists a positive constant
¢ =¢(Ry, X0, S, T) such that

(t = s)lut, NMwzrBg, (xoy + V= slult, llwrrsg, (o)) < € sup [ur, )lr(a)-

re(s,T)

Proof. Throughout the proof, we denote by c a positive constant, independent of n and u, which may vary
from line to line.

Let us fix 0 < R; < R; such that Bg, (xo) ¢ Q and a sequence of cut-off functions (9,) ¢ C(Q) such that
1B, (xo) < In < g, . (xo) and ||l9n||C£(Q) < 2knc for anyn € Nu{0}and k =0, 1, 2, 3, where

rn:=2R; —Ry +(2-2"")(R; - Ry).
Since the function uy, := 9,u solves the equation Du, = Aup + gnin (s, T) x By, , (xo), where
gn = _u-A'gn - <vau’ V'~9n>’

we can write
t
Un(6,) = (G, (6, 99u(s, )0 + [ (G (£, D)ga(, () o, (A7)
S
where G;ﬁl (t, s) is the evolution operator associated to the realization of the operator A in L? (B, , (xo)) with

homogeneous Dirichlet boundary conditions. It is well known that

IGP (¢, Nl W2r(B, ., (xo) < C(t - ritz IYlwar,,,, (o)

for any a € (0, 1), Y € WP(B,, ,(x0)) and s <r < t < T. Since gn(0,-) € W*P(B,,,,(x0)) for any o € (s, t),
from (A.7) we obtain

t
(t = S)llult, Nwzrs,, xo) < clluls, e, ., xo) + € J(t - 0) "2 gn(0, lwer (s, (xo)) dO.
S

Now, for any n € IN we set ¢, := Supe(s, ) (t — $)u(t, - )lw2r(s,, (x,)) and estimate the function under the inte-
gral sign. At first, we note that

Ign (o, Illwers,,, xo) < C||~9n||c§+a(B,M(xo))llu(U, Mwier, , (x0)-

By interpolation and using Young’s inequalities we obtain, for any o € (s, t),

4@, Mo, o < €0 =) U@, Mo, oSt
< (0-9)7%(ce  u(o, () + &4ns1)
and
IVxu(o, Mwer(s,, (o)) < (07— 5)" 7 (ce™ 4 [u(a, )o@ + E¢ns1)-
Collecting the above estimates together, we get

{n < 8Mcelni1 + ¢ sup [u(r, - )lre(1 + 8ng~ 1/ A-a)y,
re(s,T)
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Now we fix 0 < 7 < 64~ 1/(1+0 and ¢ = 8"¢~15. Multiplying both the sides of the previous inequality by n"
and summing up from O to N yields

Go -yt < ¢ sup fu(r, e (A.8)

re(s,T)

Since {{,}nen is bounded, taking the limit as N — +co on the left-hand side of (A.8) we conclude that

(t = S)lult, Nw2rBg, (x0)) < € sup Ju(r, -)lzr ()
re(s,T)

forany t € (s, T). An interpolation argument gives |u(t, - )| WP (Bg, (x0)) < c(t-s)"1/2 SUp,es, 1 lu(r, -)liLe (o) for
any t € (s, T), and this completes the proof. O
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